首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water is the most important environmental constrain determining plant growth and fruit yield of olive tree plantations. Although olive trees are resilient to water-limited conditions of Mediterranean-type agroecosystems, crop yields may respond positively to any additional water up to a limit. A field experiment on olive trees was carried out with the aim to present guidelines for efficient management of irrigation scheduling, based on the relationship between plant water status and optimum fruit yield. These relationships were monitored during 2 years by analysing the influence of deficit irrigation strategies on vegetative development and yield parameters on mature modern-trained olive trees of cvs. Frantoio and Leccino. Treatments were: a non-irrigated control (rainfed) and three treatments that received seasonal water amount equivalent to 33, 66 and 100% of ETC in the period August–September, from the beginning of pit hardening to early fruit veraison. Atmospheric evaporative demand and soil moisture conditions were regularly monitored. Seasonal dynamics of plant water relations varied among treatments, and responded to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. All measurements of tree water status were highly correlated with one another. Differences in yield between treatments indicated that water availability might have affected fruit weight before flowering or during the early stages of fruit growth rather than later in summer season. Results concerning crop yield revealed that irrigation of olive trees from the beginning of pit hardening could be recommended, at least in the experimental conditions of this study and in view of differences between genotypes.  相似文献   

2.
The wide variability and complexity of olive orchards makes it difficult to provide solutions to the numerous management questions using a pure experimental approach. In this paper we calibrate and validate a simple model of olive orchard productivity based on the Radiation-Use Efficiency (RUE) concept of Monteith. A calibration experiment was performed in Cordoba from 1998 to 2001 with drip-irrigated olive trees cv. ‘Arbequina’. Destructive samples of 18 trees and non-destructive measurements on 80 trees were used to determine RUE and dry matter partitioning coefficients. Validation experiments were performed in 18 drip-irrigated orchards of seven locations in Southern Spain, including two cultivars (‘Arbequina’ and ‘Picual’). Average RUE was 0.86 g dry matter (MJ PAR)−1 which is equivalent to 1.56 g glucose (MJ PAR)−1. Aboveground accumulated biomass was allocated equally to fruits and vegetative growth, which in turn was partitioned into 30% for leaves and 70% for stems, branches and trunk. The fraction of oil in fruits was 0.38 which implies that the average ratio oil yield/intercepted PAR, which is an equivalent RUE for oil production (o), is 0.17 g oil (MJ PAR)−1. The prediction of oil yield as the product of 0.17 and total intercepted PAR was tested successfully in the validation experiments (relative RMSE = 0.26). Errors of this simple model were partly due to alternate bearing and partly to a decrease in o as canopy size increases, which deserves further research. The concept of o may be also useful for the evaluation of alternate bearing in olive trees.

Estimated potential carbon sequestration by intensive irrigated olive orchards in Southern Spain was 7 t CO2 ha−1 year−1 which is much higher than that of other agricultural systems in Europe.

The simple model of growth and yield presented herein is the core of a complete model of olive growth and yield and may be useful not only for evaluating productivity at different scales but also for solving different management problems (nutrient requirements, plant protection, etc.)  相似文献   


3.
为给高产小麦抗倒防衰提供理论和技术支持,以高产、高杆、抗倒性差品种烟农19为材料,研究了不同种植密度下,植物生长调节剂(壮丰安、稀效唑、国光矮丰和爱久收)以及传统的镇压措施对小麦最终产量、茎秆形态结构和物理性状的影响。结果表明,和225×104 ha-1的基本苗相比,270×104 ha-1的基本苗植株高度增加,且籽粒产量、茎节粗度、茎秆充实度和抗倒伏指数降低;返青期喷施壮丰安、烯效唑和国光矮丰或者人工镇压都可降低小麦基部节间的长度,增加其粗度和充实度;拔节期喷施爱久收可缩短小麦穗下节间长度、增加其粗度和充实度,最终各调控措施下小麦茎秆重心高度降低,抗倒指数增加,尤其在较高基本苗条件下;喷施壮丰安和爱久收降低了小麦最终植株高度;喷施烯效唑和爱久收提高了小麦千粒重和产量,国光矮丰和镇压措施对最终产量无显著影响,而壮丰安降低了低密度群体小麦千粒重和产量。  相似文献   

4.
In order to evaluate the possibility of reducing energy input in giant reed (Arundo donax L.) as a perennial biomass crop, a field experiment was carried out from 1996 to 2001 in central Italy. Crop yield response to fertilisation (200–80–200 kg ha−1 N–P–K), harvest time (autumn and winter) and plant density (20,000 and 40,000 plants per ha) was evaluated. The energy balance was assessed considering the energy costs of production inputs and the energy output obtained by the transformation of the final product. The crop yield increased by +50% from the establishment period to the 2nd year of growth when it achieved the highest dry matter yield. The mature crop displayed on average annual production rates of 3 kg dry matter m−2, with maximum values obtained in fertilised plot and during winter harvest time.

Fertilisation mainly enhanced dry matter yield in the initial period (+0.7 kg dry matter m−2 as years 1–6 mean value). The biomass water content was affected by harvest time, decreasing by about 10% from autumn to winter. With regard to plant density, higher dry matter yields were achieved with 20,000 plants per ha (+0.3 kg dry matter m−2 as years 1–6 mean value).

The total energy input decreased from fertilised (18 GJ ha−1) to not fertilised crops (4 GJ ha−1). The higher energetic input was represented by fertilisation which involved 14 GJ ha−1 (fertilisers plus their distribution) of total energy costs. This value represents 78% of total energy inputs for fertilised crops.

Giant reed biomass calorific mean value (i.e., the calorific value obtained from combustion of biomass sample in an adiabatic system) was about 17 MJ kg−1 dry matter and it was not affected by fertilisation, or by plant density or harvest time. Fertilisation enhanced crop biomass yield from 23 to 27 dry tonnes per ha (years 1–6 mean value). This 15% increase was possible with an energy consumption of 70% of the overall energy cost. Maximum energy yield output was 496 GJ ha−1, obtained with 20,000 plants per ha and fertilisation. From the establishment period to 2nd–6th year of growth the energy production efficiency (as ratio between energy output and energy input per ha) and the net energy yield (as difference between energy output and energy input per ha) increased due to the low crop dry biomass yield and the high energy costs for crop planting. The energy production efficiency and net energy yield were also affected by fertilisation and plant density. In the mature crop the energy efficiency was highest without fertilisation both with 20,000 (131 GJ ha−1) and 40,000 plants per ha (119 GJ ha−1).  相似文献   


5.
Important savings in the levels of irrigation without an associated penalty in yield have been reported for olive under deficit irrigation strategies. Full irrigation (C), continuous deficit irrigation (CDI) and regulated deficit irrigation (RDI), were compared from 2004 to 2006 in Cordoba, southern Spain, in terms of seasonal evapotranspiration (ET), growth and yield in mature olive trees (Olea europaea L. cv. ‘Arbequina’). In deficit treatments, the total amount of irrigation was around 25% of that of the Control while ET was 65–70% of that of C. Deficit treatments strongly reduced vegetative growth, but only slightly reduced the final fruit volume. Water stress caused a higher reduction in fresh fruit yield than oil yield due to a higher oil concentration in deficit irrigated trees, without differences between CDI and RDI. Therefore, both irrigation strategies may be used in olive to save a significant amount of irrigation with moderate reductions (about 15%) in oil yield. The amount of oil produced per unit intercepted PAR was almost the same for all the treatments, which suggests that olive oil yield may be calculated from intercepted radiation even under moderate water stress.  相似文献   

6.
The effects of soil water deficit and interspecific plant interaction were studied on the dry matter (DM) yield of white clover and ryegrass and on the morphogenesis of white clover. Plants were grown either: (1) individually (no interaction); or in a mixture of equal plant numbers with either (2) just shoot interaction, or (3) both shoot+root interaction. Plants were subjected to soil water deficits corresponding to no (0 MPa), moderate (−0.5 MPa) or severe (−1.0 MPa) water deficit. Ryegrass had higher above- and below-ground DM yields than white clover. The above- and below-ground DM yield for ryegrass, and the above-ground DM yield, stolon growth and relative growth rate (RGR), and leaf appearance rate (LAR) for white clover decreased as soil water deficit increased. In shoot+root interaction at no and moderate soil water deficit levels, white clover had the highest proportion of above-ground growth in the leaf form (69%) and had, respectively, 11% and 32% more above-ground DM yield than when grown in just shoot interaction; ryegrass had, respectively, 20% and 25% more above-ground DM yield than ryegrass grown in just shoot interaction. In shoot+root interaction at severe soil water deficit, ryegrass had twice as much above-ground DM yield as white clover (3.50 g per plant versus 1.59 g per plant, respectively) and white clover had 60% less above-ground DM yield than when grown in just shoot interaction. In a soil column of restricted depth (30 cm) at no and moderate soil water deficit levels, remarkable increases in shoot biomass yield were observed for both white clover and ryegrass grown in shoot+root interaction. The increased shoot biomass yield of ryegrass can be attributed to benefits from white clover's N fixing ability, whereas the causes for increased white clover biomass yield need to be studied further. However, at severe soil water deficit, ryegrass had a competitive advantage over white clover when grown in shoot+root interaction. This was due to the larger root system of ryegrass and its ability to control transpirational losses more efficiently, thus prolonging its growth period compared with white clover.  相似文献   

7.
The productive life of lucerne (Medicago sativa L.) stands depends on the rate of mortality of individual plants. However, self-thinning of plant populations may be compensated for by increases in other yield components, namely shoots/plant and individual shoot mass. Frequent defoliation reduces lucerne yield but it is unclear whether this is caused by an acceleration of plant mortality or changes in these other yield components. To investigate this, crops with contrasting shoot yields were created using constant 28 or 42-day regrowth cycles applied to a ‘Kaituna’ lucerne crop in Canterbury, New Zealand during the 2002/2003 and 2003/2004 growth seasons. Two further treatments switched from 28 to 42 or 42 to 28 days grazing frequency in mid-summer (4th February) of each year. The annual yield of shoot dry matter (DM) ranged from 12 to 23 t/ha for the treatments defoliated consistently each 28 or 42 days, respectively. Plant population was unaffected by treatments and declined exponentially from 130 plants/m2 in June 2002 to 60 plants/m2 in September 2004. The dynamics of plant and shoot population were associated with the light environment at the base of the canopy. The slope of the size/density compensation (SDC) of plants was −1.67 for the treatment defoliated each 42 days, near the expected self-thinning slope of −1.5 for stands at constant leaf area index (LAI). Self-thinning of shoots resumed after each defoliation when the LAI reached 2.1 and the transmission of photosynthetically active radiation (PARt) was 0.20. At this point the proportion of aerial DM in the tallest (dominant) shoots increased non-linearly from 30 to >80%, due to the mortality of intermediary and suppressed shoots. The average maximum shoot population in each rotation was 780 shoots/m2 and unaffected by the decline in plant population due to a compensatory increase from 6 to 13 shoots/plant as the stand thinned. A lower asymptote of 43 plants/m2 was estimated as the minimum plant population at which yield component compensation would maintain the productive potential of these ‘Kaituna’ stands. Differences in shoot yield were explained (R2 = 0.97) by changes in the individual shoot mass (ISM) that were consistently lowered by frequent defoliation treatments. Frequent defoliations reduced crop productivity by limiting the assimilation of biomass into each individual shoot with negligible impact on shoot appearance rate, the number of shoots per plant at an LAI of 2.1 or the rate of plant population decay. Inter-specific competition for light was proposed as the main factor controlling self-thinning of plants and shoots regardless of their individual C:N status.  相似文献   

8.
New high yielding early maturing cultivars of lupins have been introduced in north-west Europe as grain protein crops in crop rotations. This paper reports on a comparative study of lupins with peas and oats, and of their effect on yield of subsequent winter barley crops. These crops were given five levels of N under irrigated and non-irrigated conditions on sand and loam. Under rain fed conditions the grain yield of pea, oat and lupin varied between 24–36, 34–53 and 18–37 hkg DM ha−1, respectively. Supplemental irrigation raised grain yield of oat to 50–60 hkg DM ha−1, while grain yield in pea was not affected and grain yield in lupin in most cases decreased due to gray mould attack and excessive vegetative growth in the indeterminate lupin variety. Under rain fed conditions, the grain nitrogen content of pea, oat and lupin varied between 137–172, 61–80 and 189–226 kg N ha−1, respectively, and was significantly higher in lupin as compared with pea. On sandy soil, similar low-root densities were found for pea, oat and lupin below 30 cm depth. On sand, at final harvest the residual soil-N of lupin and pea, as measured in a subsequent winter barley crop not supplied with N fertilizer, was 15 and 8–10 kg N ha−1 higher than in winter barley following oat, respectively. The nature of the probably more N-root residues of lupin is discussed. On loam, the residual N of lupin and pea was similar, 18–27 kg N ha−1. On sand, under rain fed conditions preceding lupin and pea as compared with oat, increased the barley grain yield at zero N-application 77 and 49%, respectively; the effect of lupin was significantly higher than that of pea until the highest N-level 120 kg N-application ha−1. On loam under rain fed conditions preceding lupin and pea increased the barley grain yield at zero N-application by 36 and 62%, respectively, as compared with oat; at N-application>60 kg N ha−1 the grain yield was similar after all three crops. For both soil types the same level of effect was found under irrigated conditions. Conclusions: Supplemental irrigation might result in lower grain yield in lupin due to gray mould attack and excessive growth if indeterminate lupin varieties are used. Grain nitrogen yield of lupin is significantly higher than that of pea. On sand, the effect of lupin on the subsequent winter barley grain yield is significantly higher than that of pea, probably due to greater N-root nitrogen residues. On loam, lupin and pea have similar effects on the subsequent winter barley crop.  相似文献   

9.
A. Elgersma 《Euphytica》1990,49(2):141-154
Summary We had previously found differences for seed yield among nine perennial ryegrass cultivars which were not associated with variation for seed weight. To detect the physiological basis of these genetic differences for seed yield, growth analyses were carried out. We related crop development and components of seed yield to seed yield during three years on clay and sandy soil. No significant differences occurred among cultivars for accumulation and partitioning of dry matter or the pattern of tiller production. Seed yield of the cultivars was not associated with ear number or total dry matter yield of the seed crop. Seed yield was more correlated with the number of seeds per unit area than with seed weight. The number of seeds as calculated after harvest from seed yield and seed weight was much lower than the number of seeds as estimated prior to harvest from seed yield components. The number of spikelets differed significantly among the cultivars, but the ranking was different from that for seed yield. The physiological basis of the genetic differences for seed yield is not clear. Implications for breeding perennial ryegrass are discussed.  相似文献   

10.
Information about the effect of the cropping history on the seed yield of oil-seed rape is extremely scarce. In 1992/93 and 1994/95, the effects of different preceding crop combinations (winter barley and winter wheat as preceding crops, oil-seed rape and wheat as pre-preceding crops) on the yield of six double low oil-seed rape cultivars were examined in a field trial at Hohenschulen Experimental Farm, north-west Germany. In addition, eight nitrogen treatments (different amounts and distribution patterns) were tested for their potential to reduce negative effects of the preceding crops. Following the cropping sequence of oil-seed rape then wheat, oil-seed rape yielded only 3.12 t ha−1; after oil-seed rape then barley, the yield was 3.43 t ha−1 compared with 3.77 t ha−1 following wheat then barley and 3.71 t ha−1 following wheat then wheat. The number of seeds per m2 showed a similar pattern, whereas the thousand-seed weight partly compensated for the reduced seed number. It was highest if oil-seed rape was grown 2 years previously. The cultivars differed significantly in their yield potential. Express (3.79 t ha−1) yielded 0.6 t ha−1 more than Falcon (3.18 t ha−1). Increasing amounts of fertilizer-N (80–200 kg N ha−1) increased the seed yield from 3.21 t ha−1 to 3.84 t ha−1. Changes in the distribution pattern within one fertilizer amount had no effect on seed yield. In addition, no interactions between preceding crop combination and the different cultivars or N treatments occurred. It is concluded that crop management cannot totally eliminate the negative effects of an unfavourable cropping history on the seed yield of oil-seed rape.  相似文献   

11.
The effects of organic versus conventional crop management practices (fertilisation, crop protection) and preceding crop on potato tuber yield (total, marketable, tuber size grade distribution) and quality (proportion of diseased, green and damaged tubers, tuber macro-nutrient concentrations) parameters were investigated over six years (2004–2009) as part of a long-term factorial field trial in North East England. Inter-year variability (the effects of weather and preceding crop) was observed to have a profound effect on yields and quality parameters, and this variability was greater in organic fertility systems. Total and marketable yields were significantly reduced by the use of both organic crop protection and fertility management. However, the yield gap between organic and conventional fertilisation regimes was greater and more variable than that between crop protection practices. This appears to be attributable mainly to lower and less predictable nitrogen supply in organically fertilised crops. Increased incidence of late blight in organic crop protection systems only occurred when conventional fertilisation was applied. In organically fertilised crops yield was significantly higher following grass/red clover leys than winter wheat, but there was no pre-crop effect in conventionally fertilised crops. The results highlight that nitrogen supply from organic fertilisers rather than inefficient pest and disease control may be the major limiting factor for yields in organic potato production systems.  相似文献   

12.
Soybean plants were subjected, during their growing seasons, to well-watered and water-stressed conditions, and three levels of ozone concentration (zero, low and high) in open top chambers (OTCs). At the end of the soybean growing season accumulated AOT40 values were zero, 3400 and 9000 ppb h for the filtered (control), low and high levels of ozone concentration, respectively.

In well-watered conditions, an increase in ozone concentration led to a reduction in leaf area, dry matter and reproductive organs. Whereas, an increase in ozone had no effect on plants in water-stressed conditions. At a high level of ozone concentration, there was a 47% reduction in yield and a 25% reduction in WUE in comparison with the control treatment. The reduction in yield was due to a lower number of pods per plant and 1000-grain weight. Despite changes in the grain yield, the yield quality was not altered by ozone.

During the 3-year study, AOT40 was significantly correlated with the leaf area and the final above-ground dry matter. The latter was less sensitive to ozone than leaf area. These results were reliable and would be useful in soybean yield-prediction models.

Finally, the conclusion highlights the reliability of the approach adopted, which was to make observations on various time scales (hourly, daily and entire crop cycle).  相似文献   


13.
The performance of winter wheat was evaluated under organic (ORG) and conventional (CON) management systems in the Nafferton Factorial Systems Comparison (NFSC) long-term field trial. The present study separates out the crop protection and fertility management components of organic and conventional production systems using two levels each of crop protection (CP) and fertility management (FM). The experimental design provided the four combinations of crop protection and fertility (CON-CP CON-FM, CON-CP ORG-FM, ORG-CP CON-FM and ORG-CP ORG-FM) to evaluate their effects on yield, quality (protein content and hectolitre weight) and disease levels during the period 2004–2008. The conventional management system (CON-CP CON-FM) out-yielded the organic management system (ORG-CP ORG-FM) in all years by an average of 3.1 t ha−1, i.e. 7.9 t ha−1 vs. 4.8 t ha−1. Fertility management was the key factor identified limiting both yield and grain protein content in the ORG management system. The CON-FM produced on average a 3% higher protein content than ORG-FM in all years (12.5% vs. 9.7%). However the ORG-CP system produced higher protein levels than CON-CP although it was only in 2008 that this was statistically significant. In contrast to protein content it was ORG-FM which produced a higher hectolitre weight than the CON-FM system (71.6 kg hl−1 vs. 71.0 kg hl−1). The clear and significant differences in yield and protein content between the ORG-FM and CON-FM systems suggest a limited supply of available N in the organic fertility management system which is also supported by the significant interaction effect of the preceding crop on protein content. The pRDA showed that although fertilisation had the greatest effect on yield, quality and disease there was also a considerable effect of crop protection and the environment.  相似文献   

14.
15.
Information about the effect of the preceding crop or crop combination on the seed yield of oil-seed rape is extremely scarce. Experiments were carried out in northwest Germany to investigate the effect of different preceding crops on the growth, seed yield and yield components of oil-seed rape. The two directly preceding crops, wheat and oil-seed rape, had only a negligible and non-significant effect on the seed yield of the following oil-seed rape crop. Oil-seed rape grown after wheat had more pods per plant, due to an increase in the number of pods on the higher category branches. In contrast, the seed yield and yield components were more affected by the cropping sequence, i.e. the crops 2 years before. Averaged over two experimental years, the greatest yields were observed in oil-seed rape following the sequence peas-wheat (694 g m−2), whereas the smallest seed yield occurred after 2 years of oil-seed rape cropping (371 g m−2). The differences in the seed yield were again associated with more pods per plant, which compensated for the lower number of plants m−2, whereas the number of seeds per pod and the mean seed weight were almost unaffected by the previous cropping. It was not possible to relate the described differences to the crop development, since differences in the biomass caused by the previous cropping were only significant at maturity. Oil-seed rape grown after 2 years of oil-seed rape had the highest ratings of stem canker (Leptosphaeria maculans) as well as verticillium wilt (Verticillium dahliae). But the general level of the diseases was low, and therefore other causes for the effects described must be considered.  相似文献   

16.
In pot experiments under controlled conditions we investigated the effects of water stress on oilseed rape. Yield and yield components were mainly affected by water shortage occurring from flowering to the end of seed set. The greatest reduction (48%) was observed when only 37% of full water requirement was supplied to the plant during this stage. The number of seeds per plant was the main yield component affected. Some compensation occurred when the water supply was restored. The 1000-seed weight was only affected by a water stress from the stage when the pods were swollen until the seeds colored stage. The results demonstrated a marked reduction in oil concentration when water deficit occurred from anthesis to maturity. There was an inverse relationship between oil and protein concentration. The most marked effect observed in this experiment was on the glucosinolate concentration where increases of up to 60% were observed. These results may explain effects on seed quality of field grown oilseed rape.  相似文献   

17.
Metabolic stress disinfection and disinfestation (MSDD) is a potential quarantine treatment in which a combination of cycles of rapid decompression and compression are followed by exposure to ethanol vapour under decompression. The response of ‘Hass’ avocado (Persea americana Mill., cv. Hass) to MSDD treatment for control of longtailed mealybug (Pseudococcus longispinus) was investigated. The best treatment for the most resistant life stage (2nd/3rd instars) was 90-min MSDD treatment with 371 mg L−1 ethanol. Early and late season ‘Hass’ avocados were subjected to MSDD treatments (with 371 mg L−1 ethanol), or in air (control). Following the treatments, early season fruit were ripened at 20 °C and 25 °C. Half of the late season fruit were ripened at either 20 °C or 25 °C, and the remainder were stored at 5.5 °C for 6 weeks, then ripened at 20 °C. There were no significant difference in quality and rot incidence between non-treated controls and MSDD-treated fruit. The main disorders found were stem-end and body rots, vascular browning and flesh greying for the stored fruit. There were also no significant differences in fruit respiration rate or ethylene production. Thus, MSDD was shown to be a potentially ‘soft’ disinfestation treatment for surface pests of avocado.  相似文献   

18.
This study reports the adaptation of a simple and mechanistic crop growth model for faba bean (FAGS) to growing conditions in the Mediterranean region. The FAGS model was originally developed for small-seeded cultivars grown in the temperate zone under non-limiting water and nutrient conditions. In order to account for the effect of drought stress on faba bean growth, a submodel for the simulation of soil water balance has been included in the FAGS model. The enhanced FAGS model was calibrated using data from field experiments with a large-seeded faba bean genotype (ILB 1814) conducted in 1993–1994 and 1994–1995 at ICARDA's Tel Hadya research station in northern Syria. In both seasons, crops were sown on two dates under different water supply levels. The model was capable of predicting the faba bean phenology, leaf area development, biomass production, and grain yield as well as the soil water extraction using daily climatic data, genotype-specific parameters, and soil physical properties. The calibrated faba bean model was tested against independent experimental data from the 1991–1992 and 1992–1993 growing seasons at Tel Hadya and was able to satisfactorily predict grain yield of crops grown under different drought intensities. Limitations of the model and aspects requiring better understanding to improve model predictions are discussed.  相似文献   

19.
The effect of drought on the growth and development of bambara groundnut (Vigna subterranea (L.) Verdc.) was studied in controlled-environment glasshouses in the UK. There were three landraces (S19-3, DipC and UN from Namibia, Botswana and Swaziland, respectively) and two watering regimes; a control that was irrigated weekly to 90% field capacity and a drought treatment with no irrigation from 49 days after sowing (DAS) until final harvest (147 DAS). Bambara groundnut responded to drought by reducing the rate of leaf area expansion, final canopy size and total dry matter (TDM) during vegetative growth. Drought also caused significant reductions in pod dry matter (PDM), pod number, seed weight and harvest index (HI), leading to a decrease in final pod yield that was different between landraces. Across landraces, drought reduced mean pod yield from 298 g m−2 to 165 g m−2, representing 45% yield loss. Despite the reduction in all landraces, the mean pod yield across the droughted treatments that had received no water for almost 100 days indicated the resilience of the species to drought. The three landraces differed in their phenology; S19-3 exhibited a reduced phenology while UN maintained the longest life cycle. The different responses of the landraces reflect their adaptation to their local climates where mean annual rainfall ranges between 365 mm (Namibia) and 1390 mm (Swaziland). We discuss the significance of these results for future breeding programmes on bambara groundnut.  相似文献   

20.
Effects of vineyard row orientation (NS, EW, NE-SW, NW-SE) and harvesting dates/grape ripeness levels (23 °B, 25 °B and 27 °B) on vegetative and reproductive growth characteristics of vertically trellised, shoot positioned Vitis vinifera L. cv. Shiraz, grafted onto rootstock 101–14 Mgt, were investigated for seven consecutive seasons on a flat site of approximately 3 ha with uniform clayey loam soil at the experiment farm of ARC Infruitec-Nietvoorbij in the Breede River Valley, Robertson, South Africa. Primary and secondary shoot characteristics showed minor differences between row orientations and canopy sides. Primary shoot lengths and primary leaf area:secondary leaf area ratios averaged 110–120 cm and 0.80–0.90, respectively. Secondary leaf area of primary shoots on S and SW sides tended to be lower. The SW canopy side displayed generally lower values for most characteristics. Higher cane mass was obtained for NS and EW orientations. Bud fertility, berry set and general morphology of bunches were largely unaffected by row orientation. Bunch and berry mass and volume progressively decreased during ripening for all row orientation treatments. The EW row orientation resulted in consistently higher berry mass and volume. Leaf area (10–12 cm2)/g fresh mass values showed equal balance for differently orientated vines, aligned with generally acknowledged criteria. Average yields of three ripeness levels over row orientations and seasons were 19.2, 17.4 and 15.9 tons/ha. Overall total yield losses from ripeness level 1–2 and 2–3 averaged 9.5% and 8.6%, respectively, with an overall total yield loss from ripeness level 1–3 of 17.3%. This is mainly attributed to a decrease in berry mass; rachis mass showed high stability. The NS orientated vines had highest yields over seasons and at all ripeness levels; it also displayed most stable yields over the years of study and may be considered the most ideal row orientation for yield within the terroir of study. Yields of the other row orientations varied according to season/ripeness level: at ripeness level 1, NE-SW was followed by NW-SE and EW; at ripeness level 2, NW-SE was followed by EW and NE-SW; and at ripeness level 3; EW was followed by NW-SE and NE-SW. The NW-SE row orientation was stable at an average level and EW and NE-SW orientations were variable. Overall average yields (over ripeness levels) of NS, EW, NE-SW and NW-SE orientations were 18.2, 17.1, 17.1 and 17.4 ton/ha, respectively. Despite minor differences in vegetative characteristics, yield:cane mass ratios indicated that growth balances were affected by row orientation. These trends are of great significance in considerations of an optimal ripeness level for a specific product objective and are very important aspects of sustainability. Results showed significant trends that can globally be used as guidelines for row orientation choices, even when multiple (straight or curved) row orientations per vineyard are used and when vineyards are established in more complex terrains/terroirs. The study provided the first comprehensive and much needed scientific evidence on the role of row orientation in vegetative and reproductive growth of the grapevine and as viticulture practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号