首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short-term effects of excessive NH4+-N on selected characteristics of soil unaffected (low annual N inputs) and affected (high annual N inputs) by cattle were investigated under laboratory conditions. The major hypothesis tested was that above a theoretical upper limit of NH4+ concentration, an excess of NH4+-N does not further increase NO3 formation rate in the soil, but only supports accumulation of NO2-N and gaseous losses of N as N2O. Soils were amended with 10 to 500 μg NH4+-N g−1 soil. In both soils, addition of NH4+-N increased production of NO3-N until some limit. This limit was higher in cattle-affected soil than in unaffected soil. Production of N2O increased in the whole range of amendments in both soils. At the highest level of NH4+-N addition, NO2-N accumulated in cattle-affected soil while NO3-N production decreased in cattle-unaffected soil. Despite being statistically significant, observed effects of high NH4+-N addition were relatively weak. Uptake of mineral N, stimulated by glucose amendment, decreased the mineral N content in both soils, but it also greatly increased production of N2O.  相似文献   

2.

Purpose  

Rapid soil degradation occurring under intensive vegetable cultivation, an increasingly common agricultural strategy in China, is characterized by soil acidification, salinity, and NO3 accumulation. However, to date, the reasons for rapid NO3 accumulation in soils at the nitrogen (N) levels have not been completely understood. In this study, we explored the underlying mechanisms for rapid NO3 accumulation in soils used for intensive vegetable cultivation and implications of altered gross N transformation rates on soil properties and sustainable cultivation.  相似文献   

3.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

4.
Simple and rapid chemical indices of soil nitrogen (N)-supplying capacity are necessary for fertilizer recommendations. In this study, pot experiment involving rice, anaerobic incubation, and chemical analysis were conducted for paddy soils collected from nine locations in the Taihu Lake region of China. The paddy soils showed large variability in N-supplying capacity as indicated by the total N uptake (TNU) by rice plants in a pot experiment, which ranged from 639.7 to 1,046.2 mg N pot−1 at maturity stage, representing 5.8% of the total soil N on average. Anaerobic incubation for 3, 14, 28, and 112 days all resulted in a significant (P < 0.01) correlation between cumulative mineral NH4+-N and TNU, but generally better correlations were obtained with increasing incubation time. Soil organic C, total soil N, microbial C, and ultraviolet absorbance of NaHCO3 extract at 205 and 260 nm revealed no clear relationship with TNU or cumulative mineral NH4+-N. Soil C/N ratio, acid KMnO4-NH4+-N, alkaline KMnO4-NH4+-N, phosphate–borate buffer extractable NH4+-N (PB-NH4+-N), phosphate–borate buffer hydrolyzable NH4+-N (PBHYDR-NH4+-N) and hot KCl extractable NH4+-N (HKCl−NH4+-N) were all significantly (P < 0.05) related to TNU and cumulative mineral NH4+-N of long-term incubation (>28 days). However, the best chemical index of soil N-supplying capacity was the soil C/N ratio, which showed the highest correlation with TNU at maturity stage (R = −0.929, P < 0.001) and cumulative mineral NH4+-N (R = −0.971, P < 0.001). Acid KMnO4-NH4+-N plus native soil NH4+-N produced similar, but slightly worse predictions of soil N-supplying capacity than the soil C/N ratio.  相似文献   

5.
 When comparing nitrite (NO2 ) and nitrate (NO3 ) toxicity to maize (Zea mays L.) growth, it is important to know the fate of applied nitrogen (N). A pot experiment, using potassium nitrite (K15NO2) and potassium nitrate (K15NO3) was conducted to determine the fate of N (0, 75, 150, and 225 mg N kg–1 soil) applied to a sandy loam soil collected from Gistel (Belgium). The total dry weight of the plants treated with NO2 was lower than that of the plants treated with NO3 at 15 and 26 days after N application (harvest 1 and harvest 2, respectively). Shoot and root biomass reduction started at a relatively low NO2 application rate (75 mg NO2 -N kg–1). Biomass reduction increased, at both harvests with increasing amounts of NO2 to more than 55% at the highest application rate (225 mg NO3 -N kg–1). In the NO3 treatment, a reduction of 16% in total plant dry biomass was recorded only at the highest application rate (225 mg NO2 -N kg–1), at both harvest times. The 15N plant uptake (shoots plus roots) at harvest 1 decreased with increasing N application rates of both N forms (KNO2 and KNO3). Twenty-six days after the N application, the total 15N taken up by the plant increased in all treatments in comparison with 15 days after the N application. However, only at higher rates of N application (150 and 225 mg N kg–1) was the 15N uptake by the NO2 fed plants significantly lower than by the NO3 fed plants. The percentage of immobilized N from the applied N was low (0–17.7%) at both harvests, irrespective of the N source. However, with relatively low N application rates (75 mg N kg–1), the immobilized N in the soil decreased with time. This may be due to the re-mineralization of the applied N. The percentage of inorganic 15N in the soil in NO2 treatments was slightly lower than in equivalent doses of NO3 . This might be due to higher losses of N as N-oxides. Unaccounted for N from the applied N ranged from 21% to 52% for the NO2 treatments and from 3% to 38% for the NO3 treatments. Received: 17 July 1997  相似文献   

6.
不同沟灌方式下玉米根区矿物氮迁移动态研究   总被引:1,自引:0,他引:1  
为探索交替隔沟灌溉下玉米根区矿物氮分布规律, 通过遮雨棚内微区试验, 研究了常规沟灌、交替隔沟灌和固定隔沟灌3 种沟灌方式对玉米根区硝态氮、铵态氮迁移的影响。结果表明: 交替隔沟灌溉根区硝态氮等值线和常规沟灌相似, 沟内硝态氮含量基本沿垄的中心对称分布。固定隔沟灌溉的湿润沟内硝态氮含量小于干燥沟, 施氮后非灌水沟硝态氮保持较高水平。收获时交替隔沟灌溉的根区硝态氮残留量比常规灌溉略高。与硝态氮分布相比, 铵态氮在根区土壤中的含量很小, 3 种沟灌方式在沟和垄中的铵态氮含量没有明显差异。  相似文献   

7.

Background, aim, and scope  

Nitrate leaching from intensive vegetable production is an important contributor of nitrate contamination of water resources. The aim of this study was to quantify NO3 leaching losses under intensive vegetable production as affected by different rates of N fertilizer and to determine the optimum N application rates both for vegetable production and for meeting the drinking water standard.  相似文献   

8.
 The within-field variability of soil mineral nitrogen (Nmin) in a grazed grassland of 8000 m2 was examined. NO3 -N concentrations were characterized by a high spatial variability. This can be explained by the uneven deposition of animal excreta. All NH4 +-N as well as NO3 -N values were lognormally distributed, before and after the grazing season. At the end of the grazing season the largest part of the variability of NO3 -N was found for NO3 -N concentrations measured within a distance of a few metres. A high variability for NO3 -N over very short distances was also indicated by a large nugget variance. During the grazing season, observed mean Nmin values increased from 22 to 132 kg N ha–1. Regions with clearly higher NO3 -N concentrations could be identified. These zones matched with the drinking place and the entrance of the pasture, places which were more frequently visited than others. High residual N levels in autumn led to relatively high losses of N, mostly by leaching, during the subsequent drainage period. Knowing the variability of Nmin, the number of samples needed to estimate the average Nmin in a field could be calculated for different probabilities and various degrees of precision. From the spatial distribution of the Nmin concentrations and the restrictions imposed by the new European decree, adapted fertilizer strategies can be proposed at least for places where systematically higher Nmin concentrations can be expected. Received: 14 December 1999  相似文献   

9.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

10.
 Nitrogen excretion rates of 15N-labeled earthworms and contributions of 15N excretion products to organic (dissolved organic N) and inorganic (NH4-N, NO3-N) soil N pools were determined at 10  °C and 18  °C under laboratory conditions. Juvenile and adult Lumbricus terrestris L., pre-clitellate and adult Aporrectodea tuberculata (Eisen), and adult Lumbricus rubellus (Hoffmeister) were labeled with 15N by providing earthworms with 15N-labeled organic substrates for 5–6 weeks. The quantity of 15N excreted in unlabeled soil was measured after 48 h, and daily N excretion rates were calculated. N excretion rates ranged from 274.4 to 744 μg N g–1 earthworm fresh weight day–1, with a daily turnover of 0.3–0.9% of earthworm tissue N. The N excretion rates of juvenile L. terrestris were significantly lower than adult L. terrestris, and there was no difference in the N excretion rates of pre-clitellate and adult A. tuberculata. Extractable N pools, particularly NH4-N, were greater in soils incubated with earthworms for 48 h than soils incubated without earthworms. Between 13 and 40% of excreted 15N was found in the 15N-mineral N (NH4-N+NO3-N) pool, and 13–23% was in the 15N-DON pool. Other fates of excreted 15N may have been incorporation in microbial biomass, chemical or physical protection in non-extractable N forms, or gaseous N losses. Earthworm excretion rates were combined with earthworm biomass measurements to estimate N flux from earthworm populations through excretion. Annual earthworm excretion was estimated at 41.5 kg N ha–1 in an inorganically-fertilized corn agroecosystem, and was equivalent to 22% of crop N uptake. Our results suggest that the earthworms could contribute significantly to N cycling in corn agroecosystems through excretion processes. Received: 12 April 1999  相似文献   

11.

Purpose  

Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO3) leaching, and nitrous oxide (N2O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3 leaching and N2O emissions in vegetable production systems.  相似文献   

12.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

13.
华北山前平原典型厚包气带硝态氮分布累积规律   总被引:5,自引:1,他引:4  
梁慧雅  王仕琴  魏守才 《土壤》2017,49(6):1179-1186
包气带是连接大气层和含水层水分和养分转换的纽带,也是农田NO_3~–-N分布和累积的重要场所和向含水层淋失的通道,因此研究包气带土壤中NO_3~–-N的分布累积规律对防止地下水NO_3~–-N污染至关重要。本文以中国科学院栾城试验站典型的厚包气带为对象,在无施肥处理(N0)和施氮肥600 kg/(hm~2·a)(N600)两种处理的多年试验田中,利用Geoprobe获取0~10.5 m深度土壤样品,研究厚包气带NO_3~–-N垂向分布、累积规律,并分析其影响因素。结果表明:N0中NO_3~–-N基本保持不变,长年施氮肥600 kg/(hm~2·a)使得NO_3~–-N淋溶至10.5 m,并在深层包气带中形成累积,累积的峰值由土壤的质地和含水量决定;NO_3~–-N的分布和累积主要受水分运移、土壤质地和反硝化作用影响。  相似文献   

14.
Surface mineral horizons from four ecosystems sampled in the northwestern Italian Alps were incubated at −3 and +3°C to simulate subnivial and early thaw period temperatures for a seasonally snow-covered area. The soil profiles at these sites represent extreme examples of management, grazed meadow (site M) and extensive grazing beneath larch (site L) or naturally disturbed by avalanche and colonized by alder (site A) and the expected forest climax vegetation beneath fir (site F). Changes in labile pools of nitrogen (N) and phosphorus (P) were active at all sites at both temperatures during 14 days of laboratory incubation. Ammonium was the dominant inorganic form of total dissolved N (TDN), being equivalent to 1.8–9.8 g N m−2 within the mineral horizon. Gross rates of ammonification were similar at the two temperatures but significantly (p<0.05) greater in soil from beneath fir than in the other three. Nitrification occurred in all soils and displayed a wide range in rates, from 2 to 85 mg N m−2 day−1, and was least in the two most acid soils, A and F. Immobilization of NH4 + as microbial N was greater in the fir soil than in the other three. Also, the fir soil showed greatest gross ammonification and least accumulation of NO3 and greatest tendency to retain N. This high N retention capacity in the climax ecosystem contrasted with the managed systems characterized by higher nitrification rates and greater potential spring NO3 loss. Dissolved organic N ranged between 30 and 50% of the TDN, while dissolved organic P was greater than 70% of total dissolved P (TDP). The dissolved organic compounds were important components of the labile pool, in equilibrium with a large reserve of organic N, and may significantly contribute to the soil N availability at low temperatures.  相似文献   

15.
Analysis and behavior of soluble organic nitrogen in forest soils   总被引:2,自引:0,他引:2  

Background, aim, and scope  

A large proportion of soil nitrogen (N; >80%) is present in organic form. Current research on plant N uptake in terrestrial ecosystems has focused mainly on inorganic N such as ammonium (NH4 +) and nitrate (NO3 ), while soluble organic N (SON) has received little attention. In recent years, the increasing evidence showing the direct uptake of various amino acids by plants and the predominance of the organic form in N loss by leaching in many forest ecosystems has drawn attention to critically re-examine the nature and the ecological role of soil SON in terrestrial N cycling. However, little is known about the sources and dynamics, chemical nature, and ecological functions of soil SON in forest ecosystems. This paper reviews recent advances in the areas of research on current techniques for characterizing soil SON and the size, nature, and dynamics of soil SON pools in forest ecosystems.  相似文献   

16.
Imbalanced application of nitrogen (N) and phosphorus (P) fertilizers can result in reduced crop yield, low nutrient use efficiency, and high loss of nutrients and soil nitrate nitrogen (NO3--N) accumulation decreases when N is applied with P and/or manure; however, the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood. The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize (Zea mays L.) yield, N uptake, root growth, apparent N surplus, Olsen-P concentration, and mineral N (Nmin) accumulation in a fluvo-aquic calcareous soil from a long-term (28-year) experiment. The experiment comprised twelve combinations of chemical N and P fertilizers, either with or without chicken manure, as treatments in four replicates. The yield of maize grain was 82% higher, the N uptake 100% higher, and the Nmin accumulation 39% lower in the treatments with combined N and P in comparison to N fertilizer only. The maize root length density in the 30--60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only. Manure addition increased maize yield by 50% and N uptake by 43%, and reduced Nmin (mostly NO3--N) accumulation in the soil by 46%. The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied. Manure application reduced the apparent N surplus for all treatments. These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth, leading to reduced accumulation of potentially leachable NO3--N in soil, and manure application was a practical way to improve degraded soils in China and the rest of the world.  相似文献   

17.
采用田间小区试验,监测夏玉米不同生长期土壤水分和硝态氮剖面含量变化,研究不同施氮量对其时空变化及籽粒产量、水肥利用效率的影响,探讨氮肥对水肥资源高效利用的调节作用。结果表明:不同施氮处理,土壤剖面水分和硝态氮随土壤深度的变化趋势基本一致,即表层50 cm土壤水分和硝态氮含量较高且呈降低态,50-110 cm相对较低且波动较小,灌浆期二者均达到最低值;各生长期表层50 cm土壤含水量呈不施氮处理均高于施氮处理,50-110 cm土层则相反;施氮能提高土壤硝态氮含量,土壤硝态氮运移受土壤水分状况和含量的影响,含量越高,向下移动越深;施氮能显著提高水分利用效率及籽粒产量,增产效果明显(增产28.52%-37.86%),二者均以施氮240 kg/hm^2处理最高;随施氮量的增加籽粒产量及籽粒吸氮量和水分利用效率增幅均表现为先升高后降低之趋势,当施氮量超过240 kg/hm^2后,籽粒产量和水分利用效率提高并不显著;不施氮与施氮处理氮素生产力、氮肥利用率之间均存在极显著差异。在本试验条件下,从控制土壤硝态氮积累及取得较高的产量和氮素利用率综合考虑,夏玉米的适宜施氮量范围应控制在120-240 kg/hm^2较好。  相似文献   

18.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

19.
 The evoluion of NH4 +-N and NO3 -N was monitored during three growing seasons, 1992–1993, 1993–1994, 1994–1995 in the soil profile (0–60 or 0–90 cm) under bare fallow and wheat on a vertisol site of the Sais plateau, Morocco. The aim of this study was to relate the soil mineral N dynamics to crop N uptake and soil N transformation processes. The efficacy of the current N fertilisation rate (100 kg N ha–1) for wheat production in the region was evaluated. The high level of residual mineral N in the soil profile resulted from a low N plant uptake relative to the soil N supply and N fertilisation, and masked the effect of N fertilisation on dry matter accumulation. NH4 +-N was present in considerable amounts, suggesting a low nitrification rate under the given pedo-climatic conditions. An artefact due to the sampling procedure was encountered shortly after the application of N fertiliser. Losses through leaching and denitrification occurred after heavy rainfall, but were limited. At least part of the exchangeable NH4 +-N seemed to be barely taken up by the crop. NO3 -N was therefore considered to be a better indicator of plant-available N than total mineral N for this type of soil. The low N fertiliser use efficiencies demonstrated clearly that the current fertilisation rate (100 kg N ha–1) for wheat production in this region is unsustainable. The maximum N uptake ranged from 40 kg N ha–1 to 180 kg N ha–1. The estimation of the seasonal production potential is considered to be the main prerequisite for the determination of the best rates and timing of N fertiliser application in this region. Received: 9 December 1997  相似文献   

20.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号