首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
无人机多光谱遥感用于冬小麦产量预测中捕获的数据准确性不高,为指导田块尺度下冬小麦产量的精准预测,需构建高精度的冬小麦产量估算模型。本研究利用校正后的近地面高光谱数据(Field-Spec 3型野外光谱仪获取)验证低空无人机多光谱遥感数据(大疆精灵4型多光谱相机获取),将通过无人机多光谱影像计算的植被指数与经验统计方法结合,采用一元回归和多元线性回归分别对抽穗期、开花期和灌浆期冬小麦进行基于单一植被指数和多植被指数组合的产量估算,其中多植被指数包括归一化差异植被指数(NDVI)、优化的土壤调节植被指数(OSAVI)、绿色归一化差值植被指数(GNDVI)、叶片叶绿素指数(LCI)和归一化差异红色边缘指数(NDRE)。结果表明,基于单一植被指数的冬小麦估产模型,一元二次回归模型精度最高,而基于5种植被指数的多元线性回归模型在3个生育时期的拟合效果均优于单植被指数模型。一元或多元回归模型在抽穗期的拟合效果最好。冬小麦基于GNDVI指数的一元二次回归估产模型建模集的决定系数(R2)、均方根误差(RMSE)分别为0.69、428.91 kg/hm2,验证...  相似文献   

2.
【目的】精确、高效地预测作物产量。【方法】以冬小麦为研究对象,利用无人机搭载多光谱相机,获取抽穗期、开花期和灌浆期的多光谱图像数据。根据多光谱波段选取对产量敏感的14种植被指数,并优选出与产量极显著相关的13种植被指数;基于优选出的植被指数分别建立各生育期的MLR、PLSR、SVM和Cubist产量估算初级模型进行对比分析,并利用Stacking方法集成初级学习器模型分别建立各个时期MLR和Cubist次级产量估测模型。【结果】随着冬小麦生长阶段的发展,各植被指数与产量的相关性逐渐增大,在灌浆期达到最大值0.67;对比4个初级学习器模型精度,Cubist模型在抽穗期、开花期和灌浆期的估产精度均为最高;利用Stacking方法构建的次级学习器模型以Cubist模型的估产效果最佳,MLR和Cubist模型的估产精度在各个时期均得到了提升。【结论】基于Stacking方法融合估产模型能够显著提升冬小麦的产量估算精度,为今后的估产研究提供参考。  相似文献   

3.
基于无人机高光谱遥感数据的冬小麦产量估算   总被引:4,自引:0,他引:4  
为了准确和高效地预测作物产量,以冬小麦为研究对象,利用无人机遥感平台搭载高光谱相机,获取了冬小麦各生育期的无人机影像。根据高光谱具有较多的光谱信息且存在特有的红边区域的特点,选取了9种植被指数和5种红边参数。首先,分析植被指数和红边参数与产量的相关性,优选5种植被指数和2种红边参数用于构建产量估算模型;然后,构建了不同生育期的3种产量估算模型:单参数线性回归模型、基于植被指数并使用偏最小二乘回归方法模型、基于植被指数结合红边参数并使用偏最小二乘回归方法模型;最后利用3种模型分别估算冬小麦产量。结果表明:4个生育期内,大部分植被指数和红边参数与产量呈现极显著相关性;拔节期、挑旗期、开花期与灌浆期构建的单参数线性回归模型中表现最佳的参数分别为REP、Dr/Drmin、GNDVI与GNDVI;利用偏最小二乘回归方法提高了产量估算精度,以植被指数结合红边参数为因子构建的模型提高了产量估算效果(优于以植被指数为因子构建的产量模型)。本研究可为无人机高光谱估算作物产量提供参考。  相似文献   

4.
准确、快速、无损估测叶面积指数(LAI)对于冬小麦生产管理具有重要意义。利用无人机搭载Prime ALTUM多光谱相机获取冬小麦拔节期、孕穗期、抽穗期、灌浆期多光谱图像,利用LAI-2200C型植物冠层分析仪获取地面LAI数据。通过Pearson相关性分析筛选出25个植被指数,并提取植被指数影像中8种纹理特征:对比度(CON)、熵(ENT)、方差(VAR)、均值(MEA)、协同性(HOM)、相异性(DIS)、二阶矩(SEM)和相关性(COR),以及3种颜色特征:一阶矩(M)、二阶矩(V)和三阶矩(S),再分别利用多元逐步回归模型(MSR)、支持向量回归模型(SVR)和高斯过程回归模型(GPR)构建冬小麦LAI估测模型。结果表明:相对于考虑单一类型变量,考虑结合纹理特征和颜色特征进行估测时模型精度更高;3类模型中,GPR模型估测冬小麦LAI的精度最高;所有模型中,基于纹理-颜色特征与植被指数融合的GPR模型估测冬小麦LAI精度最高(决定系数R2为0.94,均方根误差(RMSE)为0.17 m2/m2,平均绝对误差(MAE)...  相似文献   

5.
基于无人机遥感影像的冬小麦氮素监测   总被引:7,自引:0,他引:7  
精准氮素管理是一项提高作物氮肥利用效率的有效策略,利用无人机遥感技术精确估测小麦氮素状况是必要的。试验在山东省乐陵市科技小院实验基地进行,利用八旋翼无人机搭载Mini-MCA多光谱相机于2016年获取冬小麦4个关键生育时期(返青期、拔节期、孕穗期、扬花期)冠层多光谱数据,同步获取地上部植株样品并测定其生物量、吸氮量、氮营养指数,及成熟期籽粒产量,根据各关键生育期与全生育期分别构建植被指数与农学参数回归分析模型,评估基于无人机遥感影像的冬小麦氮素营养诊断潜力。结果表明:基于无人机遥感影像能够较好地估测冬小麦氮素指标(R2为0.45~0.96),决定系数随着生育期推移而逐渐增大。拔节期、孕穗期和扬花期估产效果接近且具有很好的估测能力,扬花期DATT幂函数模型对小麦氮营养指数的解释能力最强(R2=0.95)。因此,以多旋翼无人机为平台同步搭载多光谱相机对冬小麦有较好的氮素诊断潜力,可利用估测结果指导精准氮肥管理。  相似文献   

6.
SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指数与SPAD值的关系,将可见光植被指数与多光谱植被指数相结合进行SPAD值估算,利用逐步回归和随机森林回归方法估算SPAD值,并将估算结果进行对比,筛选出冬小麦叶片SPAD值的最优估算模型。结果表明,SPAD值与可见光植被指数(IKAW和RBRI)、多光谱植被指数(GNDVI、CI、GMSR和GOSAVI)具有较好的相关性,与可见光植被指数(CIVE)和多光谱植被指数(GNDVI)的相结合指数具有较好的相关性,其估算模型的R2为0.89,模型验证的RMSE为2.55,nRMSE为6.21%。研究表明,可见光植被指数与多光谱植被指数相结合指数逐步回归和随机森林回归模型估算SPAD值的精度高于仅用可见光植被指数或多光谱植被指数,采用逐步回归的估算模型R2为0.91,模型验证R2...  相似文献   

7.
基于VTCI和分位数回归模型的冬小麦单产估测方法   总被引:1,自引:0,他引:1  
王蕾  王鹏新  李俐  张树誉 《农业机械学报》2017,48(7):167-173,166
条件植被温度指数(VTCI)是一种综合了归一化植被指数(NDVI)与地表温度(LST)的遥感干旱监测方法,在关中平原的近实时干旱监测中具有其适用性。分位数回归能全面反映因变量的条件分布在不同分位数处的特征,回归结果稳健可靠。为了进一步研究VTCI干旱监测结果与小麦单产之间的关系及提高冬小麦单产估测精度,构建了不同分位数τ(0.1,0.3,0.5,0.7,0.9)下关中平原各市2008—2014年的冬小麦主要生育期VTCI与单产之间的线性回归模型,并基于中位数(τ=0.5)回归模型对研究区域的冬小麦单产进行了估测。结果表明,分位数回归模型比较全面地反映了不同分位数下冬小麦单产分布与VTCI之间的相关程度,弥补了最小二乘估产模型回归结果单一、易受异常值影响等的不足。中位数回归模型的单产估测结果与实际单产之间的相对误差和均方根误差的最小值及平均值均低于最小二乘回归模型,估测精度较高。此外,中位数单产估测模型获取的冬小麦估产结果在年际变化规律与空间分布特征上与实际产量均较相符,说明分位数回归在研究VTCI与产量之间的关系及冬小麦单产估测中具有其适用性与可靠性。  相似文献   

8.
基于NDWI和卷积神经网络的冬小麦产量估测方法   总被引:1,自引:0,他引:1  
为进一步提高冬小麦单产估测的效率和准确性,利于宏观指导农业生产、制定冬小麦整个生长期的精准管理决策,针对目前已有的县域冬小麦单产估测方法存在时效性差、准确度低、成本高等问题,以中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer, MODIS)为数据源,分别提取不同时段可见光与近红外波段信息,选择归一化差值植被指数(Normalized difference vegetation index, NDVI)、归一化差值水指数(Normalized difference water index, NDWI)、土壤调节植被指数(Soil adjusted vegetation index, SAVI)、调整土壤亮度植被指数(Optimal soil adjusted vegetation index, OSAVI)、绿色归一化植被指数(Green normalized difference vegetation index, GNDVI)、改进型土壤调节植被指数(Modified soil adjusted vegetation index, MSAVI)以及绿红植被指数(Green red vegetation index, GRVI)7个遥感植被指数,以其直方图分布信息作为输入变量,应用卷积神经网络(Convolutional neural network, CNN)回归预测冬小麦产量,对比分析NDWI在冬小麦产量估测上的表现并探究其在霜冻害影响下的精度变化。研究表明,相对于植被指数NDVI、SAVI、OSAVI、GNDVI、MSAVI、GRVI,NDWI对冬小麦生育早期的产量预测表现出更好的预测效果,单产去趋势前后的NDWI对产量的预测精度均高于NDVI、SAVI等植被指数,决定系数最高可达到0.79,且在霜冻害影响下仍能保持较好的预测效果;NDWI在抽穗—灌浆阶段对冬小麦最终产量影响最大,4月23—30日时间段内NDWI对产量的决定系数可达到0.72;空间分布上,研究区域冬小麦具有东部单产最高、中部次之、西部单产最低的空间分布特征,西部和北部山区与东部黄淮海平原交界处误差较大。研究结果可为冬小麦生育早期产量预测提供科学依据。  相似文献   

9.
为进一步准确、实时监测冬小麦长势并估测其产量,以陕西省关中平原为研究区域,选取冬小麦旬或生育时期尺度的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感特征参数,分别构建不同时间尺度的单参数、双参数和多参数的门控循环单元(GRU)神经网络模型,并模拟得到冬小麦长势综合监测指数I,结果表明,旬尺度的模型精度总体高于生育时期尺度的模型精度。基于5折交叉验证法进一步验证旬尺度多参数GRU模型的鲁棒性,并构建I与统计单产之间的线性回归模型以估测冬小麦单产,结果显示,冬小麦估测单产与统计单产的决定系数(R2)为0.62,均方根误差(RMSE)为509.08kg/hm2,平均相对误差(MRE)为9.01%,相关性达到极显著水平(P<0.01),表明旬尺度的多参数估产模型能够较准确地估测关中平原冬小麦产量,且产量分布呈现西高东低的空间特性和整体保持稳定且平稳增长的年际变化特征。此外,基于GRU模型捕获冬小麦生长的累积效应,分析在连续旬中逐步输入参数对产量估测的影响,结果显示,模型具有识别冬小麦关键生长阶段的能力,3月下旬至4月下旬是冬小麦生长的关键时期。  相似文献   

10.
为实现利用多光谱技术开展芳樟叶绿素相对含量(SPAD)监测,及时快速诊断芳樟矮林生长状况,为田间管理决策提供信息支持,以红壤区芳樟矮林为研究对象,利用无人机多光谱遥感影像,提取波段反射率,筛选植被指数,分别以波段反射率和植被指数为模型输入量,采用偏最小二乘回归、支持向量回归、反向传播(Back propagation, BP)神经网络和径向基函数(Radial basis function, RBF)神经网络4种方法构建芳樟矮林SPAD反演模型,并对比不同输入量、不同模型模拟结果的反演精度。研究结果表明:对比两种不同的输入量,在同一模型反演的精度相差不大;其中,基于偏最小二乘回归法,以植被指数为模型自变量估测芳樟矮林SPAD效果略优;基于支持向量回归、BP神经网络和RBF神经网络,以波段反射率为模型自变量估测芳樟矮林SPAD效果略优;对比4种建模方法,不同方法建模预测精度不同,与偏最小二乘回归、支持向量回归和BP神经网络相比,基于RBF神经网络反演芳樟SPAD的精度最高,以波段反射率和植被指数为模型输入量的测试集为例,其决定系数R2分别为0.788、0.751,均...  相似文献   

11.
探讨地下水埋深和施氮量对华北地区冬小麦灌浆特性和水氮利用效率影响,以百农4199为试验材料,设置地下水埋深(GW2:2 m,GW3:3 m,GW4:4 m)和施氮量(N300:纯氮量300 kg/hm2,N240:纯氮量240 kg/hm2)2个因素,评估地下水埋深和施氮量对冬小麦灌浆特性、产量形成及水氮利用效率等影响.结果表明:小麦千粒质量与快速增长期时间拐点、平均灌浆速率、灌浆持续时间显著正相关;路径分析表明,地下水埋深主要是通过影响小麦单株籽粒质量、穗数、穗粒数来影响产量的,地下水埋深对产量影响的直接标准化路径系数为0.334(P<0.05),施氮量主要是通过影响单株籽粒质量和穗数来间接影响产量;地下水埋深相同时,N240施氮水平氮肥偏生产力NPP和水分利用效率WUE均显著高于N300施氮水平.故建议地下水埋深大于2 m地区小麦高产和农业绿色可持续发展的施氮量为240 kg/hm2.  相似文献   

12.
为研究豫北地区喷灌水肥一体化条件下不同种植密度和施氮频次对土壤水分、硝态氮含量及冬小麦产量的影响,开展田间试验.试验设置了2个种植密度(D1:187 kg/hm2、D2:262 kg/hm2)和3个施氮频次(F1:返青后追肥1次、F2:返青后追肥2次、F3:返青后追肥3次).试验结果表明:种植密度和施氮频次均显著影响冬小麦籽粒产量, 且两者间存在明显的互作效应.种植密度增大,冬小麦生育期0~100 cm土层土壤贮水量显著提高.主要生育期的根系生长层土壤含水量显著增加,其中孕穗期在100 cm土层深度的含水量D2较D1分别提高29.42%,3.10%和32.04%,灌浆期在80 cm土层深度的含水量D2较D1分别提高29.69%,27.52%和25.71%.当种植密度为262 kg/hm2,施氮频次为1次时,冬小麦产量较高,深层土层的土壤硝态氮当季残留较少.综合分析表明,该种植密度和施氮频次为当地冬小麦生育期的最优措施.  相似文献   

13.
为了阐明大兴区冬小麦农业用水效率时空变化趋势, 基于近10 a大兴区冬小麦产量统计值和遥感ET值, 构建了冬小麦脱氮-分解作用模型(DNDC模型), 验证了DNDC模型在区域冬小麦水分生产率方面的适用性.结果表明:点位模拟与验证中,冬小麦产量和ET值模拟效果较好,相对误差均小于4.20%,作物水分生产率WP点位模拟值分别为1.91和1.75 kg/m3.区域模拟与验证中,不同土壤区冬小麦产量及ET不尽相同,但总体趋势保持一致,产量随降雨量变化较大,2008年产量达到最大.2007-2016年产量统计平均值为5 227 kg/hm2,产量模拟平均值为4 845 kg/hm2;同期区域冬小麦ET模拟平均值为381.74 mm,遥感平均值为392.66 mm,产量和ET平均相对误差小于13%.2007-2016年WP模拟值为1.10~1.62 kg/m3,平均值为1.27 kg/m3,统计值为1.15~1.62 kg/m3,统计平均值为1.34 kg/m3.  相似文献   

14.
基于无人机影像技术的小麦长势遥感监测   总被引:1,自引:0,他引:1  
李强 《农机化研究》2022,44(5):193-197
随着精准农业的发展,农作物长势监测越来越重要.传统的小麦长势监测主要依靠人工采样进行,作业效率低、监测范围小、耗费人力物力大.为有效提高小麦长势监测效率,引入无人机影像技术,以曹妃甸地区的小麦为研究对象,利用无人机影像技术和高光谱影像采集传感器完成对曹妃甸地区小麦叶面积指数、叶片生物量、叶绿素含量及叶片氮含量等长势参数...  相似文献   

15.
水肥一体化对小麦干物质和氮素积累转运及产量的影响   总被引:2,自引:0,他引:2  
为探讨滴灌水肥一体化对小麦干物质和氮素积累、转运与产量的影响,于2016—2018年2个小麦生长季进行田间试验,设置3个氮(N)肥水平N1(180 kg/hm2)、N2(240 kg/hm2)、N3(270 kg/hm2)和3个水分(W)水平W1(生育期不灌水)、W2(生育期灌2次水)、W3(生育期灌3次水),9个处理分别为:W1N1、W1N2、W1N3、W2N1、W2N2、W2N3、W3N1、W3N2、W3N3。结果表明:连续2年,小麦植株干物质积累量在开花期和成熟期达到最大,与W1N1处理相比,W3N2处理下小麦开花期植株平均干物质积累量、成熟期植株平均干物质积累量、营养器官平均干物质转运量、平均干物质转运率和干物质转运对籽粒平均贡献率分别增加32.11%、13.34%、48.66%、56.34%、42.93%;连续2年,小麦植株氮素积累量在小麦开花期和成熟期达到最大,与W1N1处理相比,W3N2处理下小麦开花期和成熟期植株平均氮素积累量分别增加21.98%和20.30%;在小麦成熟期,与W1N1处理相比,W3N2处理下小麦茎+叶鞘平均氮素积累量、穗轴+颖壳平均氮素积累量、籽粒平均氮素积累量、营养器官平均氮素转运量、平均氮素转运率和营养器官氮素转运对籽粒平均贡献率分别增加20.19%、27.65%、35.99%、47.51%、20.91%和6.04%;连续2年,与W1N1处理相比,W3N2和W3N3处理下小麦平均产量分别增加31.88%和15.28%。研究表明,滴灌水肥一体化下W3N2处理是本试验的最优处理,能够促进营养器官干物质和氮素的积累与转运,有利于实现小麦高产高效。  相似文献   

16.
【目的】提高微咸水灌溉效率并降低土壤盐渍化风险。【方法】以冬小麦为研究对象,设计避雨条件下不同微咸水-生物炭处理(CK,淡水;B0,5 g/L微咸水;B15,5 g/L微咸水及15 t/hm2生物炭;B30,5 g/L微咸水及30 t/hm2生物炭;B45,5 g/L微咸水及45 t/hm2生物炭)的田间试验,探讨了微咸水灌溉下生物炭添加量对土壤特性和冬小麦花后干物质积累及转运的影响机制。【结果】生物炭添加后土壤表层(0~20 cm)体积质量降低了2.27%~8.33%,总孔隙度增加了4.52%~13.47%,有机质量增加了30.02%~111.12%,土壤表层(0~20 cm)及主根区(0~40 cm)钠吸附比降低了23.88%~33.27%和22.34%~30.80%;15 t/hm2能够促进盐分淋洗,降低了微咸水灌溉下土壤含盐量,然而高剂量时将加剧盐分累积。单独微咸水灌溉下冬小麦生长受抑,最终产量下降了12.04%。生物炭能够缓解盐胁迫下叶片早衰,促进光合作用能力,并增加花前干物质转运量及花后干物质积累量,进而获取了更高的籽粒质量和收获指数。B15、B30、B45处理的最终产量较B0处理分别增加9.18%、7.73%、2.74%。【结论】15 t/hm2添加量的生物炭效果最佳,可促进微咸水资源的农业利用。  相似文献   

17.
以华北地区冬小麦为试验对象,参考直径20 cm标准蒸发皿的累计水面蒸发量E,通过2 a的大田试验(2012—2013),研究了大田地表滴灌条件下水氮耦合制度对作物耗水量、作物生理指标、产量、氮残留及水氮利用效率的影响,结果表明,冬小麦生育期内的耗水量、叶面积指数及产量受灌水定额的影响更为显著(P<0.05);滴灌条件下,当施氮量在120~290 kg/hm2时,水氮耦合效应对冬小麦耗水量的影响不具有统计学意义;在滴灌灌水定额为0.80E,施氮量为140~190 kg/hm2的水氮耦合模式下,冬小麦的产量较高,土壤硝态氮的当季残留较少,且进一步显著增加灌水定额和氮肥投入量将导致产量的明显下降;综合考虑冬小麦水氮利用效率和对地下水的潜在淋失风险,华北典型区滴灌水氮耦合的优化组合范围宜为灌水定额为0.80E,施氮量为140~190 kg/hm2.  相似文献   

18.
为探究东北半湿润区喷灌水肥一体化条件下春玉米最佳施氮管理模式,于2017年在东北地区开展了不同喷灌施氮管理对春玉米生长、产量及水氮利用效率的田间试验研究.试验设置了3个总施氮量:N200(200 kg/hm2),N160(160 kg/hm2)和N120(120 kg/hm2),其中播种时统一埋施氮肥60 kg/hm2,苗期统一喷施氮肥10 kg/hm2,其余在拔节期和灌浆期按照3种施氮比例T1(1∶0),T2(2∶1)和T3(3∶1)通过水肥一体化喷施施入.结果表明:T1获得了最高的氮肥偏生产力、氮素收获指数和水分利用效率.增加施氮量能够促进产量的增加,但N200和N160的平均产量差异不具有统计学意义(P>0.05).所有处理中T1N200的产量最高,为12 489 kg/hm2;T1N160处理的氮收获指数最大,为74.98 kg/kg.施氮量增加,氮肥偏生产力随之降低,0~100 cm土壤内的硝态氮残留量随之增多.T1处理的平均硝态氮残留量最少,降低了氮素淋失的风险.综合考虑,推荐该地区采用总施氮量160~200 kg/hm2,其中播种期施基肥60 kg/hm2,苗期追施10 kg/hm2,其余在拔节期全部追施的施氮管理模式.  相似文献   

19.
不同灌溉制度对制种玉米产量和阶段耗水量的影响   总被引:2,自引:0,他引:2  
通过田间试验研究了相同灌水定额(900 m3/hm2)条件下,不同灌水次数(0,2,3,4次)对制种玉米生育期土壤水分分布特征、耗水规律以及产量影响.结果表明,不同灌溉制度主要影响作物拔节后0~100 cm土壤水分分布.相同灌溉定额条件下,灌水时间影响制种玉米的穗行数、行粒数产量特征值.各处理耗水强度均呈“低、高、低”的变化趋势,峰值主要出现在制种玉米抽雄期-灌浆期.制种玉米各生育阶段对缺水的敏感程度由大到小依次为灌浆期、拔节期、苗期、乳熟期、抽雄期.在西北干旱半干旱地区,制种玉米苗期-拔节期、拔节期-抽雄期、抽雄期-灌浆期进行3次灌水,灌水定额为900 m3/hm2,灌溉定额为2 700 m3/hm2的灌溉制度具有明显的经济产量效益和节水效益.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号