首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Phytoplasmas detected by fluorescence microscopy and polymerase chain reaction (PCR) have been discovered infecting Prunus trees at a site in south-east England. The pathogens were detected in tissue samples taken in autumn and also in spring. The symptoms in infected trees varied from severe decline to absence. PCR experiments using group-specific primers to amplify regions of the 16S RNA gene indicated that the phytoplasmas are similar to European stone fruit yellows isolates occurring in southern and eastern Europe. This is the first record of phytoplasmas in Prunus species in the UK. The origin of the infection is unknown. The implications of this new disease for the fruit industry are discussed.  相似文献   

2.
About 40 different species of wild herbaceous and woody plants were collected in underbrush close to a vineyard where Flavescence dorée (FD) has been reported for several years. Polymerase chain reaction assays were carried out using DNA extracted from leaves of each species for the detection of the presence of phytoplasmas. Only samples of Clematis vitalba were found to be infected with phytoplasmas. Restriction fragment length polymorphism and sequencing data of the 16S ribosomal RNA gene and of a non-ribosomal DNA fragment FD9 revealed that the phytoplasma isolate was identical to that causing FD in the nearby vineyard. The isolate identified in the clematis is the same as the FD-C phytoplasma found in grapevine in north-east Italy.  相似文献   

3.
4.
Between 1994 and 1998 a field study was conducted to identify plant hosts of the European stone fruit yellows (ESFY) phytoplasma in two apricot growing regions in southern and southwestern France where the incidence of apricot chlorotic leaf roll was high. A total of 431 samples from 51 different plant species were tested for the presence of phytoplasmas by PCR using universal and ESFY-specific primers. ESFY phytoplasma was detected in six different wild growing Prunus species exhibiting typical ESFY symptoms as well as in symptomless dog rose bushes (Rosa canina), ash trees (Fraxinus excelsior) and a declining hackberry (Celtis australis). The possible role of these plant species in the spread of ESFY phytoplasma is discussed. PCR-RFLP analysis of ribosomal DNA amplified with the universal primers was carried out to characterize the other phytoplasmas found. Thus, elm yellows phytoplasma, alder yellows phytoplasma and rubus stunt phytoplasma were detected in declining European field elm trees (Ulmus carpinifolia Gled), in declining European alder trees (Alnus glutinosa) and in proliferating Rubus spp. respectively. The presence of rubus stunt phytoplasma in great mallow (Malva sylvestris) and dog rose was demonstrated for the first time. Furthermore, the stolbur phytoplasma was detected in proliferating field bindweed (Convolvulus arvensis) and a previously undescribed phytoplasma type was detected in red dogwood (Cornus sanguinea). According to the 16S rDNA-RFLP pattern this new phytoplasma belongs to the stolbur phytoplasmas group.  相似文献   

5.
DNA primers, based on the ribosomal sequences of lethal yellowing-type disease (LYD) phytoplasmas, were used to analyse genetic variation within the lethal yellowing-type diseases of coconut in East Africa. Samples were collected from palms in Kenya, Mozambique and high, medium and low disease incidence areas of Tanzania. The mollicute-specific primer pair P1 and P6 amplified a 1.5 kbp product from all diseased palms and no product from symptomless palms, indicating that phytoplasmas were associated with all of these diseases. However, the Rohde forward and Rohde reverse primers (a second rRNA primer pair designed to detect East African LYD-associated phytoplasmas) only amplified products from Tanzanian and Kenyan diseased palms and not from those of Mozambique. Conversely, primers Ghana 813 and AK-SR, designed for specific detection of coconut-associated phytoplasmas in West Africa, amplified products only from the Mozambique palms, indicating that the phytoplasma associated with LYD in Mozambique is more closely related to those from West Africa. This was supported by restriction enzyme digestion of PCR products. DNA sequencing of PCR products from phytoplasmas within Tanzania revealed no detectable differences in the rDNA sequences of isolates from high, medium and low incidence areas.  相似文献   

6.
Phytoplasmas associated with lettuce phyllody (LP) and wild lettuce phyllody (WLP) in southern Iran were partially characterized by molecular analyses and host-range studies. Agents of both diseases were transmitted by Neoaliturus fenestratus , a leafhopper colonizing lettuce and wild lettuce, to lettuce, wild lettuce, sowthistle and periwinkle, but not to safflower, sunflower, calendula and sesame. Both phytoplasmas induced bud proliferation, virescence, phyllody and witches' broom in infected plants. Total DNA extracted from infected lettuce and wild lettuce or from vector tissues was subjected to PCR using phytoplasma-specific primer pair P1/P7 or nested PCR using P1/P7 followed by R16F2n/R16R2. PCR product of nested PCR (1·2 kbp) was subjected to restriction fragment length polymorphism (RFLP). RFLP analysis of nested PCR product identified the LP, WLP and N. fenestratus -associated phytoplasmas as members of the pigeon pea witches' broom group, 16SrIX. Phylogenetic analysis of the 16S rRNA gene sequence also clustered LP and WLP phytoplasmas with other known members of the 16SrIX group. While no significant differences could be detected between LP and WLP phytoplasmas, both isolates differed from Lebanese wild lettuce phyllody in molecular properties.  相似文献   

7.
A survey was conducted over several years in Italy and the Balkans in order to gain an understanding of the relationship between the Flavescence dorée (FD) phytoplasma isolates found in clematis and grapevine. A total of 399 clematis and 107 grapevine samples were analyzed. The results showed that 36% of the Clematis vitalba plant samples were infected by phytoplasmas which, in grapevine, are associated with FD, a quarantine disease in Europe. Infected clematis plants were also found in areas where FD phytoplasma had never previously been reported to infect grapevine, such as Macedonia, Croatia and some areas of Italy and Serbia. Molecular data from three phytoplasma genomic fragments showed the presence of different FD phytoplasma isolates, all belonging to the 16SrV-C subgroup, including the Italian FD-C isolate, the isolate found in Serbia, an isolate similar to the French FD2000 and a new isolate typical of central Italy. A few clematis plants were infected with single nucleotide polymorphism, insertion or deletion mutants of the FD-C isolate. Of all the potential Hemipteran vector species surveyed in Italy and Serbia, only 18 of 527 Dictyophara europaea individuals tested proved to be infected with the FD phytoplasma. Preliminary transmission experiments showed that this species is able to transmit the FD phytoplasma from clematis to grapevine. The presence of FD-infected clematis and of D. europaea could, therefore, constitute a risk for FD epidemics in the European viticultural regions.  相似文献   

8.
9.
In November 2008 in Himachal Pradesh and Chandigarh regions in India, toon trees and periwinkles were observed to have formed short internodes, small leaves and witches’-broom symptoms, typical of phytoplasma infection. The symptomatic toon and periwinkle samples were tested with universal PCR tests, and the 16S rRNA, rplB-rpsC, secA and secY genes were sequenced. The causal agents belonged to subgroup 16SrI-B of ‘Candidatus Phytoplasma asteris’, based on 16S rDNA, ribosomal protein gene, secA and secY phylogenetic analysis.  相似文献   

10.
Virus yellows is an important disease affecting yield in sugar beet in the UK. Myzus persicae (Sulzer) is the most effective and efficient aphid vector of the three viruses causing the disease: beet yellows virus, beet mild yellowing virus and beet chlorosis virus. Control of virus yellows disease is thus focused on the study and control of this aphid species. UK national surveys of virus yellows began in 1946 and these data helped to formulate disease forecasting schemes to optimise control. Over the years, in addition to improvements in farm hygiene, periodic changes and developments in control of the disease have occurred. To accommodate these important developments, virus yellows forecasting schemes have evolved accordingly. The most recent version has been adapted to take account of the current widespread use of imidacloprid seed treatment. Its application offers potential to optimise the rational use of aphicides such as imidacloprid so as to benefit beet growers and the environment by reducing prophylactic use of seed treatment.  相似文献   

11.
榆树黄化病植原体的分子检测与鉴定   总被引:5,自引:0,他引:5  
 利用植原体16SrRNA基因的通用引物R16rrLF2/R16mR1和R16F2n/R16R2对山东泰山上发生的榆树(Ulmus parvifolia)黄化病感病植株总DNA进行巢式PCR扩增,得到了约1.2kb的特异性片段,从分子水平证实了榆树黄化病的病原(EY-China)为植原体。将扩增到的片段测序,并进行一致性和系统进化树分析。结果表明,该分离物属于植原体榆树黄化组(Candidatus Phytoplasma ulmi),与该组成员16SrRNA序列的一致性均在98.2%以上,其中与16SrV-B亚组中的纸桑丛枝(Paper mulberry wiches'-broom)和枣疯病(Jujube witches'-broom)植原体一致性最高,达到99.4%,在系统进化树中与该亚组成员聚类到同一个分支,说明该分离物属于植原体16SrV-B亚组。本研究首次对在中国引致榆树黄化病的植原体进行了分子检测,并通过核酸序列分析将其鉴定到亚组水平。  相似文献   

12.
云南泡桐丛枝病植原体核糖体蛋白基因片段序列分析   总被引:3,自引:0,他引:3  
 应用植原体核糖体蛋白基因通用引物对rpF1/rpR1,对采自云南省曲靖市的泡桐丛枝病植原体DNA (PaWB-QJ)进行PCR扩增,得到1.3 kb的特异片段,证明此病株中存在植原体。将此片段与pGEM-T Easy载体连接并转化大肠杆菌JM109感受态细胞,进行PCR鉴定、核糖体蛋白基因部分核苷酸序列测定及分析。结果表明,该株系(PaWB-QJ)核糖体蛋白基因片段长1 244 bp,包含rps19rpl22rps3基因。对PaWB-QJ株系的核糖体蛋白基因序列的同源性比较结果显示与16S rI-B亚组的翠菊黄化(Aster yellows,AY)、长春花黄化(Periwinkle yellows,PY)和泡桐丛枝德国株系(Paulownia witches'-broom,PaWB-German)的亲缘关系最近,达到99.0%以上,而与其它组中的株系明显低于97.0%,所以认为该植原体株系属于翠菊黄化组B亚组(16SrI-B)。  相似文献   

13.
The presence of phytoplasma inFragaria ananassa x Duch cv Senga Sengana showing strawberry green petals symptoms was observed by electron microscopy of phloem tissue. No phytoplasmas were found in asymptomatic strawberry plants used as controls. Nucleic acids extracted from these plants were used in nested-PCR assays with primers amplifying 16S rRNA sequences specifie for phytoplasmas. Bands of 1.2 kb were obtained and the subsequent nested-PCR with specific primers and RFLP analyses allowed to classify the detected phytoplasmas in the aster yellows group (16SrI). They belonged to the subgroup I-C of which type strain is clover phyllody phytoplasma.  相似文献   

14.
海南长春花黄化病植原体的16S rDNA序列分析研究   总被引:3,自引:0,他引:3  
 Periwinkle(Catharanthus roseus) yellows is a common disease in Hainan. Periwinkle's leaf tissue with symptoms was assayed for phytoplasma infection by using PCR assay employing phytoplasma universal 16S rRNA gene primers (Rl6mF2/Rl6mR1). A PCR product (about 1.4 kb) was amplified from periwinkle showed yellows. Nucleotide sequencing and phylogenetic tree analysis showed that the amplified 16S rDNA contained 1 432 nucleotides, the most homology was 98.1% with the members of elm yellows group (16S r Ⅴ) and clustered in the same clade, while it was under 96.1% with other phytoplasma groups. Our results suggested that the phytoplasma sample belonged to 16S rⅤgroup and was tentatively named as Hainan periwinkle yellows phytoplasma (PY-Hn). This is the first report of existence of 16S r Ⅴ group phytoplasma in naturally infected periwinkle.  相似文献   

15.
A new homothallic Phytophthora species, isolated from rhizosphere soil and roots of declining or dead Rubus anglocandicans (European blackberry) in south-west Western Australia, is described as Phytophthora bilorbang sp. nov. It produces non-papillate sporangia, smooth-walled oogonia containing thick-walled oospores, and paragynous antheridia. Although morphologically similar to several species within ITS Clade 6 and sub-clade II, namely P. gibbosa, P. gregata and P. megasperma, phylogenetic analyses of the ITS, cox1, HSP90, BT and NADH gene regions demonstrate that P. bilorbang sp. nov. is a distinct species. Additionally, P. bilorbang differs from these species in its growth and colony morphology on several media. Pathogenicity tests indicate that P. bilorbang could be responsible for the decline syndrome of blackberry within the Warren and Donnelly River catchments in the south-west of Western Australia.  相似文献   

16.
Different molecular procedures were compared for the detection of aster yellows phytoplasmas (AYP) in the leafhopper vectorsMacrosteles quadripunctulatus (Kirschbaum),Euscelidius variegatus (Kirschbaum) andEuscelis incisus (Kirschbaum). Polymerase chain reaction (PCR) with universal and group-specific primers designed on the 16S-rDNA sequence was most sensitive in nested assays. A dot-blot procedure with an oligoprobe designed on the 16S-rDNA was less sensitive and consistent to detect phytoplasmas in total insect DNA, but consistently detected amplicons from direct PCR. The dot-blot assay with a probe based on a phytoplasma plasmid sequence detected AYP in most vector specimens and did not react with DNAs from leafhoppers infected by flavescence dorée and psyllids infected by apple proliferation phytoplasmas. This last assay is almost devoid of contamination risks, faster and cheaper compared to PCR, therefore it has to be preferred for field-scale analysis of leafhopper populations. http://www.phytoparasitica.org posting Feb. 24, 2004.  相似文献   

17.
马铃薯是重要的粮食和经济作物。马铃薯Y病毒(potato virus Y,PVY)是危害马铃薯安全生产的重要病毒。近年来,危害我国马铃薯的PVY株系组成发生了显著变化。PVY重组型株系尤其是PVYNTN-NW SYRI和SYRII型成为优势株系,但与传统株系分离物相比,优势株系分离物在不同寄主上的侵染性及其致病力还不清楚。本研究分析了PVYN株系代表性分离物PVYN605和PVYNTN-NWSYRI型分离物GZ在本氏烟、普通烟和辣椒上的侵染性,比较了二者在本氏烟和普通烟上的致病力。结果表明,PVYN605和PVYNTN-NWSYRI-GZ分离物均能侵染本氏烟和普通烟,并在普通烟上引起叶脉坏死;PVYN605不能系统侵染辣椒品种‘特大牛角王’,而PVYNTN-NWSYRI-GZ可系统侵染辣椒品种特大牛角王。PVYNTN-NWSYRI-GZ在本氏烟细胞间的移动速度明显慢于PVYN  相似文献   

18.
During the 1970s Europe was invaded by two subspecies of the Dutch elm disease pathogen Ophiostoma novo-ulmi : subsp . americana from the west and subsp. novo-ulmi from the east. As a result their geographic ranges began to overlap in several areas. Only a weak prezygotic barrier to hybridization exists between the subspecies and in 1980 two hybrids were detected in the Netherlands. A subset of 107 O. novo-ulmi isolates collected in a subspecies overlap zone in Limburg, Netherlands in 1983 was characterized for three phenotypic markers and seven RAPD PCR markers. By phenotype, 33% were shown to be hybrid whereas by RAPD markers 69% were shown to be hybrid. Some isolates shown to be hybrid by phenotype were not revealed to be hybrid by PCR and vice versa. Combining the phenotype and RAPD data the estimated hybrid frequency was ∼78%. The mean growth rate of Limburg hybrid isolates was significantly faster than that of the Limburg subsp. novo-ulmi isolates but not significantly different from Limburg subsp. americana isolates. The Limburg hybrid isolates were just as pathogenic as the parent subspecies on both clonal Ulmus procera and on U.  × Commelin. A subset of 100 isolates collected in another subspecies overlap zone at Orvieto, Italy in 1986 was also assessed with RAPD markers and ∼ 72% were shown to be hybrids. When 20 isolates of a 'pure' subsp. novo-ulmi population in the Baltic Ports area of Poland collected in 1980 were assessed by RAPD markers three isolates exhibited early introgression of subsp. americana DNA. This study therefore demonstrates very rapid emergence of O. novo-ulmi subspecies hybrids and introgressants in Europe in the early 1980s. In terms of two major fitness characters, growth rate and pathogenicity, these early hybrids were as fit as their parent subspecies. It is likely that complex hybrid swarms are now expanding across the continent.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号