首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
针对后轮驱动大功率拖拉机犁耕作业工况,提出了大功率拖拉机牵引力-滑转率联合自动控制方法。基于Freescale MC9S12XS128型微处理器开发了联合控制器硬件系统;采用PID(proportion integral derivative)控制算法,制定了牵引力PID控制和滑转率开关控制的联合控制策略,基于模块化设计开发了联合控制软件系统;进行了牵引力控制、牵引力与滑转率联合控制的田间实车对比试验,分析了2种不同控制方法下滑转率、牵引力和耕深的控制效果,验证了联合控制系统的性能。试验结果表明:当设定滑转率阀值区间0.1~0.2,牵引力阀值6 000 N时,联合控制下的实际耕深平均误差为1.45 cm,均方根误差为2.79 cm;实际牵引力平均误差为270.73 N,均方根误差为366.23 N;滑转率采样时间50 s,阀值区间以内43.78 s,有效控制时间范围为88%。与单独的牵引力控制相比,实际耕深、牵引力的平均误差和均方根误差均明显减小,实际滑转率的控制效率有较大提高。结果表明,该文提出的大功率拖拉机牵引力-滑转率联合自动控制方法,可以实现牵引力和滑转率的双目标联合控制,能够满足实际生产的农艺要求。  相似文献   

2.
拖拉机驱动轮滑转率估算法与验证   总被引:1,自引:2,他引:1  
拖拉机作业环境恶劣,测量信号容易受到噪声干扰,其滑转率的计算过程对于输入信号的相对误差有极强的放大作用,因而造成其滑转率难以精确测量。该文提出带噪声观测器的变结构并行自适应数据融合算法,对轮速传感器、角加速传感器、车身加速度计和全球定位系统的信号进行融合,在不需要先验误差统计规律的前提下实现了对拖拉机驱动轮滑转率的在线精确估计。仿真测试结果证明:采用信息融合方法求得的驱动轮滑转率信号几乎与理论值曲线重合且鲁棒性好,平均误差为中值滤波的1/10左右,为卡尔曼滤波的1/5;算法的噪声观测器能够实时估算测量信号的白噪声方差,求得的稳态平均方差与已知精确先验误差的卡尔曼数据融合算法无明显差异;在从动轮速度信号受到有色随机噪声干扰的特殊工况下,算法的信息融合机制能够补偿大部分由有色噪声干扰造成的误差。实测试验证明:在拖拉机稳定工作工况,在线求得的测量信号噪声方差均值在5%的范围内波动,采用数据融合算法求得的驱动轮滑转率误差均值为0.012,误差绝对值最大值为0.027,与离线拟合得到的参考值非常接近。该研究为拖拉机实现精确控制提供了参考,其在线测量信号方差统计方法为拖拉机总线网络的传感器信息共享提供了技术基础。  相似文献   

3.
拖拉机线控液压转向系统采用的单杆液压缸具有非对称性,为了提高转向系统的控制精度,提出了双通道PID(proportional integral derivative)控制方法,对液压缸活塞杆伸出和缩回的运动进行分通道控制。基于Sim Hydraulics模块建立线控液压转向系统的物理模型,对转向轮的跟随响应、阶跃响应进行仿真试验;同时搭建了线控液压转向系统试验台,进行台架试验,从而分析双通道PID控制对转向系统的影响。仿真试验得出双通道PID控制的跟随误差为0.473°、响应时间为0.273 s,且左、右转向跟随误差基本一致,均优于单通道PID控制,台架试验结果与仿真试验的效果一致。结果表明,线控液压转向系统在双通道PID控制下响应快,跟随误差更小,具有良好的跟随性和较高的控制精度。  相似文献   

4.
为兼顾装备液压机械无级变速器(Hydro-mechanical Continuously Variable Transmission,HMCVT)的拖拉机动力性及经济性,该研究制定了一种同时考虑动力性与经济性的综合模式切换规律。针对采用液压机械无级变速器的拖拉机,分别建立了发动机模型、HMCVT模型以及考虑驱动轮滑转率的拖拉机动力学模型。在分析了其经济性与动力性模式切换规律的基础上,引入动力性与经济性权重系数,采用模糊推理和基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)制定了拖拉机液压机械无级变速器综合模式切换规律。仿真与试验结果表明:与动力性模式切换规律相比,综合模式切换规律在纯液压模式(H模式)切换至液压机械模式1(HM1模式)时驱动力降低了11.13%,在HM1切换至液压机械模式2(HM2模式)时驱动力降低了7.29%,较H切换至HM1模式时减少了3.84个百分点;与经济性模式切换规律相比,综合模式切换规律在H切换至HM1模式时燃油消耗率增加了0.46%,在HM1切换至HM2模式时燃油消耗率增加了0.85%,较H切换至HM1模式时增加了0.39个百分点,使拖拉机能够在保持良好经济性的同时能获得较好的动力性。表明所制定的综合模式切换规律能根据油门开度识别出驾驶员的操作意图,满足驾驶员在不同工况下对动力性实际需求的同时,也能表现出较好的经济性。研究结果可为拖拉机液压机械无级变速器模式切换规律制定提供一定的理论参考。  相似文献   

5.
利用发动机的试验测试结果,采用多项式拟合的方法建立了发动机模型,给出了关于发动机的最佳动力性和最佳燃油经济性的转速调节特性。在此基础上研究了发动机与无级变速传动系统的匹配机理。根据不同的作业项目,将拖拉机的作业工况分为3种模式,阐述了各种作业模式下发动机与无级变速传动系统匹配的实现方案。该研究对理解和设计拖拉机液压机械无级变速传动系统,提高拖拉机生产率,具有一定的意义。  相似文献   

6.
为实现对液压机械无级变速拖拉机的最佳燃油经济性控制,分析发动机及液压机械无级变速器(hydro-mechanical continuously variable transmission, HMCVT)对拖拉机燃油经济性的影响,研究拖拉机最佳燃油经济性无级变速控制策略,该文针对发动机和HMCVT二元调节无级变速拖拉机,分析了发动机燃油消耗率和变速器的效率变化特性,提出了以发动机有效燃油消耗率g_e与HMCVT传动效率η_b的比值g_e/η_b为指标的最佳燃油经济性无级变速控制策略及拖拉机负载反馈控制原理。采用参数循环算法,求算出拖拉机在负载特性场内任意工作点下的最佳发动机转速、转矩、HMCVT的最佳变速比,保证了二元协同调节下拖拉机最佳燃油经济性变速控制策略的工程实现。计算结果显示:最佳变速比的分布呈现梯田状,平台部分的最佳变速比对应HMCVT纯机械传动时的工作状态,此时HMCVT处于传动效率最高点,并且在变速器传动效率高于0.92的工作区,最佳变速比的分布比例高达72.84%。相比较一元调节下分别以g_e、g_e/η_b为指标、二元调节下以g_e为指标的3种变速控制策略,明显降低了拖拉机燃油消耗率。牵引功率范围内,当拖拉机在某一目标车速下稳定工作时,在基于g_e/η_b最小化的二元调节变速控制策略调控下,拖拉机更可能在较低油耗状态下工作。表明以g_e/η_b为指标的二元调节拖拉机最佳燃油经济性变速控制策略能够提高拖拉机在任意工况下的燃油经济性。  相似文献   

7.
针对犁耕作业时大马力拖拉机驱动轮易产生过度滑转的问题,该研究以大马力拖拉机电液悬挂机组为研究对象,考虑“拖拉机-农具-土壤”系统的强非线性特征,在建立大马力拖拉机犁耕作业机组非线性系统动力学模型的基础上,提出基于滑模变结构控制的大马力拖拉机驱动轮滑转非线性控制方法;并以模糊PID控制为对比,采用Matlab/Simulink验证本文动力学模型的正确性和控制算法的有效性;以Lovol-TG1254型大马力拖拉机为载体,搭建犁耕作业大马力拖拉机驱动轮滑转控制平台,开展田间对比试验,并分析不同控制方法下的滑转控制效果,验证滑模变结构控制算法的控制精度和稳定性。试验结果表明:在2.17 m/s的犁耕作业工况下,与模糊PID控制算法相比,滑模变结构控制算法将拖拉机驱动轮滑转率有效控制在最优值0.2,平均绝对值偏差为0.008,减小了约27%,最大偏差为0.028,减小了约49%;耕深、液压缸位移和水平牵引力调节变化量分别减小了27%、36%、42%。该研究提出的基于滑模变结构的大马力拖拉机驱动轮滑转控制方法可实现犁耕作业驱动轮滑转最优目标控制。  相似文献   

8.
为了实现对拖拉机多段液压机械无级变速传动(hydro-mechanical continuously variable transmission,HMCVT)在任意稳定行驶速度和许可牵引负载下经济性最佳的控制,该文对拖拉机经济性最佳的无级变速规律进行了研究。根据拖拉机能量传递的特点,考虑HMCVT在不同传动比下存在效率差异的特征,把研究拖拉机的经济性最佳转化为对整车效率最大的研究。在分析整机传动系统效率特性的基础上,针对效率最大的目标函数和约束条件,求解了整车效率数值,结果表明在任意目标车速和牵引负载下,优化后拖拉机整车效率在35%~40%之间,并得出了效率最大时HMCVT最佳传动比、发动机转速和转矩,确定了基于整车效率最大的拖拉机HMCVT传动变速原理。研究表明:基于整车效率最大化原则能够实现拖拉机在任意车速和牵引负载下的整车经济性最佳,根据整车效率最大化确定的拖拉机多段HMCVT经济性最佳无级变速规律,为下一步制定装备多段HMCVT的拖拉机的经济性最佳控制策略提供参考。  相似文献   

9.
针对大马力拖拉机在道路运输与田间作业过程中由于工况复杂、作业环境恶劣导致油耗高、节能效果差的问题,该研究采用油电混合动力匹配液压机械无级变速器(Hydro-Mechanical Continuously Variable Transmission, HMCVT)的方式,设计了一种油电混合—机液复合拖拉机动力系统,探讨了该系统的驱动模式与传动方式的实现原理并得到液压机械无级变速器的调速曲线;建立了动力系统的数学模型。为实现动力系统最佳性能,制定了整车控制架构,在此基础上提出HMCVT经济性速比控制策略、基于规则的工作模式划分策略和基于自适应等效因子的燃油消耗最小功率分配策略。为验证所提控制策略的可行性,在SimulationX仿真软件中建立系统动力学仿真模型,并基于测功机搭建试验台架进行测试,分别对拖拉机在犁耕、收获和运输3个典型工况下进行仿真与试验。结果表明,所设计的控制策略能够兼顾混合动力源的最佳扭矩分配与电池电量平衡,且动力系统能保持较高的系统效率(0.4以上),犁耕、收获和运输3个工况下油耗仿真值(2.59、6.56和1.69 L)与试验值(2.72、6.80和1.77 L)的误差均不超过5%,模型可靠。与德国农业协会公布的相近功率动力换挡拖拉机和无级变速拖拉机油耗数据相对比,该研究所提的控制策略在3种工况下节油9%~20%。研究结果可为多工况作业条件下降低拖拉机能耗提供解决方案。  相似文献   

10.
拖拉机液压机械无级变速箱换段控制优化与试验   总被引:1,自引:6,他引:1  
为了提高无级变速拖拉机的换段质量,该文对所开发的一种新型液压机械无级变速箱的换段过程进行了试验研究。离合器充油特性试验中,通过改变离合器控制油路参数,获得主油路压力与充油流量对换段时间的影响规律;单因素加载试验中,通过单独改变发动机转速、主油路压力、充油流量、负载转矩,获得各因素单独作用时对换段质量的影响规律;多因素组合加载试验中,设计了3水平4因素组合试验方案,对多个因素综合作用时的变速箱换段质量问题进行了研究;时序优化试验中,通过控制器改变离合器动作时机,获得最佳的换段时序。试验结果表明:离合器主油路压力、充油流量可通过影响换段时间而间接影响到换段质量;重叠时序换段会引起油压陷阱,证明了重叠换段的安全性和可行性;单因素作用时,换段质量与离合器压力、流量正相关,与负载转矩负相关,与发动机转速无关;多因素共同作用时,换段质量的主次影响因素依次为充油流量、负载转矩、主油路压力、发动机转速;此外,采用重叠时序换段可显著改善换段质量。根据试验结果得出,为使该变速箱获得最佳的换段质量,其离合器主油路压力应取值4MPa,充油流量取值5L/min,重叠时序取值120ms。该结论为换段控制策略的制定提供了重要参考。  相似文献   

11.
苗盘输送部件是自动移栽机的关键部分,由于国内标准塑料苗盘易变形造成苗盘外表面的光反射率不稳定,导致单个光电传感器识别苗盘到位信息误差大,苗盘定位不准确。针对这一问题,该研究设计了一种推杆平移输送、双传感器融合定位的苗盘输送装置,并提出一种苗盘精确定位控制方法。该方法首先通过双传感器分别感知苗盘与推杆的到位信息,并融合输送装置的结构信息,得到苗盘从起始位置输送至取苗位置的精确输送距离;然后设计了一种苗盘与推杆之间放置位置的判定方法,判定苗盘当前放置位置后输入对应的位移量将苗盘输送至取苗位置,最后驱动伺服电机实现苗盘输送的精确控制。以128穴标准PVC硬塑苗盘为测试对象,开展了苗盘输送定位及取苗性能试验,结果表明:控制系统可以准确判定苗盘任意放置在输送链推杆上的具体位置,在苗盘不同放置位置及不同输送速度下,电机脉冲频率越快,定位偏差越大。当电机脉冲频率为800 Hz时,输送定位偏差最大值为1.35 mm,最小值为0.79mm,此时定位偏差平均值最大为1.07 mm,定位偏差变异系数最大为14.1%。在不同输送速度下,取苗成功率均达100%,满足精确输送定位要求,解决了单个光电传感器定位不稳定的问题,为自动移栽机适应标准塑料苗盘提供了技术保障。  相似文献   

12.
基于DF2204无级变速拖拉机的农机无人驾驶系统研制   总被引:1,自引:1,他引:0  
针对农机无人化作业需求,该研究基于DF2204无级变速拖拉机和机器人操作系统(Robot Operating System,ROS),研发了一种适于田间作业的农机无人驾驶自主作业系统。系统由控制、规划、安全和总线通信等模块组成。对DF2204无级变速拖拉机进行硬件改造与集成,设计满足农机无人驾驶要求的控制器局域网(Controller Area Network,CAN)总线协议和ROS与CAN总线通信的消息结构,包括5类控制帧和2类状态帧;设计了基于比例-积分-微分(Proportion Integration Differentiation,PID)控制器的横向跟踪与纵向速度控制算法。在北京密云试验田开展田间小麦播种实际作业试验。试验结果表明,消息结构满足50 Hz通信负载,横向跟踪平均绝对误差为2.96 cm,纵向速度平均绝对误差0.68 m/s。研究结果可为无级变速拖拉机的无人化升级改造提供参考,提高农机智能化水平和作业效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号