首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Greasy spot, caused by Mycosphaerella citri, produces a leaf spot disease affecting all citrus species in Florida and the Caribbean Basin. M. citri produces pseudothecia and ascospores, which are considered the principal source of inoculum, in decomposing leaves on the grove floor. In studies using a computer-controlled environmental chamber, a single rain event triggered release of most mature ascospores beginning 30 to 60 min after the rain event. Additional rain events did not bring about further release. High relative humidity without rain triggered release of low numbers of ascospores, but vibration and red/infrared irradiation had little or no effect on ascospore release. After three to four cycles of wetting and drying of leaves, all pseudothecia had matured and released their ascospores. In the field, ascospores were detectable starting about 2 h after the beginning of a rain or irrigation and most ascospores were released within 16 h. Ascospore release was greatest following rain events and somewhat less following irrigations, and low numbers of ascospores were detectable on days without precipitation. Ascospore numbers declined linearly with horizontal distance from the source and as a function of the logarithm of ascospore numbers with vertical distance. Low numbers of ascospores were detected 7.5 m above the ground and 90 m downwind from the grove. Ascospore release can be advanced by irrigating frequently during dry, nonconducive conditions to stimulate ascospore release when environmental conditions are unfavorable for infection, but the eventual effects on disease severity are uncertain.  相似文献   

2.
ABSTRACT The development of Didymella rabiei on debris of naturally infected chickpea was investigated in four chickpea-growing areas with different climatic conditions in Spain during 1987 to 1992. D. rabiei extensively colonized chickpea debris and formed pseudothecia and pycnidia. Differentiation of pseudothecial initials occurred regularly across experimental locations by November, 1 month after placement of debris on the soil. Ascospore maturation occurred mainly from late January to late March, depending on location and year. Maximum ascospore discharge from sampled debris pieces placed under suitable environmental conditions occurred 2 to 4 weeks after ascospore maturation, after which ascospore release decreased sharply. Pseudothecia were exhausted, due to ascospore discharge, by the beginning of summer. New asci did not develop in empty pseudothecia and no pseudothecia formed in tissues after the first season. Ascospore maturation and liberation in cooler locations were more uniform and occurred later compared to maturation in warmer locations. Also, production of asci and ascospores per pseudothecium was much higher in cooler than in warmer locations. A similar relationship was found for density of pseudothecia and pycnidia and conidia production per pycnidium. The percentage of mature pseudothecia increased according to the logistic model, with the cumulative number of Celsius degree days calculated by computing the mean of the maximum and minimum daily air temperatures on rainy days from the date of debris placement on the soil. There were significant differences among model parameter estimates between cooler and warmer locations, but minor differences were found among parameters for locations with similar environmental conditions. There was an inverse linear relationship between the average temperature during the period of pseudothecia maturation and the number of asci produced per pseudothecium.  相似文献   

3.
Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa , closely related species which coexist on UK oilseed rape, were investigated. Stages in pseudothecial maturation on naturally infected oilseed rape debris were examined, both in controlled environments (5, 10, 15 or 20°C) under continuous wetness and in natural conditions (debris exposed in September and December 2000, and July, September and November 2002). Pseudothecia sampled weekly were assigned to maturation classes A (asci undifferentiated), B (asci differentiated), C (ascospores differentiated) or D (ascospores mature). Progress in pseudothecial maturation (assessed by time until 50% of pseudothecia reached each class) was similar for L. maculans and L. biglobosa at 15–20°C, but L. biglobosa matured more slowly at < 10°C. Maturation time decreased almost linearly with temperature from 5 to 20°C under continuous wetness but was longer in natural conditions, especially when periods of dry weather occurred. Differences in pseudothecial maturation are likely to contribute to epidemiological differences between L. maculans and L. biglobosa , which may explain their coexistence. It is appropriate to use the degree-day approximation to assess pseudothecial maturation at temperatures between 5 and 20°C, providing debris is wet.  相似文献   

4.
Didymella rabiei grew saprophytically on pieces of artificially and naturally infected chickpea stem debris under artificial incubation conditions, and formed pseudothecia and pycnidia. The extent of growth was not significantly affected by temperature of incubation within the range 5–25°C, but was significantly reduced as relative humidity (RH) decreased from 100% to 86%, when no growth occurred. Pseudothecia matured at 10°C and constant 100% RH, or at 5 and 10°C and alternating 100%/34% RH. Under these conditions, pseudothecial maturation, assessed by a pseudothecia maturity index, increased over time according to the logistic model. For temperatures higher than 10°C or RH lower than 100%, pseudothecia either did not form ascospores, or ascopores did not mature and their content degenerated. When pseudothecia that initially developed to a given developmental stage were further incubated at a constant 100% RH, temperature became less limiting for complete pseudothecial development as the developmental stage was more advanced. Pycnidia of the fungus developed and formed viable conidia in all environmental conditions studied, except at 86% RH. However, the density of pycnidia formed and the number of viable conidia per pycnidium were significantly influenced by temperature, RH and the type of debris (artificially or naturally infected) used.  相似文献   

5.
ABSTRACT Greasy spot, caused by Mycosphaerella citri, is a serious disease of citrus in the Caribbean basin. M. citri is a loculoascomycete and produces pseudothecia in decomposing leaves after intermittent wetting and drying. A new in vitro mating technique was developed for production of pseudothecia on sterilized leaf disks in petri dishes. Of the single-ascospore cultures that were recovered from individual asci, four were one mating type and four were a second mating type (tentatively designated mat+ and mat-), indicating that M. citri probably is heterothallic and bipolar like most other loculoascomycetes. Most populations of ascospores recovered from individual leaves or from leaves from groves of different citrus species and various locations had a 1:1 ratio of mating types consistent with random mating. Cytological studies demonstrated that the ontogeny of pseudothecial development was similar to other loculoascomycetes. The formation of mature pseudothecia required 30 to 45 cycles of wetting and drying of infected, dead leaves which required approximately 60 to 90 days. The in vitro system for pseudothecial production and the knowledge of the mating system in M. citri will facilitate genetic studies of this important pathogen.  相似文献   

6.
The incidence and severity of Ascochyta blight in potted chickpea trap plants exposed for 1-wk periods near infested chickpea debris in Córdoba, Spain, or in chickpea trap crops at least 100 m from infested chickpea debris in several locations in southern Spain were correlated with pseudothecial maturity and ascospore production ofDidymella rabiei from nearby chickpea debris. The period of ascospore availability varied from January to May and depended on rain and maturity of pseudothecia. The airborne concentration of ascospores ofD. rabiei was also monitored in 1988. Ascospores were trapped mostly from the beginning of January to late February; this period coincided with that of maturity of pseudothecia on the chickpea debris. Most ascospores were trapped on rainy days during daylight and 70% were trapped between 12.00 and 18.00 h. Autumn-winter sowings of chickpea were exposed longer to ascospore inoculum than the more traditional spring sowings because the autumn-winter sowings were exposed to the entire period of ascospore production on infested chickpea debris lying on the soil surface.  相似文献   

7.
Didymella rabiei development was investigated on naturally blight-infested debris in six Tunisian locations during two consecutive seasons. Pseudothecia initiated their development 2 months after their incubation on the soil surface. They reached their maturity earlier in the locations of Korba, Beja, Bizerte and Bousalem (March–April) than in Morneg and Tunis (June). After ascospore discharge, new asci and ascospores did not develop in empty pseudothecia, and the fungus survived during the second season by forming pycnidia. Pseudothecia maturity index (PMI) was determined based on internal developmental stages and a logistic model was proposed to establish an eventual correlation between PMI and Celsius degree days (CDD) cumulated over time during rainy days (for rain ≥1 mm). Results showed that PMI increased significantly over cumulative number of CDD in the six locations. In Korba, Beja, Bizerte and Bousalem locations, maximum rate of pseudothecia maturity occurred during an acceleration phase between 150 and 350 cumulated CDD during which pseudothecia reached the mature stage. The maturity rate of pseudothecia in Morneg and Tunis locations was slower as compared to the latter four locations and mature pseudothecia were observed at 450–500 cumulated CDD. The onset of pseudothecial maturity was also estimated by applying a pre-established model previously developed for Ascochyta disease management. Based on this model, which considers a combination of daily mean temperature and daily total rainfall, the number of suitable events required for pseudothecial maturity was determined at each location.  相似文献   

8.
Experiments were conducted under controlled environmental conditions to study the effects of temperature, duration of wetness, relative humidity (RH) and light on the discharge and germination of ascospores of Venturia nashicola , the causal agent of pear scab in China. Discharge of ascospores from pseudothecia required free water or 100% RH. A period of soaking in water as short as 10 s was sufficient to initiate the discharge of ascospores. Temperatures from 10 to 30°C did not significantly affect the temporal trend of ascospore discharge. A greater proportion of ascospores was discharged under light than in the dark. However, a period of light as short as 10 min, either during the initial wetting of pseudothecia or interrupting the darkness, was sufficient to reduce the inhibitory effect of darkness on ascospore discharge. Ascospores were discharged within 10 min after pseudothecia were wetted and most ascospores ( c. 80%) were discharged within the first hour. The temporal pattern of ascospore discharge could be well described by a logistic model, which estimated that 50% of ascospores were discharged within half an hour of wetting. Ascospores germinated over a wide range of temperatures from 5 to 30°C, with an optimum at c . 20°C. Temporal dynamics of ascospore germination at six temperatures (5, 10, 15, 20, 25 and 30°C) were satisfactorily described by logistic models.  相似文献   

9.
The effects of temperature, wetness and darkness on formation of pseudothecia and the effect of temperature on the release of ascospores of L. maculans on oilseed rape stubble were studied in a controlled environment in South Australia. Pseudothecia of L. maculans developed at 5–20°C and the time taken to reach maturity and discharge ascospores decreased from 58 days at 5°C to 22.2 days at 15°C. The optimum temperature of those tested for pseudothecium maturation was between 15°C and 20°C but fewer pseudothecia were observed at 20°C than at 15°C. Exposure to a 12 h photoperiod enhanced pseudothecium formation on the stubble compared with continuous darkness. No pseudothecia formed on stubble moistened once a day at 15°C, whereas three sprays of water per day decreased maturation time in comparison with two sprays per day. More ascospores were released for a longer duration at 20°C than at 5–15°C, although peak sporulation occurred earlier at 5–10°C than at 20°C. These findings highlight the importance of moisture, temperature and light for production and release of inoculum from stubble. This information, combined with field data, may help to predict the onset of inoculum release.  相似文献   

10.
ABSTRACT Ophiosphaerella agrostis, the causal agent of dead spot of creeping bentgrass (Agrostis stolonifera), can produce prodigious numbers of pseudothecia and ascospores throughout the summer. The environmental conditions and seasonal timings associated with O. agrostis ascospore release are unknown. The objectives of this research were to (i) determine the influence of light and relative humidity on ascospore release in a controlled environment, (ii) document the seasonal and daily discharge patterns of ascospores in the field, and (iii) elucidate environmental conditions that promote ascospore release under field conditions. In a growth chamber, a sharp decrease (100 to approximately 50%; 25 degrees C) in relative humidity resulted in a rapid (1- to 3-h) discharge of ascospores, regardless of whether pseudothecia were incubated in constant light or dark. In the field, daily ascospore release increased between 1900 and 2300 h and again between 0700 and 1000 h local time. The release of ascospores occurred primarily during the early morning hours when relative humidity was decreasing and the canopy began to dry, or during evening hours when relative humidity was low and dew began to form. Few ascospores were released between 1100 and 1800 h when the bentgrass canopy was dry. The release of ascospores also was triggered by precipitation. Of the ascospores collected during precipitation events, 87% occurred within 10 h of the beginning of each event.  相似文献   

11.
ABSTRACT Mills' infection period table describes the number of hours of continuous leaf wetness required at temperatures from 6 to 25 degrees C for infection of apple leaves by ascospores of Venturia inaequalis and reports that conidia require approximately two-thirds the duration of leaf wetness required by ascospores at any given temperature. Mills' table also provides a general guideline that more than 2 days of wetting is required for leaf infection by ascospores below 6 degrees C. Although the table is widely used, infection times shorter than those in the table have been reported in lab and field studies. In 1989 a published revision of the table eliminated a potential source of error, the delay of ascospore release until dawn when rain begins at night, and shortened the times reported by Mills for ascospore infection by 3 h at all temperatures. Data to support the infection times below 6 degrees C were lacking, however. Our objective was to quantify the effects of low temperatures on ascospore discharge, ascospore infection, and infection by conidia. In two of three experiments at 1 degrees C, the initial release of ascospores occurred after 131 and 153 min. In the third experiment at 1 degrees C, no ascospores were detected during the first 6 h. The mean time required to exceed a cumulative catch of 1% was 143 min at 2 degrees C, 67 min at 4 degrees C, 56 min at 6 degrees C, and 40 min at 8 degrees C. At 4, 6, and 8 degrees C, the mean times required to exceed a cumulative catch of 5% were 103, 84, and 53 min, respectively. Infection of potted apple trees by ascospores at 2, 4, 6, and 8 degrees C required 35, 28, 18, and 13 h, respectively; substantially shorter times than previously were reported. In parallel inoculations of potted apple trees, conidia required approximately the same periods of leaf wetness as ascospores at temperatures from 2 to 8 degrees C, rather than the shorter times reported by Mills or the longer times reported in the revision of the Mills table. We propose the following revisions to infection period tables: (i) shorter minimum infection times for ascospores and conidia at or below 8 degrees C, and (ii) because both ascospores and conidia are often present simultaneously during the season of ascospore production and the required minimum infection times appear to be similar for both spore types, the adoption of a uniform set of criteria for ascosporic and conidial infection based on times required for infection by ascospores to be applied during the period prior to the exhaustion of the ascospore supply. Further revisions of infection times for ascospores may be warranted in view of the delay of ascospore discharge and the reduction of airborne ascospore doses at temperatures at or below 2 degrees C.  相似文献   

12.
ABSTRACT The timing of maturation of pseudothecia and discharge of ascospores of the blackleg fungus (Leptosphaeria maculans) is critical in relation to infection early in the cropping season of canola. During 1998 to 2000, development of pseudothecia was investigated on residues of the previous year's canola crop collected from four agroclimatically different locations: Mount Barker (southern high rainfall), Wongan Hills (central medium rainfall), Merredin (central low rainfall), and East Chapman (northern low rainfall) in Western Australia. The pseudothecia matured on residues at different times after harvest in various regions. In general, pseudothecia maturity occurred earlier in the high-rainfall areas than in medium- and low-rainfall areas. An ascospore discharge pattern was investigated from residues of crop from the previous year (6-month-old residues) at three locations-Mount Barker, Wongan Hills, and East Chapman in Western Australia-and from 18-month-old residues that were burnt and raked in the previous year at Mount Barker and East Chapman. Ascospore discharge commenced earlier in high-rainfall (>450 mm) areas (Mount Barker) and late in northern low-rainfall (<325 mm) areas (East Chapman). The major ascospore showers took place during May (late autumn) and June (early winter) at Mount Barker and during July and August (mid- to late winter) at East Chapman. The number of ascospores discharged was extremely low at East Chapman compared with Mount Barker. At both locations, the number of ascospores discharged from 18-month-old residues that were raked and burnt in the previous year were only approximately 10% of those discharged from previous year's residues left undisturbed. The discharge of ascospores on any given day was negatively correlated with accumulated temperatures, maximum temperature, evaporation, minimum and maximum soil temperatures, and solar radiation and was positively correlated with the minimum temperature, rain, and minimum relative humidity. This is the first report describing how pseudothecia mature on residues in different rainfall areas in Western Australia, and it potentially can be used in developing a forecasting system to avoid the synchronization of major ascospore showers with the maximum susceptibility period of canola seedlings.  相似文献   

13.
A system was elaborated to estimate the dynamics of primary inoculum of Venturia inaequalis in apple orchards. It separates the primary inoculum season into five periods with different risks: absent (ascospores not yet mature); potential (ascospores mature but not yet ready to be discharged); actual (ascospores can be discharged when favourable conditions occur); present (ascospores are airborne); exhausted (all ascospores have been ejected). These periods were determined by two mathematical models, which use meteorological parameters as driving variables. The first model estimates the development stage of the overwintering pseudothecia and then determines when the first pseudothecia contain pigmented and mature ascospores. A threshold of mature ascospores inside pseudothecia defines when the ascospores become ready for discharge. The second model estimates the proportion of the season's ascospores that are airborne on each discharging event, using temperature and leaf wetness, expressed as the degrees accumulated daily in the hours when leaves are wet. Estimates of absent and potential risk were verified by collecting data on the first ascospore discharge in the period 1991/1998 at Bologna and Modena (northern Italy), and they were always found to be accurate. To verify the estimates of actual, present and exhausted risk, the model outputs were compared with data collected by spore samplers at Modena and Bologna in 1997 and 1998: they were sufficiently accurate because the greatest part of the records from the spore sampler fell inside the confidence limits of the model.  相似文献   

14.
ABSTRACT Dead spot (Ophiosphaerella agrostis) is a damaging disease of young 相似文献   

15.
ABSTRACT Temperature and wetness conditions required for development and maturation of Didymella rabiei pseudothecia were determined in a series of experiments conducted in controlled-environmental conditions. Initial stages of pseudothecium formation occurred at temperatures ranging from 5 to 15 degrees C. Incubation at low temperatures was essential for subsequent pseudothecium maturation. This requirement was satisfied for chickpea stem segments incubated at 5 or 10 degrees C for three consecutive weeks or during periods of 3 or 5 days, separated by periods at higher temperatures. Following the low-temperature requirement, subsequent pseudothecium development was independent of temperature in the range tested (5 to 20 degrees C). Wetness was essential for pseudothecium production: pseudothecia formed and matured on stem segments maintained continuously wet but also on those exposed to periods of three or five wet days, separated by dry periods. The dispersal of D. rabiei ascospores was studied using chickpea plants as living traps in the field. Trap plants were infected mainly when exposed during rain but also in rainless periods. Results of this study enabled us to describe the developmental events leading to the production of the teleomorph stage and the dispersal of ascospores by D. rabiei in the Mediterranean climate of Israel.  相似文献   

16.
The inoculum sources of ascospores of Pleospora allii and of conidia of its anamorph Stemphylium vesicarium were investigated in relation to the brown spot disease epidemiology on pear. Dead and living leaves of three pear varieties (Abate Fétel, Conference and William), seven grasses (Poa pratensis, Festuca rubra, Festuca ovina, Lolium perenne, Digitaria sanguinalis and Setaria glauca) and Trifolium repens, which are used in pear orchard lawns, were inoculated with conidia of Stemphylium vesicarium virulent on pear and incubated under controlled-environment. Stemphylium vesicarium was always re-isolated from dead leaves of the considered plants, but not from symptomless green or yellowish living leaves. The fungus was occasionally re-isolated from leaf segments showing unspecific necrosis. Inoculation of pear leaves with isolates from grasses demonstrated that the fungus did not lose pathogenicity. Pseudothecia, ascospores and conidia were produced on all the dead inoculated leaves; differences between specimens were found for phenology of pseudothecia, their density and size, and for the number of conidia produced. Pseudothecia were produced faster in the lawn species than in pear leaves, and their density was higher, especially for S. glauca, L. perenne and P. pratensis. Ascospore maturation and ejection was more concentrated for the pseudothecia developed on pear leaves than for those on F. ovina and S. glauca. All the lawn species produced more conidia than pear leaves.  相似文献   

17.
The disease septoria tritici blotch of wheat is initiated by ascospores of the teleomorph Mycosphaerella graminicola or pycnidiospores of the anamorph Septoria tritici. We report for the first time the presence of the teleomorph, M. graminicola, in Denmark. With the objective of elucidating the importance of the teleomorph for the development of septoria tritici blotch, data on the occurrence of fruit bodies of the anamorph (pycnidia) and the teleomorph (pseudothecia) stages were collected over three growing seasons. Pseudothecia were present in the springs, however, high numbers of pseudothecia compared to pycnidia were not observed until July, too late to influence the epidemic. On an individual leaf layer, pycnidia were observed well before pseudothecia. As the leaves aged, progressively higher proportions of fruit bodies were observed to be pseudothecia. The period from the appearance of pycnidia to detection of pseudothecia was estimated as 29–53 days. At harvest, high proportions of sporulating fruit bodies in the crop were pseudothecia, suggesting that the primary source of inoculum for new emerging wheat crops in autumn is likely to be ascospores.  相似文献   

18.
Carisse O  Rolland D 《Phytopathology》2004,94(12):1305-1314
ABSTRACT Field and in vitro trials were conducted to establish the influence of the biological control agent Microsphaeropsis ochracea on the ejection pattern of ascospores by Venturia inaequalis and on apple scab development, and to establish the best timing of application. The ejection pattern of ascospores was similar on leaves sprayed with M. ochracea and on untreated leaves. Fall application of M. ochracea combined with a delayed-fungicide program was evaluated in orchards with intermediate and high scab risk. For both orchards, it was possible to delay the first three and two infection periods in 1998 and 1999, respectively, without causing significant increase or unacceptable leaf and fruit scab incidence. To evaluate the best timing of application, sterile leaf disks were inoculated with V. inaequalis and then with M. ochracea 0, 2, 4, 6, 8, 10, 12, 14, and 16 weeks later. After incubation under optimal conditions for pseudothecia development, the number of ascospores was counted. Similarly, M. ochracea was sprayed on scabbed leaves on seven occasions from August to November 1999 and 2000. Leaves were overwintered on the orchard floor and ascospore production was evaluated the following spring. Ascospore production was reduced by 97 to 100% on leaf disks inoculated with M. ochracea less than 6 weeks after inoculation with V. inaequalis, but ascospore production increased with increasing period of time when M. ochracea was applied 8 to 16 weeks after the inoculation with V. inaequalis. In the orchard, the greatest reduction in production of ascospores (94 to 96% in 2000 and 99% in 2001) occurred on leaves sprayed with M. ochracea in August. The production of ascospores was reduced by 61 to 84% in 2000 and 93% in 2001 on leaves sprayed with M. ochracea in September, reduced by 64 to 86% in 2000 and 74 to 89% in 2001 on leaves sprayed in October, and reduced by 54 and 67% in 2000 and 2001, respectively, on leaves sprayed in November. It was concluded that M. ochracea should be applied in August or September and that ascospore maturation models and delayed-fungicide program could be used in orchards treated with this biological control agent.  相似文献   

19.
Experiments were conducted under controlled conditions to quantify the effects of temperature, water regime and irrigation system on the release of Mycosphaerella nawae ascospores from leaf litter in Spanish persimmon orchards. The effect of temperature on ascospore release was best described by a Gompertz model. The end of the lag phase of ascospore release occurred at 9·75°C, and the end of the exponential phase at 15·75°C. Few ascospores were discharged from dry leaves wetted with 0·1 or 0·5 mm water, but significant amounts were recovered with 1–50 mm water. About half of the total ascospores were released after three wetting and drying cycles, but 32 cycles were necessary for a complete discharge. No significant difference in ascospore release was detected when the leaf litter was wetted by flood and drip irrigation. However, considering the proportion of soil area wetted in both systems, inoculum release was significantly reduced by drip irrigation. The potential of drip irrigation as a cultural control measure should be investigated.  相似文献   

20.
Leptosphaeria maculans and L. biglobosa are damaging pathogens of oilseed rape. The infection of plants occurs predominantly in early autumn or spring by spores produced in pseudothecia. The aim of this study was to investigate whether pseudothecia formed in the autumn are still viable in the spring and to what extend they are destroyed by winter frosts. The studies presented here demonstrated that winter frosts can render pseudothecia unable to release spores. Nevertheless, ascospores present in pseudothecia unable to discharge ascospores, were fully capable of germination, regardless of the incubation temperature. No significant differences were found between the studied Leptosphaeria species in their response to frost. A multiple regression equation has been elaborated to forecast the ability of pseudothecia to release ascospores, based on winter temperatures. Considerable correlation was found between the ascospore release in the autumn and the ability of pseudothecia to release ascospores over the winter period and the subsequent symptoms of stem canker before harvest. We have demonstrated that the potential and the survival of inoculum can have a large impact on the success of the pathogen. This may be particularly important in the light of forecasted climate change. Higher winter temperatures may increase the ability of pseudothecia to release ascospores and the discharge of ascospores of L. maculans and L. biglobosa into the air, and cause early plant infections. This in turn will increase the number of infected plants, the disease incidence at harvest, and reduce the yield of oilseed rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号