共查询到17条相似文献,搜索用时 74 毫秒
1.
受水稻冠层几何结构的影响,传统的无人机高光谱获取到的反射光谱信息中包含与水稻内部组成物质无关的镜面反射信息,从而影响水稻氮素含量的反演精度,因此在利用无人机获取水稻冠层反射光谱信息时,有必要考虑通过偏振测量技术去除反射光谱中的镜面反射分量,进而实现提升水稻氮素含量反演精度的目的。基于无人机偏振遥感测量得到的水稻分蘖期多角度偏振光谱数据和与之对应的氮素含量数据,采用植被指数方法分析二者之间的相关性,得到了水稻冠层偏振光谱数据与其对应氮素含量相关性最高时对应的角度,选取该观测角度下的偏振光谱数据,利用连续投影法(Successive projections algorithm, SPA)提取特征波段,在此基础上,基于数学变换的方法,提出了构建植被指数的新思路,构建了由2个波段组成的偏振光谱植被指数(Polarisation spectrum vegetation index, PSVI),并利用线性回归方法建立水稻冠层氮素含量的反演模型。结果表明,通过对不同观测天顶角下水稻冠层偏振光谱数据与氮素含量相关性分析,得到最佳观测角度为-15°(后向观测15°);利用连续投影法提取得到该角度下偏振... 相似文献
2.
叶绿素是一种反映植物生长水平和健康状况的重要生理生化指标,为快速、无损地大规模获取柑橘冠层的叶绿素含量以精确指导果园管理,利用多旋翼无人机搭载多光谱传感器获取多波段反射率数据,使用多光谱阴影指数对冠层阴影和土壤背景进行剔除,计算得到植被指数与纹理特征,将地面实测的叶绿素含量作为验证,综合对比了全子集回归、偏最小二乘回归和深层神经网络的反演精度以选取最优模型。结果表明,植被指数与叶绿素含量的相关性良好;将仅使用植被指数与仅使用纹理特征的建模结果进行对比,仅使用纹理特征的模型在全子集回归和偏最小二乘回归的反演精度均有明显提升;结合植被指数与纹理特征共同建模后,全子集回归和偏最小二乘回归的反演精度相比仅使用纹理特征的模型均能获得提升;深层神经网络因其良好的非线性拟合能力,获得了最高的反演精度,R2、MAE、RMSE分别为0.665、7.69 mg/m2、9.49 mg/m2,成为本文最优模型。本研究利用无人机多光谱影像反演得到柑橘冠层叶绿素含量,为实现柑橘生长监测提供指导作用。 相似文献
3.
氮素是果树生长发育不可或缺的成分,氮素含量超出正常范围会影响树体生长发育,会直接或间接降低果实产量及品质。快速准确掌握果树氮素含量,可为精准施肥提供技术支撑,从而达到果树的优质丰产。随着无人机产业的快速发展,无人机遥感监测以其无损、快速、实时、高效等优点在氮素含量监测中发挥着重要作用。在介绍目前主流无人机的基础上,梳理数据获取及后续处理方式,阐述多光谱、高光谱、可见光以及其他类型传感器实现果树氮素含量监测研究现状。可以发现,多光谱和高光谱传感器对果树氮素监测效果更佳,且使用机器学习方法构建模型相较于传统方法具有更高精度。提出无人机遥感监测果树氮素含量在无人机飞行平台与传感器性能、数据获取与处理、推广与应用及政策4个方面现阶段存在的不足之处和未来精准化、高效化和智能化的发展方向。 相似文献
4.
利用野外便携式ASD Qualityspec光谱仪,实测了田间甜菜冠层光谱数据,采用植被指数对氮含量进行预测,发现估算精度较低,分析NDVI与VLOPT与氮含量的相关性,得出氮含量在很小的时候就达到饱和水平。根据4种预处理下的甜菜冠层光谱,分别采用偏最小二乘回归(PLSR)和主成分回归(PCR)建立甜菜氮含量估算模型,比较不同预处理和不同回归方法对估算精度的影响。结果表明:对PLSR来说,一阶导数处理的光谱数据建立的模型精度最好(RMSE=2.34g/kg,RE=19.6%),平滑、MSC和SNV建立的估算模型次之;对PCR来说,平滑处理的光谱数据建立的模型精度最好(RMSE=2.34g/kg,RE=19.4%)。总的看来,不同预处理对估算模型精度有一定的差异,但PLSR和PCR两种回归方法对甜菜氮含量估算模型影响不大。 相似文献
5.
基于无人机可见光影像的玉米冠层SPAD反演模型研究 总被引:2,自引:0,他引:2
叶绿素是植物进行光合作用的重要色素,利用作物光谱、纹理信息对叶绿素进行反演,为作物的实时监测和健康状况诊断提供重要依据。以大田环境下5个不同品种四叶期、拔节期的玉米为研究对象,利用无人机获取试验区可见光影像,对土壤背景进行掩膜处理,提取25种可见光植被指数、24种纹理特征,综合分析植被指数、纹理特征与玉米冠层叶绿素相对含量(SPAD)的相关性,分别建立基于植被指数、纹理特征和植被指数+纹理特征的逐步回归(SR)、偏最小二乘回归(PLSR)和支持向量回归(SVR)模型,定量估算叶绿素相对含量。在SR模型中,植被指数+纹理特征模型与植被指数模型相同,R2为0.7316,RMSE为2.9580,RPD为1.926,优于纹理特征模型;在PLSR模型中,植被指数+纹理特征模型较优,R2为0.8025,RMSE为2.4952,RPD为2.284,纹理特征模型次之,植被指数模型最差;在SVR模型中,植被指数+纹理特征模型较优,R2为0.8055,RMSE为2.6408,RPD为2.158,植被指数模型次之,纹理特征模型最差。综合分析采用基于PLSR植被指数+纹理特征模型可以实现玉米冠层SPAD快速、准确提取,为叶绿素反演提供一种新的方法,可为无人机遥感作物长势监测提供参考。 相似文献
6.
氮素是玉米生长发育过程中必不可少的关键性因素,能够直接影响到玉米作物的生长情况。过去传统的玉米种植信息采集工作大多由人工作业完成,在实际工作中具有费时费力的缺点,难以大范围快速开展,且人工采集的信息数据质量无法得到有效保障,还会对玉米田地造成一定程度的影响和破坏。随着现代化技术的快速发展,无人机和计算机等技术的普及应用促使农业监测方法日新月异。基于此,笔者以实际案例为例并进行深入分析,探究多源遥感技术在夏玉米冠层氮素监测中的应用情况。结果表明,多源遥感技术在实际应用中能够实现高效精准的空间数据监测,实现了多角度的信息采集分析。本研究具有良好的发展前景,能够为其他农业监测研究提供参考。 相似文献
7.
基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计 总被引:1,自引:0,他引:1
为探讨利用无人机多光谱遥感影像监测夏玉米冠层叶绿素含量的可行性,基于2019年不同施氮水平下(0,105,210,315 kg·N/hm2)夏玉米多光谱遥感影像和田间实测冠层叶绿素含量数据,分析了不同施氮水平下夏玉米冠层叶绿素含量的变化规律,同时选取10种常用光谱植被指数与实测冠层叶绿素含量进行相关性分析,采用与实测叶绿素含量极显著相关的9种植被指数,构建了基于遥感光谱指数的夏玉米冠层叶绿素含量遥感监测模型,并通过精度检验确定最优估测模型.结果表明,施用氮肥能够提高夏玉米冠层叶绿素含量,过量氮肥不能持续提高叶绿素含量,同一施氮水平下不同追肥处理之间叶绿素含量没有明显差异.绿色归一化植被指数与叶绿素含量的相关性系数最高,达到了0.892.采用逐步回归分析方法建立的模型表现最优,决定系数为0.87,均方根误差及相对误差分别为0.15和2.68%.因此,无人机多光谱遥感结合逐步回归模型可以实现田间尺度的夏玉米冠层叶绿素含量的实时监测. 相似文献
8.
基于Sentinel-2遥感影像的玉米冠层叶面积指数反演 总被引:9,自引:0,他引:9
叶面积指数是描述玉米冠层结构的重要参数之一,决定玉米冠层的光合作用、呼吸作用、蒸腾和碳循环等生物物理过程,因此精确反演叶面积指数对玉米长势监测具有重要意义。以河北省保定市的涿州市、高碑店市、定兴县为研究区,利用Sentinel-2遥感影像和LAI-2000地面同步实测数据进行玉米冠层叶面积指数反演,使用归一化差异光谱指数和比值型光谱指数两类指数,构建了单变量和多变量玉米冠层叶面积指数反演模型,通过决定系数(R2)和均方根误差(RMSE)筛选出最佳模型。研究结果表明,由NDSI(783,705)构建的单变量模型为最优反演模型,其决定系数为0.534 2,均方根误差为0.288 5。因此,基于Sentinel-2遥感影像利用植被指数反演玉米冠层叶面积指数的方法可作为判断玉米长势状况的初步判断依据。 相似文献
9.
为及时准确地掌握作物的植株氮含量(PNC)信息,监测作物生长状况,实现农田氮素施肥的科学管理,以马铃薯为研究对象,首先获取了现蕾期、块茎形成期、块茎增长期、淀粉积累期和成熟期的数码影像,并实测了各生育期的PNC、株高(H)和地面控制点(GCP)的三维坐标。其次利用各生育期的无人机数码影像与GCP结合生成试验区域的数字正射影像(DOM)和数字表面模型(DSM),并从中提取冠层光谱特征和株高(Hdsm)。然后将各生育期提取的Hdsm和数码影像变量与地面实测的PNC进行相关性分析,从中筛选出相关性较好的影像变量和Hdsm作为马铃薯PNC估算模型的输入参数。最后分别基于影像变量和影像变量结合Hdsm利用多元线性回归(MLR)、误差反向传播(BP)神经网络和Lasso回归3种方法构建马铃薯PNC估算模型。结果表明:基于DSM提取的Hdsm与实测H具有较高的拟合度(R2为0.860,RMSE为2.663 cm, NRMSE为10.234%);各生育期加入Hd... 相似文献
10.
为及时准确地掌握作物的植株氮含量(PNC)信息,监测作物生长状况,实现农田氮素施肥的科学管理,以马铃薯为研究对象,首先获取了现蕾期、块茎形成期、块茎增长期、淀粉积累期和成熟期的数码影像,并实测了各生育期的PNC、株高(H)和地面控制点(GCP)的三维坐标。其次利用各生育期的无人机数码影像与GCP结合生成试验区域的数字正射影像(DOM)和数字表面模型(DSM),并从中提取冠层光谱特征和株高(Hdsm)。然后将各生育期提取的Hdsm和数码影像变量与地面实测的PNC进行相关性分析,从中筛选出相关性较好的影像变量和Hdsm作为马铃薯PNC估算模型的输入参数。最后分别基于影像变量和影像变量结合Hdsm利用多元线性回归(MLR)、误差反向传播(BP)神经网络和Lasso回归3种方法构建马铃薯PNC估算模型。结果表明:基于DSM提取的Hdsm与实测H具有较高的拟合度(R2为0.860,RMSE为2.663cm,NRMSE为10.234%);各生育期加入Hdsm,均能提高马铃薯PNC的估算精度和稳定性;各生育期利用MLR方法构建的PNC估算模型优于BP神经网络和Lasso回归。该研究可为马铃薯PNC状况的高效、无损监测提供技术支撑。 相似文献
11.
基于无人机多光谱遥感的玉米根域土壤含水率研究 总被引:3,自引:0,他引:3
及时获取农田作物根域土壤墒情是实现精准灌溉的基础和关键。以内蒙古自治区达拉特旗昭君镇试验站大田玉米为研究对象,利用无人机遥感系统,分别在玉米营养生长期(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)获得7次玉米冠层多光谱正射影像,并同步采集玉米根域不同深度土壤含水率(Soil moisture content,SMC);然后,采用灰色关联法对提取的多种植被指数(Vegetation index,VI)进行筛选,选取与土壤含水率敏感的植被指数;最后,分别采用多元混合线性回归(Cubist)、反向传播神经网络(Back propagation neural network,BPNN)和支持向量机回归(Support vector machine regression,SVR)等机器学习方法,构建不同生育期的敏感植被指数与土壤含水率的关系模型。结果表明,3种机器学习方法中SVR模型在各生育期的建模与预测精度均最优,BPNN模型次之,Cubist模型最差;其中SVR模型在M期效果最优,其建模集和验证集R~2分别为0. 851和0. 875,均方根误差(Root mean square error,RMSE)均为0. 7%,标准均方根误差(Normalized root mean square error,nRMSE)分别为8. 17%和8. 32%,R期效果最差,其建模集和验证集R~2分别为0. 619和0. 517。 相似文献
12.
基于无人机遥感技术获取农田土壤盐分信息为盐渍化治理提供了快速、准确、可靠的理论依据。本文在内蒙古河套灌区沙壕渠灌域试验地上采集了取样点0~20cm的土壤含盐量,并使用M600型六旋翼无人机平台搭载Micro-MCA多光谱相机采集图像。利用Otsu算法对多光谱图像进行图像分类(土壤背景和植被冠层),基于分类结果分别提取剔除土壤背景前后的光谱指数和图像纹理特征,采用支持向量机(SVM)和极限学习机(ELM)构建土壤含盐量监测模型,其4种建模策略分别为:未剔除土壤背景的光谱指数(策略1)、剔除土壤背景后的光谱指数(策略2)、未剔除土壤背景的光谱指数+图像纹理特征(策略3)、剔除土壤背景的光谱指数+图像纹理特征(策略4),通过比较4种建模策略的模型精度以筛选出最优变量组合。结果表明:策略3、4所计算出的土壤含盐量反演精度高于策略1、2,策略1~4验证集决定系数R2v分别为0.614、0.640、0.657、0.681,因此利用图像纹理特征+植被指数对提高土壤含盐量的反演精度有重要意义。对比策略3、4,图像纹理特征+植被指数受到土壤背景的影响,策略4精度低于策略3精度,其R2v分别为0.614、0.657;各变量处理的最优模型均为ELM模型,建模集R2c分别为0.625、0.644、0.618、0.683,标准均方根误差分别为0.152、0.134、0.206、0.155。相比于SVM模型,ELM模型提高了土壤含盐量的反演精度。 相似文献
13.
为进一步提高无人机遥感估产的精度,本研究以2021—2022年的覆膜冬小麦为研究对象,对返青期、拔节期、抽穗期和灌浆期的多光谱影像进行覆膜背景剔除,并优选最佳遥感窗口期,基于最优植被指数构建覆膜冬小麦估产模型。结果表明,利用支持向量机监督分类法剔除覆膜背景后冠层反射率更接近真实值,抽穗期和灌浆期的估产精度更高。将不同生育期的植被指数与产量进行相关性分析发现,最佳遥感窗口期为抽穗期。基于逐步回归和全子集回归法优选最优植被指数时发现,基于逐步回归法筛选变量为MCARI、MSR、EVI2、NDRE、VARI、NDGI、NGBDI、ExG时产量反演模型精度最高。此外,利用偏最小二乘法、人工神经网络和随机森林3种机器学习法构建的产量反演模型中,基于逐步回归法的随机森林模型的反演精度最高,R2为0.82,RMSE为0.84t/hm2。该研究可为提高遥感估产精度、实现农业生产精细化管理提供技术支持。 相似文献
14.
为了探究无人机多光谱遥感影像估算作物光合有效辐射吸收比例(Fraction of absorbed photosynthetically active radiation,FPAR)的潜力,以无人机多光谱影像提取的植被指数、纹理指数、叶面积指数为模型输入参数,在分析不同参数与FPAR相关性的基础上优选植被指数与纹理指数,并分别以一元线性模型、多元逐步回归模型、岭回归模型、BP神经网络模型等方法估算玉米FPAR。结果表明:植被指数、纹理指数、叶面积指数 3种参数与FPAR都具有较强的相关性,其中植被指数相关系数最大;在不同类型的FPAR估算模型中,BP神经网络模型的估算效果最优,FPAR估算模型决定系数R2、均方根误差(RMSE)分别为0.857、0.173,验证模型R2、RMSE分别为0.868、0.186,模型估算值与田间实测值间相对误差(RE)为8.71%;在不同形式的模型参数组合中,均以植被指数、纹理指数、叶面积指数 3种参数融合的FPAR模型的估算与验证效果最优,说明多特征参数融合能有效改善FPAR估算效果。该研究为基于无人机多光谱遥感数据精准估算玉米FPAR及生产潜力提供了科学依据。 相似文献
15.
基于无人机热红外遥感的玉米地土壤含水率诊断方法 总被引:2,自引:0,他引:2
为使热红外遥感诊断土壤含水率更加准确、高效,以不同水分处理的大田玉米为研究对象,借助无人机可见光图像,对热红外图像进行植土分离,并提取玉米冠层温度和地表土壤温度。通过剔除温度直方图两端1%的温度像元对温度信息进行优化,进而计算作物水分胁迫指数(Crop water stress index,CWSI)、冠层相对温差(Canopy relative temperature difference,CRTD)、地表相对温差(Surface relative temperature difference,SRTD),利用三者之和求得水分-温度综合指数(Water-temperature composite index,WTCI),并用于诊断不同深度的土壤含水率。结果表明,剔除温度直方图两端1%温度像元的玉米冠层温度与实测冠层温度的相关性更高(4次试验的R2由0. 823、0. 886、0. 899、0. 876提高至0. 906、0. 938、0. 944、0. 922),剔除温度直方图前端1%温度像元的地表土壤温度与实测地表温度的相关性也更高(2次试验的R2由0. 841、0. 875提高至0. 908、0. 925),即通过直方图法优化的温度更接近实测温度;在拔节前期,CWSI、WTCI诊断0~20 cm土壤含水率效果较优,而拔节后期、抽雄吐丝期、乳熟期诊断0~40 cm土壤含水率效果较优;在半覆盖条件下,包含冠层温度信息(CWSI、CRTD)和土壤温度信息(SRTD)的WTCI1与土壤含水率的相关性更高(0~40 cm:决定系数为0. 500、0. 821,高于0. 463、0. 748);在全覆盖状态下,包含冠层相对温差(CRTD)的WTCI2与土壤含水率的相关性更高(0~40 cm:决定系数为0. 809、0. 729,高于0. 721、0. 656),表明WTCI是诊断土壤含水率效果较优的指标。 相似文献
16.
基于无人机影像技术的小麦长势遥感监测 总被引:1,自引:0,他引:1
随着精准农业的发展,农作物长势监测越来越重要.传统的小麦长势监测主要依靠人工采样进行,作业效率低、监测范围小、耗费人力物力大.为有效提高小麦长势监测效率,引入无人机影像技术,以曹妃甸地区的小麦为研究对象,利用无人机影像技术和高光谱影像采集传感器完成对曹妃甸地区小麦叶面积指数、叶片生物量、叶绿素含量及叶片氮含量等长势参数... 相似文献
17.
为实现利用多光谱技术开展芳樟叶绿素相对含量(SPAD)监测,及时快速诊断芳樟矮林生长状况,为田间管理决策提供信息支持,以红壤区芳樟矮林为研究对象,利用无人机多光谱遥感影像,提取波段反射率,筛选植被指数,分别以波段反射率和植被指数为模型输入量,采用偏最小二乘回归、支持向量回归、反向传播(Back propagation, BP)神经网络和径向基函数(Radial basis function, RBF)神经网络4种方法构建芳樟矮林SPAD反演模型,并对比不同输入量、不同模型模拟结果的反演精度。研究结果表明:对比两种不同的输入量,在同一模型反演的精度相差不大;其中,基于偏最小二乘回归法,以植被指数为模型自变量估测芳樟矮林SPAD效果略优;基于支持向量回归、BP神经网络和RBF神经网络,以波段反射率为模型自变量估测芳樟矮林SPAD效果略优;对比4种建模方法,不同方法建模预测精度不同,与偏最小二乘回归、支持向量回归和BP神经网络相比,基于RBF神经网络反演芳樟SPAD的精度最高,以波段反射率和植被指数为模型输入量的测试集为例,其决定系数R2分别为0.788、0.751,均... 相似文献