首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Sphinganine analog mycotoxins (SAMs) are reported in maize and maize based feeds. Our objectives were to detect and quantify fumonisins B(1) and B(2) and Alternaria toxins (AAL toxins) AAL-TA and AAL-TB and determine how agronomic practices, weather conditions, and ensiling affected the occurrence and levels in maize silage. Silage was collected at harvest and after ensiling in 2001 and 2002 from 30 to 40 dairies, representing four regions in Pennsylvania. SAMs were quantified using high pressure liquid chromatography (HPLC) with fluorescence detection and high pressure liquid chromatography-mass spectrometry HPLC-MS. The average concentrations and ranges were as follows: fumonisin B(1) 2.02 mug/g (0.20 to 10.10), fumonisin B(2) 0.98 mug/g (0.20 to 20.30), AAL-TA 0.17 mug/g (0.20 to 2.01), and AAL-TB 0.05 mug/g (0.03 to 0.90). Fumonisin B(1) was the most frequently detected toxin (92%) in all samples, followed by fumonisin B(2) (55%), AAL-TA (23%), and -TB (13%). Temperature during maize development was positively correlated with fumonisin occurrence and levels and negatively with AAL-TA, while moisture events were negatively correlated with fumonisins and positively with AAL-TA. Fumonisin levels were higher in silage harvested at later developmental stages (dough through physiological maturity). Ensiling did not affect toxin concentration nor did agronomic practices (tillage system, inoculant use, or silo type) or silage characteristics (dry matter, pH, or organic acid concentration). This is the first report of AAL-TB in silage and on factors that affect SAM frequency and levels in maize silage.  相似文献   

2.
A culture of Penicillium vulpinum CM1 isolated from a soil sample cultivated with maize was examined for the production of the mycotoxins cyclopiazonic acid, griseofulvin, patulin (PAT), and roquefortine C. The fungal strain was positive for PAT- and roquefortine C–producing ability, while it showed negative producing ability for cyclopiazonic acid, and griseofulvin. Both PAT and roquefortine C toxins were tested for their inhibitory effect on the germination of maize seeds. Roquefortine C showed no phytotoxicity up to a concentration of 100 μg ml?1. However, a notable reduction in the average values of fresh weight and length of roots and shoots was observed following application of PAT and a culture filtrate of P. vulpinum to maize seedlings. The phytotoxic effect was found to be dose-dependent. To analyse the cellular effects of PAT, maize root tips were treated with PAT at different concentrations. The higher dose of 25 μg ml?1 exhibited morphological changes in the nature of cytoplasm and cytoplasmic organelles as was shown by transmission electron microscopy. Furthermore, an increase in the vacuolation with localized tonoplast dissolution was observed. At this concentration, there was evidence of a disruption of lipid metabolism. On the metabolic level, the phytotoxicity of PAT and the culture filtrate of P. vulpinum led to alterations in the total reduced glutathione (GSH) concentration in maize seedlings. The GSH concentrations examined in roots and shoots after PAT, fungal filtrate or fungal crude extract treatments were enhanced compared with control treatments. Findings further showed higher total GSH levels in shoots than in roots following treatments either with PAT or the fungal crude extract. The results are discussed in the context of known herbicide and metal effects on GSH synthesis and transport mechanisms.  相似文献   

3.
4.
Grain samples of 15 naturally contaminated barley cultivars, collected after harvest in southeastern Poland, were analysed for occurrence of Fusarium trichothecenes and zearalenone (ZEA). Barley kernels were contaminated with the following toxic metabolites: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), nivalenol (NIV), HT-2 toxin (HT-2), T-2 toxin (T-2), diacetoxyscirpenol (DAS), T-2 tetraol and ZEA. Significant correlations between concentrations of individual toxins and the dominant Fusarium species were found. Moreover, significant differences in toxin concentrations between cultivars were detected. Distribution of these mycotoxins was studied in two fractions of kernels (diameter > 2.5 mm and < 2.5 mm). A two-factor analysis of variance revealed significant differences between the two fractions, and between the analysed cultivars. Most of the interactions between fractions and cultivars were also significant. The highest concentration of the analysed toxins was in the fraction of small kernels. Kernel fraction <2.5 mm, although accounting for only 12.8% of sample weight, contained high proportions of the total toxin content: 80% of DON, 94% of NIV, 85% of ZEA, 83% of T-2 tetraol, 80% of DAS, 68% of HT-2 toxin and 81% of T-2 toxin. The results indicate that the level of contamination with Fusarium trichothecenes and ZEA, can be reduced by rejection of small kernels.  相似文献   

5.
Maize production trials carried out in Germany from 1999–2004 were used for statistical analysis of the optimum date for silage maize ripeness. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of stover) is more suitable for the determination of harvest date, yield maximum and silage maize quality as the dry matter content of the plant. The analysis is cheaper as well as less material and time-consuming in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum almost correspond to the physiological ripeness of silage maize and are close to the grain dry matter content of 60–65%, to the dry matter content of stover under 24% and a ripeness index from 2.5 and higher. Recently, the silage maize harvest depends on dry matter content of maize plants. This can result in grain ripening rates less than 55 % and low starch as well as energy contents. The dry matter content of the silage maize is at a certain ripeness of grain and/or of starch only expression of aging of the stover. The stover has, together with the grain, a strong influence on the dry matter content of the whole plant maize. On these locations the crop should be harvested before reaching the optimum of ripeness and yield maximum. Therefore only hybrids with a long harvesting time, high starch storage and displaying a high digestibility of plant cell wall with slow drying of the stover, should be grown in the future. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of stover are better than dry matter content of the whole plant maize as ripeness indicator in the production of maize. SRI is also suitable for use in scientific trials as a standard for the harvesting time and for better “stay green” characteristic. It is a strong correlation between the Silage maize Ripeness Index (SRI) and Silage maize Nutrient Index (SNI) or Silage maize Quality Index (SQI), respectively, as indicator for the physiological reaction of starch and metabolised energy in the rumen as well as for the choice of a hybrid.  相似文献   

6.
Maize production trials carried out in the middle of eastern Germany from 1999–2005 and were used for statistical analysis of the optimum date for silage maize ripeness. The Silage maize Ripeness Index (SRI, the ratio of dry matter content of maize grains to dry matter content of stover) is more suitable for the determination of harvest date, yield maximum and silage maize quality as the dry matter content of the plant. The analysis is cheaper and less material and time-consuming in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond almost with the physiological ripeness of silage maize and are close to the grain dry matter content of 60–65%, to the dry matter content of stover under 24% and a ripeness index from 2.5 and higher. Recently, the silage maize harvest depends on dry matter content of maize plants (30–35%). This can result in grain ripening rates less than 55% and low starch as well as energy contents. The dry matter content of the silage maize is at a certain ripeness of grain and/or of starch only expression of aging of the stover. When the stover has a stronger influence as the grain on the dry matter content of the whole plant maize, than the crop should be harvested before reaching the optimum of ripeness and yield maximum. Therefore only hybrids with a long harvesting time, high starch storage and displaying a high digestibility of plant cell wall with slow drying of the stover should be grown in the future. The Silage maize Ripeness Index is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of stover are better than dry matter content of the whole plant maize as ripeness indicator in the production of maize for the harvesting time. SRI is also suitable for use as a standard in scientific trials and for better type-characteristic of varieties.  相似文献   

7.
徐哲  刘太国  刘博  高利  陈万权 《植物保护》2021,47(3):200-205
为明确自然发病条件下我国小麦主产区小麦籽粒镰刀菌毒素污染情况,用超高效液相色谱-串联质谱仪(UPLC-MS/MS)测定了长江中下游冬麦组(CZX)、黄淮冬麦区南片冬水组(HNS)、黄淮冬麦区北片水地组(HBS)、北部冬麦区水地组(BBS)180份小麦样品中DON、3ADON、15ADON、T-2、HT-2和ZEN共6种镰刀菌毒素含量并对其进行比较分析。结果显示:来自CZX小麦籽粒中的DON、3ADON与ZEN毒素含量显著高于其他麦区;T-2毒素在CZX小麦籽粒中含量显著低于其他麦区;15ADON毒素含量在HNS与CZX、HBS与BBS以及CZX与BBS差异不显著,其他麦区间该毒素含量差异显著,15ADON在HNS含量最高;检出率方面,HT-2毒素均未检出;ZEN、3ADON检出率较低,DON、15ADON和T-2毒素的检出率较高。  相似文献   

8.
J W Piltz  R A Stanton  H Wu 《Weed Research》2017,57(6):382-389
The germinability and viability of mature seeds of five grass (Hordeum spp., Bromus diandrus, Vulpia spp., Avena fatua and Lolium rigidum) and seven broad‐leaved weed species (Echium spp., Physalis hederifolia, Solanum elaeagnifolium, Raphanus raphanistrum, Marrubium vulgare and Malva parviflora) that were either untreated, ensiled for a minimum of three months, underwent 48 h in sacco digestion in steers or ensiled prior to digestion were tested for germinability and viability. Ensiling and digestion both reduced seed viability, although the extent varied with species. The effect of ensiling was generally greater compared with digestion and differed between years for some species. Ensiling or ensiling plus digestion rendered all seeds of Hordeum spp., B. diandrus, Vulpia spp., A. fatua, Echium spp., P. hederifolia (in one year only), S. elaeagnifolium, R. raphanistrum and M. vulgare non‐viable; ensiling and ensiling plus digestion reduced viability of L. rigidum by 74.4% and 92.7% respectively. Viability of M. parviflora displayed the greatest tolerance to damage, with seed viability reduced on average by 31.4%, 27.6% and 27.4% for ensiling, digestion and ensiling plus digestion treatments respectively. These results indicate that ensiling can provide an effective non‐chemical weed management option, as a component of an integrated weed management package, for certain weed species responsible for significant crop and pasture production losses in Australian and world temperate and Mediterranean agricultural systems.  相似文献   

9.
穗腐病是玉米生产上的重要病害,在造成产量损失的同时,产生的毒素严重危害人畜健康。为获得兼具降解毒素功能的玉米穗腐病菌的生防菌株,以脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)毒素为靶标,从玉米病穗上分离筛选到一株能够降解该毒素的细菌菌株TP,经菌落形态特征、结合16S rDNA和gyrB基因序列分析,初步鉴定为贝莱斯芽胞杆菌Bacillus velezensis。对峙试验和复筛共培养结果显示,菌株TP对禾谷镰孢F18的抑制率分别达到70.63%和99.5%。经HPLC检测,TP在含DON的无机盐溶液中培养10 d后,其对DON的降解率为98.97%。以上研究结果表明,贝莱斯芽胞杆菌TP能拮抗禾谷镰孢菌,且能高效降解DON毒素,该菌株在防治禾谷镰孢菌引起的玉米穗腐病以及降低毒素危害中具有广阔的应用前景。  相似文献   

10.
High concentrations of the mycotoxins HT-2 and T-2 (HT2?+?T2), primarily produced by Fusarium langsethiae, have occasionally been detected in Norwegian oat grains. In this study, we identified weather variables influencing accumulation of HT2?+?T2 in Norwegian oat grains. Oat grain samples from farmers’ fields were collected together with weather data (2004–2013). Spearman rank correlation coefficients were calculated between the HT2?+?T2 contamination in oats at harvest and a range of weather summarisations within estimated phenological windows of growth stages in oats (tillering, flowering etc.). Furthermore, we developed a mathematical model to predict the risk of HT2?+?T2 in oat grains. Our data show that adequate predictions of the risk of HT2?+?T2 in oat grains at harvest can be achieved, based upon weather data observed during the growing season. Humid and cool conditions, in addition to moderate temperatures during booting, were associated with increased HT2?+?T2 accumulation in harvested oat grains, whereas warm and humid weather during stem elongation and inflorescence emergence, or cool weather and absence of rain during booting reduced the risk of HT2?+?T2 accumulation. Warm and humid weather immediately after flowering increased the risk, while moderate to warm temperatures and absence of rain during dough development, reduced the risk of HT2?+?T2 accumulation in oat grains. Our data indicated that HT2?+?T2 contamination in oats is influenced by weather conditions both pre- and post-flowering. These findings are in contrast with a previous study examining the risk of deoxynivalenol contamination in oat reporting that toxin accumulation was mostly influenced by weather conditions from flowering onwards.  相似文献   

11.
Maize production trials carried out in eastern middle of Germany from 1999–2007 were used for statistical analysis of the optimum date for silage maize ripeness, quality and yield potential as well as choice of cultivar under drought conditions for silage and energy maize. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of stover) is more suitable for the determination of harvest date, yield maximum and silage maize quality as the dry matter content of the plant. The analysis is cheaper as well as not so material and time-consuming in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond almost with the physiological ripeness of silage maize and are close to the grain dry matter content of 60 to 65%, to the dry matter content of stover under 24% and a ripeness index from 2,5 and higher. Only under these conditions it is possible to reach the optimal ripeness of 30 to 35% in the whole plant silage maize. In dependence on the Silage maize Ripeness Index (SRZ) parameters of silage and energy maize were created differential ripeness optimum, quality and yield potential. The aims of silage and energy maize are similar. The vitality of stover has a greater importance for energy maize. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of stover are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize for the harvesting time. SRI is also suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence.  相似文献   

12.
Maize production trials carried out in eastern middle of Germany from 1999 to 2009 were used for statistical analysis of the optimum date for silage maize ripeness. The knowledge about difference in ripeness between grain and residual plants at the harvest were used for exactly choice of cultivar under drought conditions for silage and energy maize: The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of residual plants) is more suitable for the leading of plant development, the determination of harvest date and the choice of cultivar as the dry matter content of the whole plant. The analysis is cheaper as well as not so material and time-consuming with the better financially results in feed-, milk- and methane production in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Basically, the harvest of silage maize to be carried out at the maximum possible ripeness index in all years, on every site, regardless of the variety to perform their silage maize ripeness number (SRZ), the heat sum and the calendar. The requirements for the varieties in the silo and energy maize are identical. The phenological ensilage optimum and yield maximum correspond with the physiological ripeness of silage maize and are close to the grain dry matter content of 63% and a ripeness index from 2.6 to 2.9 depending on quality and yield parameters. The maximum ripeness on the basis of SRI from greater than 2.9 at physiological ripeness grain to be exceeded. Only under these conditions it is possible to reach the optimal ripeness of 30–35% in the whole plant silage maize (22–24% dry matter in the stover). The wide ripeness ratio between grain and stover is multifunctional guarantor for the better plant health, for example with regard to the zearalenone and carotene content, the resource efficiency of fertilizer-N in accordance with the yield-related N denials and soil stocks in N as well as basic product safety and sustainability of the procedure of silage maize. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Silage maize Ripeness Number (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in relation with the dry matter of residual plants are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize at the harvesting time. SRI is also universal suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence universally appropriate and multifunctional.  相似文献   

13.
Maize production trials carried out in eastern middle of Germany from 1999–2008 were used for statistical analysis of the optimum date for silage maize ripeness. The Knowledge about difference in ripeness between grain and residual plants at the harvest were used for exactly choice of cultivar under drought conditions for silage and energy maize. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of residual plants) is more suitable for the leading of plant development, the determination of harvest date and the choice of cultivar as the dry matter content of the plant. The analysis is cheaper as well as not so material and time-consuming with a better financially results in food-, milk- and methane production in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond with the physiological ripeness of silage maize and are close to the grain dry matter content of 64%, to the dry matter content of starch of 33% and a ripeness index from 2.55 to 2.9 for parameter of quality and quantity. Only under these conditions it is possible to reach the optimal ripeness of 33 to 35% in the whole plant silage maize. But under suboptimal conditions the harvest is carried out, if SRI had a maximal value. In dependence on the Silage maize Ripeness Index (SRZ) and (SRI) parameters of silage and energy maize were predicted differential development of ripeness and yield. The aims of silage and energy maize are similar. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of residual plants are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize at the harvesting time. SRI is also universal suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence.  相似文献   

14.
以25个不同青贮玉米品种为试验材料,在宁夏银川北部盐碱地,通过测定不同品种大喇叭口期和成熟期的表型性状和光合气体交换参数进行耐盐碱性鉴定,并利用主成分分析和模糊隶属函数法对不同青贮玉米的耐盐碱强弱进行综合评价。结果表明:各青贮玉米品种处于不同生育期时对盐碱的敏感程度不同(发育阶段性),同一时期不同品种之间耐盐碱性也存在着差异(品种特异性)。根据综合评价值(D值)大小,将耐盐碱性分为三级:D值大于0.6为强耐盐碱性材料;D值在0.2~0.6之间为中耐盐碱性材料;D值低于0.2为对盐碱敏感的材料。其中,在大喇叭口期时具有强耐盐碱性的材料有:科多8号、桂青贮1号和133-2/1528,D值分别为0.770、0.705和0.614;在成熟期时具有强耐盐碱性的材料有:H14/A18和桂青贮1号,D值分别为0.761和0.728;而表现为敏盐性的材料为H14/1528,D值在大喇叭口期和成熟期时分别为0.140和0.155;其余品种均属于中度耐盐碱材料,D值处于0.2~0.6之间。  相似文献   

15.
通过盆栽试验,研究了不同土壤含盐量(0.14%(CK)、0.60%、0.80%、0.90%、1.00%)条件下,青储玉米光合特性及土壤水盐运动规律变化。结果表明:随着土层深度的增加,土壤含水率和含盐量均表现出增加的趋势,土壤盐分含量越高其平均含水率越高,由含盐量为0.14%处理的12.30%增加到含盐量为1.00%处理的15.82%;从7月初到10月初,各处理0~40 cm土层盐分变化量依次为-0.03%、-0.08%、-0.12%、-0.14%、-0.17%,盐分变化率依次为-11.52%、-13.34%、-13.88%、-14.81%、-17.41%,所有处理0~40 cm土层处于脱盐状态;土壤盐分抑制青储玉米叶片气孔导度,因气孔限制因素,玉米叶片净光合速率、蒸腾速率、胞间CO_2浓度等均下降,影响光系统的正常运行,导致玉米叶片水分利用效率和光能利用率降低。  相似文献   

16.
Data from silage maize variety trials of the years 1999?C2010 in the Central German dry region were subjected to a secondary analysis using methods of mathematical statistics: With the phenological ripeness indicators (grain dry matter content/TM of the residual plant) the differences in the ripeness dynamics of grain to residual plant and their effects on the economy and ecology compared to the current ripeness system with use-specific ripeness numbers are documented. This dependence on all directions of use in the maize of the environments and varietal types taking into account of the different plasticity of maize varieties is been quantified. The achievement of physiological ripening of the grain is the interface of all usage directions and at the same time basis for the comparable, agro-eco-efficient level of maturity (63% TM) in conjunction with the silage ripeness index (SRI of 2.8) by eco-silage maize crops. The specific characteristics of the usage directions are low and with regard to efficiency, environmental and consumer protection discussed. With the phenological stage indicator (SRI) can both replaced the DM content of the whole plant as a parameter to the harvest date of silage and energy maize as the usage-specific ripeness numbers to the variety choice for silage and grain maize. A classification of the varieties according to ripeness groups would fully correspond to the environmental maize production. In the preparation of production (breeding, approval, testing and type of election), the SRI serves as selection and during inventory management through differential ripening control in compliance with the environmental and field production conditions as ripeness index. The wide ripeness ratio between grain and residual plant is the phenotypic expression of maize varieties as indicator for the agro-eco-efficiency and multifunctional guarantee better plant health, the resource efficiency, as well as basic product safety and sustainability of the process of maize silage. A precise fixing of harvest time point (HTP) is possible only with the SRI. The correct HTP is in principle maximum possible SRI. This HTP differently from the silage optimum can be according to the environments and the type of election. Ideally a maximum high SRI of 2.9 and over to a high basic intake of ground feed when reaching for exclusive maize silage feeding ruminant more friendly, better structural efficiency and grain hardness for the bypass of starch in the small intestine. The variety and the harvest strategy are to focus their reasons of economy and ecology on a high proportion of stocks ripeness in the field of silage optimum (SRI >?2.6) reach. Standard for maximum efficiency of production process maize and its environmental and consumer protection in the field of view of social line is the reaching of the agro eco-efficient ripeness point (SRI of 2.8 at physiological ripeness of grain by 63%).  相似文献   

17.
BACKGROUND: Although the toxins of Bacillus thuringiensis Berliner (Bt) are frequently used to control lepidopteran pests, the tolerance or resistance of some lepidopteran moth strains may limit Bt applications. In this study, insecticidal cocktails consisting of sublethal doses of Cry1Ab toxin and additive compounds were tested for their suppressive effect on larval relative growth rate (RGR) in Ephestia kuehniella Zeller under laboratory conditions.RESULTS: In the first step, the suppressive effect of diflubenzuron, soybean trypsin inhibitor (STI) and chitinase on RGR was confirmed. In the second step, these compounds were incorporated into a mixture of crushed kernels of Bt maize hybrid MON 810-YieldGard((R)) and its isoline with concentrations of Cry1Ab toxin ranging from 0.011 to 0.091 microg g(-1) diet. An additive effect on the suppression of larval RGR in E. kuehniella was found in a combination of diflubenzuron, STI and STI + chitinase as secondary compounds in insecticidal cocktails. Chitinase showed no additive effect on RGR.CONCLUSION: The highest suppression level was found in cocktails with STI + chitinase as a secondary compound. It is hypothesized that the protease inhibitor (STI) protects both chitinase and Cry1Ab proteins from endogenous proteases in the larval midgut and prolongs their insecticidal activities. The possible application of insecticidal cocktails in the control of E. kuehniella is discussed. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

18.
Several Fusarium species occurring worldwide on maize as causal agents of ear rot, are capable of producing mycotoxins in infected kernels, some of which have a notable impact on human and animal health. The main groups of Fusarium toxins commonly found are: trichothecenes, zearalenones, fumonisins, and moniliformin. In addition, beauvericin and fusaproliferin have been found in Fusarium-infected maize ears. Zearalenone and deoxynivalenol are commonly found in maize red ear rot, which is essentially caused by species of the Discolour section, particularly F. graminearum. Moreover, nivalenol and fusarenone-X were often found associated with the occasional occurrence of F. cerealis, and diacetoxyscirpenol and T-2 toxin with the occurrence of F. poae and F. sporotrichioides, respectively. In addition, the occurrence of F. avenaceum and F. subglutinans usually led to the accumulation of moniliformin. In maize pink ear rot, which is mainly caused by F. verticillioides, there is increasing evidence of the wide occurrence of fumonisin B1. This carcinogenic toxin is usually found in association with moniliformin, beauvericin, and fusaproliferin, both in central Europe due to the co-occurrence of F. subglutinans, and in southern Europe where the spread of F. verticillioides is reinforced by the widespread presence of F. proliferatum capable of producing fumonisin B1, moniliformin, beauvericin, and fusaproliferin.  相似文献   

19.
The phytotoxicity of the Fusarium trichothecene and fumonisin mycotoxins has led to speculation that both toxins are involved in plant pathogenesis. This subject has been addressed by examining virulence of trichothecene and fumonisin-nonproducing mutants of Fusarium in field tests. Mutants were generated by transformation-mediated disruption of genes encoding enzymes that catalyze early steps in the biosynthesis of each toxin. Two economically important species of Fusarium were selected for these studies: the trichothecene-producing species Fusarium graminearum, which causes wheat head blight and maize ear rot, and the fumonisin-producing species F. verticillioides, which causes maize ear rot. Trichothecene-non-producing mutants of F. graminearum caused less disease than the wild-type strain from which they were derived on both wheat and maize, although differences in virulence on maize were not observed under hot and dry environmental conditions. Genetic analyses of the mutants demonstrated that the reduced virulence on wheat was caused by the loss of trichothecene production rather than by a non-target mutation induced by the gene disruption procedure. Although the analyses of virulence of fumonisin-non-producing mutants of F. verticillioides are not complete, to date, the mutants have been as virulent on maize ears as their wild-type progenitor strains. The finding that trichothecene production contributes to the virulence of F. graminearum suggests that it may be possible to generate plants that are resistant to this fungus by increasing their resistance to trichothecenes. As a result, several researchers are trying to identify trichothecene resistance genes and transfer them to crop species.  相似文献   

20.
Fusarium head blight (FHB), a devastating disease that affects wheat, is caused by a complex of Fusarium species. The overall impact of Fusarium spp. in wheat production arises through the combination of FHB and mycotoxin infection of the grain harvested from infected wheat spikes. Spike infection occurs during opening of flowers and is favoured by high humidity or wet weather accompanied with warm temperatures. Available possibilities for controlling FHB include the use of cultural practices, fungicides and biological approaches. Three cultural practices are expected to be of prime importance in controlling FHB and the production of mycotoxins: soil preparation method (deep tillage), the choice of the preceding crop in the rotation and the selection of appropriate cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号