首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
Tan spot of wheat, caused by the fungus Pyrenophora tritici-repentis, is a destructive disease worldwide that can lead to serious losses in quality and quantity of wheat grain production. Resistance to multiple races of P. tritici-repentis was identified in a wide range of genetically diverse genotypes, including three different species Triticum aestivum (AABBDD), T. spelta (AABBDD), and T. turgidum (AABB). The major objectives of this study were to determine the genetic control of resistance to P. tritici-repentis races 1 and 5 in 12 newly identified sources of resistance. The parents, F(1), F(2), and F(2:3) or F(2:5) families of each cross were analyzed for the allelism tests and/or inheritance studies. Plants were inoculated at the two-leaf stage under controlled environmental conditions and disease reaction was assessed based on lesion-type rating scale. A single recessive gene controlled resistance to necrosis caused by P. tritici-repentis race 1 in both tetraploid and hexaploid resistant genotypes. The lack of segregation in the inter- and intra-specific crosses between the resistant tetraploid and hexaploid genotypes indicated that they possess the same genes for resistance to tan necrosis and chlorosis induced by P. tritici-repentis race 1. A single dominant gene for chlorosis in hexaploid wheat and a single recessive gene for necrosis in tetraploid wheat, controlled resistance to P. tritici-repentis race 5.  相似文献   

2.
Fungal leaf spot diseases of wheat (Triticum aestivum L.) in Nepal cause significant yield reduction. Although field testing has identified a few partially resistant cultivars, most wheat grown in Nepal lacks adequate resistance to leaf spot diseases. During 2009–2010, 116 local and commercial spring wheat cultivars and advanced breeding lines were selected from multi-year field experiments in Nepal and evaluated for seedling resistance to three leaf spot diseases: spot blotch, Stagonospora nodorum blotch (SNB) and tan spot races 1 and 5 (two of the most prevalent races) in the growth chambers at North Dakota State University, Fargo, ND, USA. The wheat cultivars and lines were artificially inoculated with individual pathogens or races at the two-leaf stage and disease reactions were evaluated 6 to 10 days after inoculation (DAI). Results indicated that 30%, 31%, 19% and 10% of the tested wheat cultivars and lines were resistant to spot blotch, SNB, tan spot races 1 and 5, respectively. Six advanced breeding lines (SW89-5422, BL 2127 = DANIAL88/HLB30//NL297, BL 3033, FILIN/IRENA/5/CNDO/R143//ENTE/MEXI-2/3/AE. SQUA (TAUS)/4WEAVER, GAN/AE.SQUARROSA (236)//DOY1/AE.SQUARROSA(447)/3/MAIZ/4/INQALAB91, Mayoor//TK SN1081/Ae. Squarrosa (222)/3/FCT, were resistant to spot blotch, SNB and tan spot race 1. Similarly, two wheat cultivars Chirya 3 and Chirya 7 were resistant to spot blotch, and tan spot races 1 and 5. The resistant wheat lines identified in this study represent potentially useful and untapped sources of resistance to multiple leaf spot diseases and should be utilized in wheat breeding programs in Nepal in order to develop wheat cultivars with broad-spectrum resistance.  相似文献   

3.
ABSTRACT Race 3 of the fungus Pyrenophora tritici-repentis, causal agent of tan spot, induces differential symptoms in tetraploid and hexaploid wheat, causing necrosis and chlorosis, respectively. This study was conducted to examine the genetic control of resistance to necrosis induced by P. tritici-repentis race 3 and to map resistance genes identified in tetraploid wheat (Triticum turgidum). A mapping population of recombinant inbred lines (RILs) was developed from a cross between the resistant genotype T. tur-gidum no. 283 (PI 352519) and the susceptible durum cv. Coulter. Based on the reactions of the Langdon-T. dicoccoides (LDN[DIC]) disomic substitution lines, chromosomal location of the resistance genes was determined and further molecular mapping of the resistance genes for race 3 was conducted in 80 RILs of the cross T. turgidum no. 283/Coulter. Plants were inoculated at the two-leaf stage and disease reaction was assessed 8 days after inoculation based on lesion type. Disease reaction of the LDN(DIC) lines and molecular mapping on the T. turgidum no. 283/Coulter population indicated that the gene, designated tsn2, conditioning resistance to race 3 is located on the long arm of chromosome 3B. Genetic analysis of the F(2) generation and of the F(4:5) and F(6:7) families indicated that a single recessive gene controlled resistance to necrosis induced by race 3 in the cross studied.  相似文献   

4.
ABSTRACT The host-selective toxin Ptr ToxA is produced by races 1 and 2 of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Ptr ToxA has been causally associated with pathogenicity by the race 2 phenotype in this system. However, the role of toxin in disease caused by race 1, the most prevalent form of the fungus in the central and northern Great Plains of North America, has not been rigorously investigated. Three independent wheat lines harboring mutations for insensitivity to Ptr ToxA were derived from ethylmethane sulfonate treatment of the hard red spring wheat cv. Kulm, possessing the single dominant gene for toxin sensitivity. Each of the three mutants was insensitive to Ptr ToxA in bioassays based on necrosis development and electrolyte leakage. Each mutant was crossed to each of the other mutants and to the wild-type Kulm. Segregation data indicate that each mutant line harbors a single recessive mutation for toxin insensitivity that maps to or near the same locus, possibly the toxin-sensitivity gene. Each toxin-insensitive mutant line was susceptible to two isolates of race 1 of P. tritici-repentis. F(2) and F(3) generations derived from crosses between Kulm and each mutant segregated for toxin reaction. However, segregation for fungal reaction was not evident, and all F(3) families were tan spot susceptible regardless of toxin reaction. Host insensitivity to Ptr ToxA is not necessarily equivalent to resistance to race 1. Ptr ToxA should not be used alone as a proxy for fungal inoculations by breeding programs aimed at developing tan spot-resistant wheat.  相似文献   

5.
The relative resistance of 15 winter barley, three winter wheat and three winter oat cultivars on the UK recommended list 2003 and two spring wheat cultivars on the Irish 2003 recommended list were evaluated using Microdochium nivale in detached leaf assays to further understand components of partial disease resistance (PDR) and Fusarium head blight (FHB) resistance across cereal species. Barley cultivars showed incubation periods comparable to, and latent periods longer than the most FHB resistant Irish and UK wheat cultivars evaluated. In addition, lesions on barley differed from those on wheat as they were not visibly chlorotic when placed over a light box until sporulation occurred, in contrast to wheat cultivars where chlorosis of the infected area occurred when lesions first developed. The pattern of delayed chlorosis of the infected leaf tissue and longer latent periods indicate that resistances are expressed in barley after the incubation period is observed, and that these temporarily arrest the development of mycelium and sporulation. Incubation periods were longer for oats compared to barley or wheat cultivars. However, oat cultivars differed from both wheat and barley in that mycelial growth was observed before obvious tissue damage was detected under macroscopic examination, indicating tolerance of infection rather than inhibition of pathogen development, and morphology of sporodochia differed, appearing less well developed and being much less abundant. Longer latent periods have previously been related to greater FHB resistance in wheat. The present results suggest the longer latent periods of barley and oat cultivars, than wheat, are likely to play a role in overall FHB resistance if under the same genetic control as PDR components expressed in the head. However the limited range of incubation and latent periods observed within barley and oat cultivars evaluated was in contrast with wheat where incubation and latent periods were shorter and more variable among genotypes. The significance of the various combinations of PDR components detected in the detached leaf assay as components of FHB resistance in each crop requires further investigation, particularly with regard to the apparent tolerance of infection in oats and necrosis in barley, after the incubation period is observed, associated with retardation of mycelial growth and sporulation.  相似文献   

6.
ABSTRACT Pyrenophora tritici-repentis causes necrosis and chlorosis in its wheat host. Susceptibility to races 2 (necrosis) and 5 (chlorosis) of the pathogen is known to be mediated by Ptr ToxA and Ptr ToxB, respectively. Sensitivity to each toxin is controlled by a single dominant and independently inherited gene. We used sensitivity to Ptr ToxA and Ptr ToxB as two genetic markers to investigate the origin and the state of tan spot susceptibility in Canadian Western Red Spring (CWRS) wheat over a period of more than a century. Sensitivity to Ptr ToxA, the toxin produced by nearly all isolates of the pathogen collected in the past 20 years in western Canada, appears to have been present in the first major cultivar, Red Fife, grown massively in the late 1800s. Sensitivity then was transmitted unknowingly into Canadian wheat lines through extensive use of backcrossing to maintain the Marquis-Thatcher breadmaking quality. Sensitivity to Ptr ToxA, which nearly disappeared from cultivars grown in western Canada in the 1950s, was reintroduced in the 1960s and unintentionally bred into many of the present-day cultivars. Sensitivity to Ptr ToxB, a toxin rarely found in isolates from western Canada, appeared with the release of Thatcher in 1934 and was transferred to many cultivars through backcross programs. In spite of large areas planted to Ptr ToxAand Ptr ToxB-sensitive cultivars over decades, tan spot epidemics remained sporadic until the 1970s. The results of this study raise the problem of the narrowing genetic base of CWRS wheat lines and the potential for unanticipated threats from plant pathogens. The intercrossing of genetically diverse material in one Canadian wheat breeding program resulted in the release of several modern cultivars with resistance to tan spot. The absence of wild-type Ptr ToxB-producing isolates in western Canada remains unexplained, given that sensitivity to Ptr ToxB was present continuously in western Canadian cultivars grown on vast areas for more than 70 years.  相似文献   

7.
ABSTRACT Pyrenophora tritici-repentis race 2 produces Ptr ToxA, a host-selective toxin previously described as a pathogenicity factor for tan spot on wheat. The objective of this research was to evaluate the role of host sensitivity to toxin, conditioned by a single dominant gene on chromosome 5BL, in the disease development by race 2. An F(2)-derived F(6) recombinant inbred population of 108 wheat lines, produced from crosses of toxin-sensitive, disease-susceptible cv. Kulm with the toxin-insensitive, disease-resistant cv. Erik segregated 1:1 for toxin reaction. However, the population was skewed toward resistance to race 2 of the fungus. Toxin reaction accounted for 24.4% of the genetic variance for disease. Heritability estimates suggested the presence of four to five genes that influence disease reaction in the population. Toxin-insensitive mutants, previously derived Kulm, were susceptible to race 2, although disease developed more slowly on the mutants than it did on the wild-type Kulm. The data indicate that sensitivity to Ptr ToxA influences disease severity in some host genotypes without defining susceptibility.  相似文献   

8.
ABSTRACT Stripe rust is one of the most important diseases of wheat and barley worldwide. On wheat it is caused by Puccinia striiformis f. sp. tritici and on barley by P. striiformis f. sp. hordei Most wheat genotypes are resistant to P. striiformis f. sp. hordei and most barley genotypes are resistant to P. striiformis f. sp. tritici. To determine the genetics of resistance in wheat to P. striiformis f. sp. hordei, crosses were made between wheat genotypes Lemhi (resistant to P. striiformis f. sp. hordei) and PI 478214 (susceptible to P. striiformis f. sp. hordei). The greenhouse seedling test of 150 F(2) progeny from the Lemhi x PI 478214 cross, inoculated with race PSH-14 of P. striiformis f. sp. hordei, indicated that Lemhi has a dominant resistance gene. The single dominant gene was confirmed by testing seedlings of the F(1), BC(1) to the two parents, and 150 F(3) lines from the F(2) plants with the same race. The tests of the F(1), BC(1), and F(3) progeny with race PSH-48 of P. striiformis f. sp. hordei and PST-21 of P. striiformis f. sp. tritici also showed a dominant gene for resistance to these races. Cosegregation analyses of the F(3) data from the tests with the two races of P. striiformis f. sp. hordei and one race of P. striiformis f. sp. tritici suggested that the same gene conferred the resistance to both races of P. striiformis f. sp. hordei, and this gene was different but closely linked to Yr21, a previously reported gene in Lemhi conferring resistance to race PST-21 of P. striiformis f. sp. tritici. A linkage group consisting of 11 resistance gene analog polymorphism (RGAP) markers was established for the genes. The gene was confirmed to be on chromosome 1B by amplification of a set of nullitetrasomic Chinese Spring lines with an RGAP marker linked in repulsion with the resistance allele. The genetic information obtained from this study is useful in understanding interactions between inappropriate hosts and pathogens. The gene identified in Lemhi for resistance to P. striiformis f. sp. hordei should provide resistance to barley stripe rust when introgressed into barley cultivars.  相似文献   

9.
Host genetic resistance is the most effective and sustainable means of managing tan spot or yellow spot of wheat. The disease is becoming increasingly problematic due to the adoption of minimum tillage practices, evolution of effector‐mediated pathogenicity, and widespread cultivation of susceptible cultivars from a narrow genetic base. This highlights the importance of broadening the diversity of resistance factors in modern breeding germplasm. This study explored 300 genetically diverse wheat accessions, originally sourced from the N. I. Vavilov Institute of Plant Genetic Resources (VIR), St Petersburg, Russia. The collection was screened for resistance to tan spot at seedling and adult stage under controlled conditions, and in the field across 2 years. The phenotypic datasets, coupled with ToxA bioassay screening, identified a number of accessions with useful sources of resistance. Seedling disease response corresponded well with ToxA sensitivity (= 0.49, < 0.000), but not adult responses (= ?0.02 to ?0.19, < 0.002), and overall reactions to ToxA appeared to show poor correspondence with disease response at the adult stage. ToxA‐insensitive accessions were generally found resistant across different growth stages (all‐stage resistance, ASR) in all experiments (seedling and adult stage under controlled conditions and field). ToxA‐sensitive accessions that were susceptible at seedling stage, but resistant at both adult‐plant stages, were deemed to carry adult‐plant resistance (APR). This study provides detailed information on the degree of tan spot resistance in the Vavilov wheat collection and discusses strategies to harness these sources to boost the diversity of resistance factors in modern wheat breeding germplasm.  相似文献   

10.
为寻找优质抗源,应对小麦条锈菌新小种CYR34对我国小麦生产带来的威胁。利用小麦条锈菌生理小种CYR34对我国197份重要小麦核心种质材料进行抗病性鉴定。结果表明,共有81份材料对CYR34具有抗性(0~6),占参试材料总数的41.1%。109份农家品种中有52份具有抗性,占农家品种的47.7%,占总数的26.4%;76份育成品种有25份具有抗性,占育成品种的32.9%,占总数的12.7%;12份引进品种有4份具有抗性。我国部分小麦核心种质对小麦条锈菌生理小种CYR34有抗性,其中农家品种的抗性水平高于育成品种和引进品种,蕴含丰富的抗源,在今后的抗病育种中应重视农家品种的使用,加大基因累积,避免对单个基因的过度依赖,育成多基因聚合的长效持久抗病品种。  相似文献   

11.
The wheat disease tan (or yellow leaf) spot, caused by Pyrenophora tritici-repentis, was first described in the period 1934 to 1941 in Canada, India, and the United States. It was first noted in Australia in 1953 and only became a serious disease in the 1970s. The emergence of this disease has recently been linked to the acquisition by P. tritici-repentis of the ToxA gene from the wheat leaf and glume blotch pathogen, Stagonospora nodorum. ToxA encodes a host-specific toxin that interacts with the product of the wheat gene Tsn1. Interaction of ToxA with the dominant allele of Tsn1 causes host necrosis. P. tritici-repentis races lacking ToxA give minor indistinct lesions on wheat lines, whereas wheat lines expressing the recessive tsn1 are significantly less susceptible to the disease. Although the emergence and spread of tan spot had been attributed to the adoption of minimum tillage practices, we wished to test the alternative idea that the planting of Tsn1 wheat lines may have contributed to the establishment of the pathogen in Australia. To do this, wheat cultivars released in Australia from 1911 to 1986 were tested for their sensitivity to ToxA. Prior to 1941, 16% of wheat cultivars were ToxA-insensitive and hence, all other factors being equal, would be more resistant to the disease. Surprisingly, only one of the cultivars released since 1940 was ToxA insensitive, and the area planted to ToxA-insensitive cultivars varied from 0 to a maximum of only 14% in New South Wales. Thus, the majority of the cultivars were ToxA-sensitive both before and during the period of emergence and spread of the disease. We therefore conclude that the spread of P. tritici-repentis in Australia cannot be causally linked to the deployment of ToxA-sensitive cultivars.  相似文献   

12.
13.
Different races of the parasitic Orobanche cumana (sunflower broomrape) have been reported in Spain, race F being the most virulent. Full resistance in sunflower to races A–E is achieved with each of the single major genes Or1 to Or5 respectively. However, parasitised hybrids allegedly resistant to race F were observed in early 2002. The purpose of this study was to verify broomrape incidences (BI) on resistant sunflower genotypes, to assess the mixture of races within field populations and to test for partial resistance to race F in the sunflower hybrids showing a low degree of attack (DA) by the weed. Tests were conducted under field conditions in two locations of southern Spain. While no significant differences were found for yield and BI between locations, the DA on the cultivars depended on the location. With high infection levels and significantly lower yield in susceptible controls, marked differences in BI and DA were found within resistant cultivars, but all of them showed similar crop yield. When artificially inoculated with several populations of race F, line P96 and mainly line L86, were consistently slightly infected, suggesting they were inbred lines responsible for horizontal resistance in infested fields. L86 was extremely susceptible to race E populations, which is unusual as sunflower resistance to one race provided resistance to all the previously described races of O. cumana. No different virulences were detected within two groups of subpopulations (races E and F) inoculated onto resistant sunflower genotypes. However, race F subpopulations showed significant differences in aggressiveness, which seems to be related to horizontal (multigenic) resistance of the crop to the parasitic weed.  相似文献   

14.
Rouse MN  Jin Y 《Phytopathology》2011,101(12):1418-1423
Race TTKSK (or Ug99) of Puccinia graminis f. sp. tritici possesses virulence to several stem rust resistance genes commonly present in wheat cultivars grown worldwide. New variants detected in the race TTKSK lineage further broadened the virulence spectrum. The identification of sources of genetic resistance to race TTKSK and its relatives is necessary to enable the development and deployment of resistant varieties. Accessions of Triticum monococcum, an A-genome diploid wild and cultivated wheat, have previously been characterized as resistant to stem rust. Three resistance genes were identified and introgressed into hexaploid wheat: Sr21, Sr22, and Sr35. The objective of this study was to determine the genetic control and allelic relationships of resistance to race TTKSK in T. monococcum accessions identified through evaluations at the seedling stage. Generation F(2) progeny of 8 crosses between resistant and susceptible accessions and 13 crosses between resistant accessions of T. monococcum were evaluated with race TTKSK and often with North American races, including races QFCSC, TTTTF, and MCCFC. For a selected population segregating for three genes conferring resistance to race TTKSK, F(2:3) progeny were evaluated with races TTKSK, QFCSC, and TTTTF. In that population, we detected two genes conferring resistance to race TTKSK that are different from Sr21, Sr22, and Sr35. One of the new genes was effective to all races tested. The identification of these genes will facilitate the development of varieties with new resistance to race TTKSK.  相似文献   

15.
ABSTRACT Pyrenophora tritici-repentis, causal agent of tan spot, induces necrosis and chlorosis in its wheat host. The tan spot system conforms to the toxin model and three host-specific toxins have been identified (Ptr ToxA, Ptr ToxB, and putative Ptr ToxC). Processing of a collection of isolates, obtained in the Fertile Crescent and Caucasus regions, yielded two new virulence patterns. Isolate Az35-5 combined the virulences of races 2 and 5 and was classified in the new race 7. Isolates TS93-71B and TS93-71F had a virulence pattern that combined those of races 2, 3, and 5 and were grouped in the new race 8. Southern analysis revealed that all three isolates possessed copies of the ToxA and ToxB genes, the first time the genes were found in a common background. The production of Ptr ToxA and Ptr ToxB by the isolates was confirmed by western blotting. Virulence patterns suggested that TS93-71B and TS93-71F may also produce Ptr ToxC, even though it was not present at detectable levels in culture filtrates. The identification of races 7 and 8 complete the theoretical maximum number of races that can be differentiated by three loci in the host (2(3) = 8), assuming a one-to-one relationship. It appears that the wheat/P. tritici-repentis system is a mirror image of the classical gene-for-gene relationship.  相似文献   

16.
Downy mildew is a destructive disease of spinach worldwide. There have been 10 races described since 1824, six of which have been identified in the past 10 years. Race identification is based on qualitative disease reactions on a set of diverse host differentials which include open-pollinated cultivars, contemporary hybrid cultivars, and older hybrid cultivars that are no longer produced. The development of a set of near-isogenic open-pollinated spinach lines (NILs), having different resistance loci in a susceptible and otherwise common genetic background, would facilitate identification of races of the downy mildew pathogen, provide a tool to better understand the genetics of resistance, and expedite the development of molecular markers linked to these disease resistance loci. To achieve this objective, the spinach cv. Viroflay, susceptible to race 6 of Peronospora farinosa f. sp. spinaciae, was used as the recurrent susceptible parent in crosses with the hybrid spinach cv. Lion, resistant to race 6. Resistant F(1) progeny were subsequently backcrossed to Viroflay four times with selection for race 6 resistance each time. Analysis of the segregation data showed that resistance was controlled by a single dominant gene, and the resistance locus was designated Pfs-1. By bulk segregant analysis, an amplified fragment length polymorphism (AFLP) marker (E-ACT/M-CTG) linked to Pfs-1 was identified and used to develop a co-dominant Sequence characterized amplified region (SCAR) marker. This SCAR marker, designated Dm-1, was closely linked ( approximately 1.7 cM) to the Pfs-1 locus and could discriminate among spinach genotypes that were homozygous resistant (Pfs-1Pfs-1), heterozygous resistant (Pfs-1pfs-1), or homozygous susceptible (pfs-1pfs-1) to race 6 within the original mapping population. Evaluation of a wide range of commercial spinach lines outside of the mapping population indicated that Dm-1 could effectively identify Pfs-1 resistant genotypes; the Dm-1 marker correctly predicted the disease resistance phenotype in 120 out of 123 lines tested. In addition, the NIL containing the Pfs-1 locus (Pfs-1Pfs-1) was resistant to multiple races of the downy mildew pathogen indicating Pfs-1 locus may contain a cluster of resistance genes.  相似文献   

17.
Inheritance of resistance to bacterial blight in 21 cultivars of rice   总被引:1,自引:0,他引:1  
ABSTRACT Genetic analysis for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) of 21 rice (Oryza sativa L.) cultivars was carried out. These cultivars were divided into two groups based on their reactions to Philippine races of bacterial blight. Cultivars of group 1 were resistant to race 1 and those of group 2 were susceptible to race 1 but resistant to race 2. All the cultivars were crossed with TN1, which is susceptible to all the Philippine races of X. oryzae pv. oryzae. F(1) and F(2) populations of hybrids of group 1 cultivars were evaluated using race 1 and F(1) and F(2) populations of hybrids of group 2 cultivars were evaluated using race 2. All the cultivars showed monogenic inheritance of resistance. Allelic relationships of the genes were investigated by crossing these cultivars with different testers having single genes for resistance. Three cultivars have Xa4, another three have xa5, one has xa8, two have Xa3, eight have Xa10, and one has Xa4 as well as Xa10. Three cultivars have new, as yet undescribed, genes. Nep Bha Bong To has a new recessive gene for moderate resistance to races 1, 2, and 3 and resistance to race 5. This gene is designated xa26(t). Arai Raj has a dominant gene for resistance to race 2 which segregates independently of Xa10. This gene is designated as Xa27(t). Lota Sail has a recessive gene for resistance to race 2 which segregates independently of Xa10. This gene is designated as xa28(t).  相似文献   

18.
Soilborne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter wheat breeding programs. Virus symptoms were evaluated twice in virus-infected fields for the panel at Manhattan, KS in spring 2010 and 2011 and for a subpanel of 137 hard winter wheat accessions at Stillwater, OK in spring 2008. At the two locations, 69.8 and 79.5% of cultivars were resistant or moderately resistant to the disease, respectively. After 282 simple-sequence repeat markers covering all wheat chromosome arms were scanned for association in the panel, marker Xgwm469 on the long arm of chromosome 5D (5DL) showed a significant association with the disease rating. Three alleles (Xgwm469-165bp, -167bp, and -169bp) were associated with resistance and the null allele was associated with susceptibility. Correlations between the marker and the disease rating were highly significant (0.80 in Manhattan at P < 0.0001 and 0.63 in Stillwater at P < 0.0001). The alleles Xgwm469-165bp and Xgwm469-169bp were present mainly in the hard winter wheat group, whereas allele Xgwm469-167bp was predominant in the soft winter wheat. The 169 bp allele can be traced back to 'Newton', and the 165 bp allele to Aegilops tauschii. In addition, a novel locus on the short arm of chromosome 4D (4DS) was also identified to associate with the disease rating. Marker Xgwm469-5DL is closely linked to SBWMV resistance and highly polymorphic across the winter wheat accessions sampled in the study and, thus, should be useful in marker-assisted selection in U.S. winter wheat.  相似文献   

19.
Genetic variability of partial resistance to bacterial leaf streak was investigated in hexaploid winter wheat ( Triticum aestivum. ), using 16 parental genotypes and 48 pure lines (F10) derived from a composite cross programme. Two experiments were undertaken in a controlled growth chamber. Seeds of all genotypes were grown under controlled conditions using a randomized block design with three replications. Each replication consisted of a row of 20 seedlings of each parent and pure line. An Iranian strain of bacterial leaf streak was used for the inoculation of 12-day-old seedlings. In a third experiment, eight genotypes from parents and F10 pure lines representing a large variability for partial resistance were inoculated with four other Iranian strains of bacterial leaf streak. A large genetic variability was observed amongst the 64 genotypes for partial resistance to the disease. Partial resistance heritability estimates were rather high (70%), indicating that the resistance factors may be transmitted by crossing. Amongst all genotypes investigated, 'DC2-30-N2' and 'IBPT-66' displayed the highest partial resistance to the disease. Significant correlations between strains in the third experiment show that a genotype resistant or susceptible to one strain will have similar reactions with other strains. No significant genetic gain was observed for partial resistance in the best pure line of the 48 lines studied, when compared with the best parental line. Increasing the number of pure lines is likely to result in the identification of genotypes that might prove to be more resistant.  相似文献   

20.
Representative European wheat cultivars were tested under quarantine containment for their susceptibility to Tilletia indica, the cause of Karnal bunt of wheat. Fifteen winter and 15 spring wheat ( Triticum aestivum ) and 11 durum wheat ( Triticum durum ) cultivars were inoculated by boot injection just prior to ear emergence to test their physiological susceptibility. Selected cultivars were then re-tested by spray inoculation after ear emergence to determine their morphological susceptibility, which is a better predictor of field susceptibility. At maturity, the ears and seeds were assessed for incidence and severity of disease. For the physiological susceptibility tests, 13/15 winter wheat cultivars were infected and the percentage of infected seeds ranged from 1 to 32%. For spring cultivars, 13/15 cultivars were infected and the percentage of infected seeds ranged from 1 to 48%. For the durum cultivars, 9/11 were infected and the percentage of infected seeds ranged from 2 to 95%. Across all cultivars, 35/41 were infected. Based on historical Karnal bunt susceptibility categories using coefficients of infection, one cultivar was classed as highly susceptible, three as susceptible, 11 as moderately susceptible, 20 as resistant and only six as highly resistant. The spray-inoculation morphological susceptibility tests broadly confirmed the physiological susceptibility results, although lower levels of infection were observed. Overall, the range of susceptibility was similar to that found in cultivars grown in Karnal bunt affected countries. The results demonstrate that European wheat cultivars are susceptible to T. indica and thus could potentially support the establishment of T. indica if introduced into Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号