首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT Pyrenophora tritici-repentis, causal agent of tan spot, induces necrosis and chlorosis in its wheat host. The tan spot system conforms to the toxin model and three host-specific toxins have been identified (Ptr ToxA, Ptr ToxB, and putative Ptr ToxC). Processing of a collection of isolates, obtained in the Fertile Crescent and Caucasus regions, yielded two new virulence patterns. Isolate Az35-5 combined the virulences of races 2 and 5 and was classified in the new race 7. Isolates TS93-71B and TS93-71F had a virulence pattern that combined those of races 2, 3, and 5 and were grouped in the new race 8. Southern analysis revealed that all three isolates possessed copies of the ToxA and ToxB genes, the first time the genes were found in a common background. The production of Ptr ToxA and Ptr ToxB by the isolates was confirmed by western blotting. Virulence patterns suggested that TS93-71B and TS93-71F may also produce Ptr ToxC, even though it was not present at detectable levels in culture filtrates. The identification of races 7 and 8 complete the theoretical maximum number of races that can be differentiated by three loci in the host (2(3) = 8), assuming a one-to-one relationship. It appears that the wheat/P. tritici-repentis system is a mirror image of the classical gene-for-gene relationship.  相似文献   

2.
ABSTRACT Tan spot of wheat, caused by the fungus Pyrenophora tritici-repentis, is a destructive disease found in wheat-growing regions worldwide that can lead to serious yield losses. Changes in cultural practices have led to an increase in the severity and incidence of tan spot. Following infection, compatible races of the fungus elicit two distinct symptoms in differential wheat lines: tan necrosis and (extensive) chlorosis. Tan necrosis has been clearly demonstrated by several groups to result from the action of a protein toxin, Ptr ToxA. Wheat sensitivity to this toxin is conditioned by a single dominant gene. The chlorosis response may be more complex and appears to involve at least two other toxins, Ptr ToxB and Ptr ToxC, produced by different races of the fungus. Distinct genes apparently condition the reaction of wheat lines to each of these chlorosis-inducing toxins. This review concentrates on significant advances that have occurred during the past decade in the characterization of this disease interaction, ranging from the epidemiology and management of tan spot to molecular host-parasite interactions. Particular emphasis is placed on work describing fungal race differentiation, production of toxins and their importance in pathogenicity, and the genetics and physiology of host response to infection.  相似文献   

3.
ABSTRACT The host-selective toxin Ptr ToxA is produced by races 1 and 2 of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Ptr ToxA has been causally associated with pathogenicity by the race 2 phenotype in this system. However, the role of toxin in disease caused by race 1, the most prevalent form of the fungus in the central and northern Great Plains of North America, has not been rigorously investigated. Three independent wheat lines harboring mutations for insensitivity to Ptr ToxA were derived from ethylmethane sulfonate treatment of the hard red spring wheat cv. Kulm, possessing the single dominant gene for toxin sensitivity. Each of the three mutants was insensitive to Ptr ToxA in bioassays based on necrosis development and electrolyte leakage. Each mutant was crossed to each of the other mutants and to the wild-type Kulm. Segregation data indicate that each mutant line harbors a single recessive mutation for toxin insensitivity that maps to or near the same locus, possibly the toxin-sensitivity gene. Each toxin-insensitive mutant line was susceptible to two isolates of race 1 of P. tritici-repentis. F(2) and F(3) generations derived from crosses between Kulm and each mutant segregated for toxin reaction. However, segregation for fungal reaction was not evident, and all F(3) families were tan spot susceptible regardless of toxin reaction. Host insensitivity to Ptr ToxA is not necessarily equivalent to resistance to race 1. Ptr ToxA should not be used alone as a proxy for fungal inoculations by breeding programs aimed at developing tan spot-resistant wheat.  相似文献   

4.
ABSTRACT Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces multiple host-selective toxins (HSTs), including Ptr ToxA, Ptr ToxB, and Ptr ToxC. The specific complement of HSTs produced by a particular isolate determines its host cultivar specificity. Each unique specificity profile, represented by the differential induction of necrosis or chlorosis on a standard set of wheat differentials, defines a unique race. Eight races of P. tritici-repentis have been formally published, although additional races are under investigation. Although visual assessment of disease phenotype is often used in race designation of P. tritici-repentis, our results suggest that it has the potential to be misleading. Inoculation of the P. tritici-repentis isolates SO3 and PT82 on the current wheat differential set indicated classification as race 2 and race 8, respectively; however, genetic characterization revealed that these isolates do not possess the associated HSTs expected for these race assignments. Despite sharing disease phenotypes similar to known races, SO3 and PT82 were genotypically distinct from these previously characterized races of P. tritici-repentis. To ensure detection of the breadth of physiological variation among the isolates of P. tritici-repentis, our results indicate that race classification, where possible, should include both phenotypic and genotypic analyses and eventual expansion of the differential set.  相似文献   

5.
Tan spot caused by Pyrenophora tritici‐repentis is a wheat disease found worldwide which can cause significant losses. This disease is characterized by typical symptoms: a necrotic spot surrounded by chlorosis halo. On the basis of its ability to produce chlorosis and/or necrosis symptoms on a differential host set. Eight races of this pathogen are currently recognized. These symptoms are the result of a specific interaction between the host and at least three host specific toxins Ptr ToxA, Ptr ToxB and Ptr ToxC. This interaction seems to be a mirror image of the classical gene‐for‐gene described by Flore. This paper presents a first literature review in the French language, identifying the major aspects of this disease, its epidemiology and diversity of its causal agent.  相似文献   

6.
7.
The virulence of 57 Australian isolates of Pyrenophora tritici-repentis (Ptr), a necrotrophic fungal pathogen responsible for the major wheat disease tan spot, was assessed through plant infection assays. Isolates collected from the northern, southern, and western wheat-cropping regions of Australia were evaluated against 16 Australian bread wheat cultivars under controlled growth conditions. Following infection, the wheat panel displayed varying disease symptoms ranging from tiny necrotic specks to spreading chlorotic and necrotic lesions. Analysis of variance indicated that the wheat cultivar exhibited a greater effect on the disease response, explaining 62.7% of the variation, in comparison to the isolate (10.4%). The interaction between the cultivar and the isolate was statistically significant and was attributed to 9.8% of the total variation. All Ptr isolates examined were able to cause disease, but did not display a clear distinction in virulence on the wheat panel investigated, instead showing subtle differences in aggressiveness. Based on the disease responses, there was no obvious pattern between isolate aggressiveness and cropping region. Some cultivars, such as Hydra, exhibited an effective level of resistance in relation to the panel of isolates tested. All 57 Ptr isolates were found to possess the ToxA effector gene and lack the ToxB effector gene. The gene expression level of ToxA was up-regulated at 3 days postinfection in both ToxA-sensitive and -insensitive cultivars, independent of ToxA–Tsn1 recognition.  相似文献   

8.
The wheat disease tan (or yellow leaf) spot, caused by Pyrenophora tritici-repentis, was first described in the period 1934 to 1941 in Canada, India, and the United States. It was first noted in Australia in 1953 and only became a serious disease in the 1970s. The emergence of this disease has recently been linked to the acquisition by P. tritici-repentis of the ToxA gene from the wheat leaf and glume blotch pathogen, Stagonospora nodorum. ToxA encodes a host-specific toxin that interacts with the product of the wheat gene Tsn1. Interaction of ToxA with the dominant allele of Tsn1 causes host necrosis. P. tritici-repentis races lacking ToxA give minor indistinct lesions on wheat lines, whereas wheat lines expressing the recessive tsn1 are significantly less susceptible to the disease. Although the emergence and spread of tan spot had been attributed to the adoption of minimum tillage practices, we wished to test the alternative idea that the planting of Tsn1 wheat lines may have contributed to the establishment of the pathogen in Australia. To do this, wheat cultivars released in Australia from 1911 to 1986 were tested for their sensitivity to ToxA. Prior to 1941, 16% of wheat cultivars were ToxA-insensitive and hence, all other factors being equal, would be more resistant to the disease. Surprisingly, only one of the cultivars released since 1940 was ToxA insensitive, and the area planted to ToxA-insensitive cultivars varied from 0 to a maximum of only 14% in New South Wales. Thus, the majority of the cultivars were ToxA-sensitive both before and during the period of emergence and spread of the disease. We therefore conclude that the spread of P. tritici-repentis in Australia cannot be causally linked to the deployment of ToxA-sensitive cultivars.  相似文献   

9.
The necrotrophic fungal pathogen Pyrenophora tritici‐repentis (Ptr) causes the major wheat disease tan spot, and produces multiple necrotrophic effectors that contribute to virulence. The proteinaceous effector ToxA induces necrosis in wheat genotypes possessing the Tsn1 gene, although the importance of the ToxA–Tsn1 interaction itself in varietal disease development has not been well studied. Here, 40 Australian spring wheat varieties were assessed for ToxA sensitivity and disease response to a race 1 wildtype Ptr isolate and ToxA‐deleted strain at both seedling and tillering growth stages. ToxA sensitivity was generally associated with disease susceptibility, but did not always predict spreading necrotic symptoms. Whilst the majority of Tsn1 varieties exhibited lower disease scores following toxa mutant infection, several exhibited no distinct differences between wildtype and toxa symptoms. This implies that ToxA is not the major determinant in tan spot disease development in some host backgrounds and indicates the presence of additional effectors. Unexpectedly, several tsn1 varieties exhibited a reduction in disease severity following toxa mutant inoculation, which may suggest an indirect role for ToxA in pathogen fitness. Additionally, increased chlorosis was observed following toxa mutant infection in three varieties, and further work is required to determine whether this is likely to be due to ToxA epistasis of ToxC symptoms. Taken together, these observations demonstrate that Ptr interacts with the host in a complex and intricate manner, leading to a variety of disease reactions that are dependent or independent of the ToxA–Tsn1 interaction.  相似文献   

10.
Singh PK  Hughes GR 《Phytopathology》2005,95(2):172-177
ABSTRACT The symptoms of tan spot of wheat, caused by Pyrenophora triticirepentis, include a tan necrosis component and an extensive chlorosis component. Since tan spot has become the major component of the leafspotting disease complex of wheat in western Canada, the need for resistant cultivars has increased. This study was conducted to determine whether the resistance to tan spot found in a diverse set of spring and winter wheat genotypes was due to resistance genes not previously reported. The genetic control of resistance to necrosis induced by P. triticirepentis race 1 and race 2 was determined, under controlled environmental conditions, for spring wheat genotypes Erik and 86ISMN 2137 and winter wheat genotypes Hadden, Red Chief, and 6B-365. Plants were inoculated at the two-leaf stage and disease reaction was assessed based on lesion type. Tests of the F(1) and F(2) generations, and of F(2:3) and F(2:8) families, indicated that one recessive gene controlled resistance to the necrosis component of tan spot caused by both race 1 and race 2 in each cross studied. Lack of segregation in crosses between the resistant cultivars indicated that the resistance gene was the same in all of the cultivars.  相似文献   

11.
Pyrenophora tritici‐repentis (Ptr) is a destructive fungal pathogen of wheat worldwide. In addition to wheat, Ptr has been isolated from various other hosts in the family Poaceae, yet the nature of its interaction with those hosts is unknown. The Ptr–barley relationship was explored and the existence of a specific interaction between Ptr and barley is described for the first time; symptom development on several barley genotypes was evaluated in bioassays and by toxin infiltration into barley leaves. Ptr ToxB‐producing isolates of the fungus were able to cause significant damage when inoculated onto certain barley genotypes, and Ptr ToxB was able to induce chlorosis in a highly selective manner when infiltrated into those same genotypes. Ptr–barley specificity is subtle and can break with slight changes in temperature after infection. To understand the infection process in barley, a cytological analysis and in planta fungal biomass estimation using quantitative PCR were performed. The fungus penetrates through the host epidermal cells and advances to colonize the mesophyll layer intercellularly, with the infection process on barley closely resembling that on wheat. Here, evidence is provided for a specific interaction between barley and Ptr, expanding understanding of Ptr host specificity and breaking the assumption that the highest level of specificity seen with Ptr is restricted to particular genotypes of the wheat host.  相似文献   

12.
ABSTRACT Pyrenophora tritici-repentis race 2 produces Ptr ToxA, a host-selective toxin previously described as a pathogenicity factor for tan spot on wheat. The objective of this research was to evaluate the role of host sensitivity to toxin, conditioned by a single dominant gene on chromosome 5BL, in the disease development by race 2. An F(2)-derived F(6) recombinant inbred population of 108 wheat lines, produced from crosses of toxin-sensitive, disease-susceptible cv. Kulm with the toxin-insensitive, disease-resistant cv. Erik segregated 1:1 for toxin reaction. However, the population was skewed toward resistance to race 2 of the fungus. Toxin reaction accounted for 24.4% of the genetic variance for disease. Heritability estimates suggested the presence of four to five genes that influence disease reaction in the population. Toxin-insensitive mutants, previously derived Kulm, were susceptible to race 2, although disease developed more slowly on the mutants than it did on the wild-type Kulm. The data indicate that sensitivity to Ptr ToxA influences disease severity in some host genotypes without defining susceptibility.  相似文献   

13.
Ptr ToxA, the host-selective toxin produced by Pyrenophora tritici-repentis, is genetically associated with the development of tan spot disease of wheat. The toxin was shown previously to cause a programmed cell death in the host that requires de novo mRNA and protein synthesis. In the present study, inhibitors of plant signaling mechanisms protected wheat leaves from toxin action, as determined by electrolyte leakage bioassays, when applied to leaves with toxin. Okadaic acid, calyculin A and phenylarsine oxide, all inhibitors of protein phosphatase activity, reduced toxin-induced electrolyte leakage by more than 90%. Inorganic calcium channel blockers (LaCl3 and CoCl2 reduced toxin-induced electrolyte leakage by 78–95%, depending on inhibitor and time of measurement. By comparison, about 50% protection was achieved by the application of the protein kinase inhibitors staurosporine and K-252A. Nonetheless, the reduction in toxin-induced electrolyte leakage by protein kinase inhibitors was reproduced in multiple trials and was statistically significant. The data indicate that host signaling mechanisms, including calcium fluxes and a protein phosphorylation cascade, are required for the Ptr ToxA-induced cell death in wheat. Our current model holds that the signaling events occur between toxin perception by the cell and the toxin-directed gene expression in the host associated with cell death. As an alternative, the toxin-induced mRNA synthesis required for cell death may be for protein phosphatase and/or protein kinase genes. Additional work is required to resolve these possibilities.  相似文献   

14.
ABSTRACT Culture filtrate from Pyrenophora tritici-repentis race 1 isolate 78-62 contained a genotype-specific toxin which elicited extensive chlorosis on sensitive wheat genotypes. This toxin was partially purified using gel filtration, ion exchange, and reversed-phase chromatography. The chlorosis toxin was found to be a polar, nonionic, low-molecular-weight molecule. Wheat genotypes infiltrated with crude culture filtrate and partially purified chlorosis toxin exhibited the same chlorotic symptoms seen with conidial inoculations of isolate 78-62. All tested wheat genotypes that exhibited extensive chlorosis to the toxin also exhibited extensive chlorosis to conidial inoculations, and all wheat genotypes insensitive to the toxin did not exhibit extensive chlorosis to conidial inoculations. The recombinant inbred population derived from the cross W-7984 x Opata 85 segregated for chlorosis induction from infiltration with partially purified chlorosis toxin from isolate 78-62. The locus identified by the marker XGli1, associated with resistance to conidial inoculations from race 1 isolates Pti2 and 78-62 and race 3 isolate D308, also was associated with insensitivity to infiltration of crude culture filtrate and partially purified chlorosis toxin. The marker XGli1, located on the short arm of chromosome 1A, is linked to the insensitivity locus within 5.7 cM. We propose that this chlorosis toxin be designated Ptr ToxC.  相似文献   

15.
Host genetic resistance is the most effective and sustainable means of managing tan spot or yellow spot of wheat. The disease is becoming increasingly problematic due to the adoption of minimum tillage practices, evolution of effector‐mediated pathogenicity, and widespread cultivation of susceptible cultivars from a narrow genetic base. This highlights the importance of broadening the diversity of resistance factors in modern breeding germplasm. This study explored 300 genetically diverse wheat accessions, originally sourced from the N. I. Vavilov Institute of Plant Genetic Resources (VIR), St Petersburg, Russia. The collection was screened for resistance to tan spot at seedling and adult stage under controlled conditions, and in the field across 2 years. The phenotypic datasets, coupled with ToxA bioassay screening, identified a number of accessions with useful sources of resistance. Seedling disease response corresponded well with ToxA sensitivity (= 0.49, < 0.000), but not adult responses (= ?0.02 to ?0.19, < 0.002), and overall reactions to ToxA appeared to show poor correspondence with disease response at the adult stage. ToxA‐insensitive accessions were generally found resistant across different growth stages (all‐stage resistance, ASR) in all experiments (seedling and adult stage under controlled conditions and field). ToxA‐sensitive accessions that were susceptible at seedling stage, but resistant at both adult‐plant stages, were deemed to carry adult‐plant resistance (APR). This study provides detailed information on the degree of tan spot resistance in the Vavilov wheat collection and discusses strategies to harness these sources to boost the diversity of resistance factors in modern wheat breeding germplasm.  相似文献   

16.
ABSTRACT The fungus Pyrenophora tritici-repentis produces a toxin (Ptr ToxA) that causes rapid cell necrosis in sensitive wheat genotypes. A single recessive gene (tsn1) on chromosome 5BL in common wheat confers insensitivity to this toxin. Our objectives were to analyze the allelic relationships of genotypes that have shown insensitivity to a P. tritici-repentis necrosis-inducing toxin, map the gene for insensitivity to the necrosis-inducing factor produced by P. tritici-repentis in a durum wheat population, and determine the reaction to P. tritici-repentis of aneuploid genotypes that do not contain the gene. Greenhouse-grown plants of seven populations from crosses of insensitive genotypes; an F(2) population of durum wheat; and 'Chinese Spring' aneuploid, substitution, and deletion lines were infiltrated with Ptr ToxA. All crosses involving insensitive genotypes failed to produce sensitive progeny, indicating that the same gene is present in these genotypes. The gene for insensitivity in the durum population was mapped to the same region on 5BL as in common wheat using restriction fragment length polymorphism markers. 'Chinese Spring', its homoeologous group 5 nullisomic-tetrasomic stocks, and 5BL deletion lines were insensitive to the toxin. Substitution of a 5B chromosome from sensitive genotypes into 'Chinese Spring' resulted in sensitivity. Therefore, insensitivity is not conferred by a gene product per se, but rather conferred by absence of a gene for sensitivity.  相似文献   

17.
Fungal leaf spot diseases of wheat (Triticum aestivum L.) in Nepal cause significant yield reduction. Although field testing has identified a few partially resistant cultivars, most wheat grown in Nepal lacks adequate resistance to leaf spot diseases. During 2009–2010, 116 local and commercial spring wheat cultivars and advanced breeding lines were selected from multi-year field experiments in Nepal and evaluated for seedling resistance to three leaf spot diseases: spot blotch, Stagonospora nodorum blotch (SNB) and tan spot races 1 and 5 (two of the most prevalent races) in the growth chambers at North Dakota State University, Fargo, ND, USA. The wheat cultivars and lines were artificially inoculated with individual pathogens or races at the two-leaf stage and disease reactions were evaluated 6 to 10 days after inoculation (DAI). Results indicated that 30%, 31%, 19% and 10% of the tested wheat cultivars and lines were resistant to spot blotch, SNB, tan spot races 1 and 5, respectively. Six advanced breeding lines (SW89-5422, BL 2127 = DANIAL88/HLB30//NL297, BL 3033, FILIN/IRENA/5/CNDO/R143//ENTE/MEXI-2/3/AE. SQUA (TAUS)/4WEAVER, GAN/AE.SQUARROSA (236)//DOY1/AE.SQUARROSA(447)/3/MAIZ/4/INQALAB91, Mayoor//TK SN1081/Ae. Squarrosa (222)/3/FCT, were resistant to spot blotch, SNB and tan spot race 1. Similarly, two wheat cultivars Chirya 3 and Chirya 7 were resistant to spot blotch, and tan spot races 1 and 5. The resistant wheat lines identified in this study represent potentially useful and untapped sources of resistance to multiple leaf spot diseases and should be utilized in wheat breeding programs in Nepal in order to develop wheat cultivars with broad-spectrum resistance.  相似文献   

18.
ABSTRACT Resistance to the chlorosis factor of tan spot of wheat, caused by the ascomycete Pyrenophora tritici-repentis, has been reported to be quantitative and a single quantitative trait loci (QTL), QTsc.ndsu-1A, explained 35% of the variation for resistance to a single isolate in seedlings of recombinant inbred (RI) lines derived from the cross W-7984/Opata 85. The objectives of this study were to determine the number and locations of genes conditioning resistance to the same isolate in adult plants of this population and three isolates in seedlings of wheat RI lines derived from the cross W-7976/Trenton. An extensive restriction fragment length polymorphism map exists for the W-7984/Opata 85 population, and markers significantly associated (P < 0.01) with resistance to tan spot were selected to analyze the W-7976/Trenton population. A multiple regression model accounted for 49% of the variation for resistance in adult plants with QTsc.ndsu-1A, explaining 26% of the variation. QTsc.ndsu-1A explained 47, 58, and 64% of the variation for resistance in seedlings to isolates Pti2, 78-62, and D308, respectively. These results showed that the QTL for tan spot resistance on chromosome 1AS was effective in both seedlings and adult plants and against isolates from different races of P. tritici-repentis.  相似文献   

19.
Tan spot, caused by the fungus Pyrenophora tritici-repentis (Ptr), is a disease that has become more prevalent and intense in wheat crops in Argentina in recent years. Failure to control the disease with strobilurin fungicides, which were once effective, has been observed in different zones where wheat is grown. However, whether or not true resistance is present in the pathogen population in the region is not scientifically confirmed. This study evaluated the sensitivity of numerous Ptr isolates to representative QoI fungicides used in Argentina through in vitro and in planta assays, as well as through molecular analysis. Eighty-two monosporic isolates obtained in different locations in the north and south of Buenos Aires province in 2014, 2016, and 2018 were tested to determine sensitivity to selected QoI fungicides in conidial germination and mycelial inhibition assays, as well as in molecular analysis. Conidial germination was not inhibited at 1 µg/ml of azoxystrobin, trifloxystrobin, and pyraclostrobin. On the other hand, mycelial growth was inhibited by 59%, 56%, and 86% at 100 µg/ml of azoxystrobin, trifloxystrobin, and pyraclostrobin, respectively. The molecular analysis detected the G143A mutation in the cytb gene of all the 82 Ptr isolates, but the F129L and G137R substitutions were not present. This study documents the G143A mutation conferring QoI resistance in Ptr in South America. The findings of this study are key for future decisions regarding use of fungicide and rotation in the region.  相似文献   

20.
ABSTRACT Cultivar-specific toxic metabolites of Pyrenophora tritici-repentis are involved in the appearance of necrotic and chlorotic foliar lesions characteristic of tan spot. A P. tritici-repentis necrosis-inducing toxin, Ptr necrosis toxin, was purified from isolate 86-124, sequenced by gas-phase amino acid microsequencing, and characterized by circular dichroism (CD) spectroscopy and isoelectric focusing. The purified protein had a similar amino acid composition and molecular weight as previously reported. Analysis of the CD spectrum from 178 to 250 nm indicated a protein consisting of 13% alpha-helix, 36% antiparallel beta-sheet, 25% turns, and 25% other structures. The Ptr necrosis toxin from isolate 86-124 has an isoelectric point near pH 10. Using overlapping proteolytic fragments obtained from the toxin, a sequence of 101 continuous amino acids was obtained, but the amino terminus was blocked and 9 to 16 amino acids could not be sequenced. Secondary structure prediction based on the amino acid sequence indicated a beta-sheet protein with little alpha-helix, which is in agreement with the structure determined by CD spectroscopy. Sequence analysis indicated the presence of a possible membrane adhesion site and several possible phosphorylation sites that may be involved in phytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号