首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探讨以病小穗率与病穗率作为抗性评价指标的精确度,利用单花滴注、孢子液喷雾分别结合土表病麦粒接种的方法,评价了2个大麦重组自交系群体131个株系对赤霉病的抗侵染与抗扩展性。单花滴注接种后调查了第7、14和21天的病情性状,接种后第7天所有株系均感病,病小穗率最低的为1.59%,第21天最高病小穗率为58.91%;孢子液喷雾接种后第21天材料全部感病,其中6棱株系的感病程度高于2棱株系。以病小穗率和病穗率划分赤霉病抗性的分布情况,发现病小穗率更能有效区分株系的赤霉病抗性。相关分析显示,病小穗率、病穗率、禾谷镰刀菌烯醇含量与粒色和穗密度呈显著负相关,而与株高、抽穗期无显著相关。  相似文献   

2.
A series of experiments was conducted to determine whether type I resistance (resistance to initial infection) to fusarium head blight (FHB) in wheat could be assessed using fungal species/isolates that do not produce deoxynivalenol (DON), a mycotoxin critical to the spread of Fusarium graminearum in the wheat spike. It was shown that, while the non-toxin-producing species Microdochium nivale and M. majus could infect following spray inoculation of wheat spikes, they were unable to spread within the spike following point inoculation. However, although these species might reveal type I resistance, they are not highly pathogenic towards wheat. A nivalenol (NIV)-producing isolate of F. graminearum caused high levels of disease following spray inoculation, but spread only very slowly within the spike and rarely induced bleaching above the point of inoculation. It is proposed that spray inoculation with an appropriate, aggressive, non-DON-producing FHB pathogen may be used to characterize type I resistance to complement point inoculation with a DON-producing isolate to assess type II resistance (resistance to spread within the spike).  相似文献   

3.
The effect of the primary infection site by Fusarium graminearum and F. culmorum within wheat ears on Fusarium head blight (FHB) was investigated under controlled conditions. FHB development was assessed visually and thermographically following inoculation by: (i) spraying ears, or injecting inoculum into spikelets on (ii) tip, (iii) centre and (iv) base of the ears, separately. Fusarium infection significantly increased the temperature span within ears 6 days post inoculation (dpi), especially infections starting at the ear tip. The temperature difference between air and ear was negatively correlated to FHB severity and enabled disease detection even 29 dpi. F. culmorum caused significant higher disease severity neither reflected in the frequency of infected kernels nor in thousand kernel weight (TKW). Spray inoculations had the strongest effect on TKW, whereas tip inoculations had no effect. Centre and base inoculations had intermediate effects on TKW, although FHB levels did not differ with the same trend among inoculation scenarios. The overall low correlations among FHB severity, infected kernels and TKW are explained by the pathogen spread within ears – downwards more than upwards – and the effect on yield formation which is lower for infections of the upper parts of ears. An exponential model showed high goodness of fit for gradients of infected kernels within ears (R 2  ≥ 70) except tip infection with F. culmorum. This study confirmed that FHB is a function of the primary infection site within ears. Thermography was useful to differentiate among infection scenarios and may be applied in breeding for FHB resistance.  相似文献   

4.
Yu JB  Bai GH  Zhou WC  Dong YH  Kolb FL 《Phytopathology》2008,98(1):87-94
Use of diverse sources of Fusarium head blight (FHB)-resistant germplasm in breeding may significantly improve wheat resistance to FHB. Wangshuibai is an FHB-resistant Chinese landrace unrelated to cv. Sumai 3, the most commonly used FHB-resistant source. In all, 139 F(6) recombinant inbred lines were developed from a cross between Wangshuibai and an FHB-susceptible cultivar, Wheaton, to map quantitative trait loci (QTL) for wheat resistance to initial infection (type I resistance), spread of FHB symptoms within a spike (type II resistance), and deoxynivalenol (DON) accumulation (type III resistance) in infected grain. The experiments were conducted in a greenhouse at Manhattan, KS from 2003 to 2005. More than 1,300 simple-sequence repeat and amplified fragment length polymorphism markers were analyzed in this population. Five QTL for type I resistance were detected on chromosomes 3AS, 3BS, 4B, 5AS, and 5DL after spray inoculation; seven QTL for type II resistance were identified on chromosomes 1A, 3BS, 3DL, 5AS, 5DL, and 7AL after point inoculation; and seven QTL for type III resistance were detected on chromosomes 1A, 1BL, 3BS, 5AS, 5DL, and 7AL with the data from both inoculation methods. These QTL jointly explained up to 31.7, 64, and 52.8% of the phenotypic variation for the three types of FHB resistance, respectively. The narrow-sense heritabilities were low for type I resistance (0.37 to 0.41) but moderately high for type II resistance (0.45 to 0.61) and type III resistance (0.44 to 0.67). The QTL on the distal end of 3BS, 5AS, and 5DL contributed to all three types of resistance. Two QTL, on 7AL and 1A, as well as one QTL near the centromere of 3BS (3BSc), showed effects on both type II and type III resistance. Selection for type II resistance may simultaneously improve type I and type III resistance as well. The QTL for FHB resistance identified in Wangshuibai have potential to be used to pyramid FHB-resistance QTL from different sources.  相似文献   

5.
6.
Wheat is affected by many diseases, in Germany eight fungal diseases are recorded during the cultivar registration process. For a commercially successful cultivar, therefore, at least moderate resistances to important diseases, like yellow rust (YR) and Fusarium head blight (FHB), are necessary. Additionally, in 2013 a regional stem rust (SR) epidemic occurred in Central Germany for the first time for decades. Our objective was to analyze the resistance of 36 commercially grown winter wheat cultivars to YR, FHB, and SR in three individual and one combined inoculation. Appreciable disease severities were achieved for YR and FHB at three to four locations in two years (= seven location × year combinations), for SR at one to two locations in two years (= three location × year combinations). Wheat cultivars showed a significant genotypic variation for all diseases with high heritabilities (0.90–0.95). Interaction between inoculation treatments (individual vs. combined) and wheat genotype was not significant for each of the three diseases. Accordingly, correlations between both inoculation treatments were very high (R2?=?0.95–0.99). Several cultivars showed multi-disease resistance (MDR) to YR, FHB, and SR. In conclusion, resistance ranking among genotypes was not changed when plants were challenged with all three pathogens together compared to factorial inoculations of only one of them. Substituting factorial inoculation trials by multi-pathogen inoculation makes it more efficient to select for MDR in practical breeding programs.  相似文献   

7.
ABSTRACT One of the major concerns with Fusarium head blight (FHB) of barley is the potential health risks to livestock and humans through the accumulation of the mycotoxin deoxynivalenol (DON) in infected grain. To define the role of the host in DON accumulation during the early stages of disease development, we conducted a series of greenhouse experiments. We inoculated single spikelets of greenhouse-grown plants with Fusarium graminearum, moved the plants to a dew chamber, and harvested the inoculated spikelets after 72 h for DON analysis. We conducted a quantitative trait locus (QTL) analysis using a genetic mapping population, constructed with the parents Stander and Frederickson, that segregated for DON accumulation after single-spikelet inoculation in two experiments. A single QTL on chromosome 3 explained 18 and 35% of the phenotypic variation in the two experiments. To validate this QTL for DON accumulation, we used a DNA marker to select near-isogenic lines from a family from the mapping population that was segregating at this QTL. Disease symptom development was similar between the nearisogenic lines; however, the mean DON concentration of the lines homozygous for the allele from the high DON parent was 2.5-fold more than the lines homozygous for the alternate allele. A time course experiment showed that this effect on toxin accumulation was observed at 10 days post inoculation. The near-isogenic lines developed in this study should prove useful for further exploration of the role of DON in FHB.  相似文献   

8.
This work presents an analysis of the relationship between components of partial disease resistance (PDR) detected using in vitro detached leaf and seed germination assays, inoculated with Microdochium majus, and Fusarium head blight (FHB) resistance to Fusarium graminearum assessed using point inoculation, termed Type II resistance. Relationships between in vitro-determined PDR components and FHB resistance using techniques which inoculate the wheat spike uniformly, termed Type I resistance (incidence and severity), have been reported previously. In this study shorter incubation periods, longer latent periods and shorter lesion lengths in the detached leaf assay and higher germination rates in the seed germination assay were related to greater FHB resistance measured by single point inoculation (Type II), collectively explaining 54% of the variation. Overall the relationships observed for Type II FHB resistance were similar to previous findings for Type I resistances. However, the relative magnitude of effects of the individual PDR components determined in vitro varied between FHB disease resistance parameters. Resistance in seed germination and latent period in the detached leaf assay were more strongly related to resistance assessed by point inoculation (Type II) and severity-Type I as opposed to incubation period which was most strongly related to disease incidence-Type I. The results provide evidence that individual components of partial disease resistance differentially affect aspects of FHB disease progression in the wheat spike. This work supports the view that the current model of types of resistance is an oversimplification of the interacting mechanisms underlying expression of FHB resistance.  相似文献   

9.
为研究小麦UDP-葡萄糖基转移酶7(UDP-glycosyltransferase 7,TaUGT7)的抗赤霉病功能,利用DNAMAN 6.0软件对Ta UGT7及其同源蛋白进行序列比对,应用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术分析经赤霉菌Fusarium graminearum和脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)处理后的苏麦3号小穗中TaUGT7基因的表达特征,利用基因枪在洋葱表皮细胞瞬时表达TaUGT7-eGFP进行亚细胞定位,采用农杆菌介导法在小麦品种Fielder中过量表达TaUGT7基因并进行赤霉病抗性鉴定。结果表明,TaUGT7在氨基酸序列上与已知赤霉病抗性相关UGT相似性较低;TaUGT7在赤霉菌接种24 h后开始被诱导表达,在DON处理2 h后逐步被诱导表达;Ta UGT7蛋白亚细胞定位于细胞膜和细胞核中;qRT-PCR检测发现,TaUGT7在8株独立的过表达转基因株系中均有不同程度的上调表达;与野生型对照相比,过表达株系TaUGT7-395和TaUGT7-457中的平均病小穗率显著下降。...  相似文献   

10.
赤霉病是我国小麦上的重要病害,品种抗病性利用是控制病害发生的重要措施,明确小麦抗赤霉病资源的抗性类型,有利于小麦抗赤霉病育种。2003年和2004年对9个常用抗源在穗期进行单花滴注和喷雾接种,研究其抗侵染和抗扩展性,并对病穗中的脱氧雪腐镰刀菌烯醇(DON)的含量进行分析。结果表明,望水白和苏麦3号具较好的抗侵染和抗扩展能力,其中望水白的抗扩展性最好;感染赤霉病后,DON在5个抗源穗组织中的含量差异显著,DON在望水白和繁60096穗组织中积累量明显比在苏麦3号、延岗坊主和翻山小麦低。通过对望水白/安农8455遗传群体两年的病小穗率和病穗中DON毒素含量的比较,发现二者具有一定的相关性,且受环境影响比较大。  相似文献   

11.
Talas F  Kalih R  Miedaner T 《Phytopathology》2012,102(1):128-134
Fusarium head blight (FHB), caused by Fusarium graminearum sensu stricto (s.s.), causes tremendous annual yield losses in wheat worldwide. Variation of aggressiveness of isolates from individual field populations in terms of FHB infection and deoxynivalenol (DON) concentration in the host are important population parameters reflecting parasitic ability. Our main objective was to estimate the variation of both traits within three populations of F. graminearum s.s., each consisting of 30 single-spore isolates collected from small wheat fields in Germany, and to compare it with 11 isolates of a collection (F. graminearum collection) from four countries. The same isolates were characterized using 19 single-sequence repeat markers. All isolates were spray inoculated on a moderately resistant spring wheat cultivar at two field locations over 2 years (i.e., in four environments). The genotypic proportion of phenotypic variance (σ(2)(G)) within populations was significant (P < 0.01) for both traits, and the σ(2)(G) × environment interaction was even more important for mean FHB severity. Ranges in mean FHB severity and DON concentration in the host were only slightly smaller for the field populations than for the F. graminearum collection. Both traits were significantly (P < 0.05) correlated within and across populations. A further partitioning of σ(2)(G) revealed 72% of σ(2)(G) within and 28% of σ(2)(G) across populations for both traits. Molecular variance of the three populations was similarly distributed (73.6% within versus 26.4% between populations). In view of this high within-field variation for traits of parasitic ability and selection, neutral molecular markers, multiple resistance genes of different origin should be employed in wheat breeding programs to obtain a long-term stable FHB resistance.  相似文献   

12.
Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)‐like symptoms during the 2010–11 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F. pseudograminearum were diagnosed from 42 of the 44 sites using species‐specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg?1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg?1 DON. DON concentration in straw also exceeded 1 mg kg?1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F. graminearum and/or F. pseudograminearum and weather‐related factors influenced DON levels in immature grains. The average monthly rainfall for August–November during crop anthesis and maturation exceeded the long‐term monthly average by 10–150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.  相似文献   

13.
Fusarium head blight (FHB) is an important disease of wheat, which can result in the contamination of grains with mycotoxins such as deoxynivalenol (DON). Artificial inoculation of flowering ears with conidial suspensions is widely used to study FHB diseases. Our goal was to compare four inoculation treatments in which a conidial suspension was sprayed on flowering ears and to study the effect of the application of moisture during kernel setting and filling with a mist-irrigation system. Ten wheat genotypes were inoculated with a DON-producing Fusarium culmorum strain. Inoculation treatments varied in time of application of the inoculum (morning or evening) and in the method of controlling humidity during inoculation (bagging or mist irrigation). A wet season was simulated with a mist-irrigation system, keeping the crop canopy wet for at least 26 days after flowering. The severity of FHB symptoms (area under disease progress curve (AUDPC)), yield loss and DON contamination in the grains were determined. AUDPC data obtained with the different inoculation treatments were highly correlated (r=0.85–0.95). Mist irrigation after inoculation resulted in a higher mean disease severity, but in a overall lower toxin contamination as compared to the non-irrigated treatments. Genotypic differences in DON accumulation were present: for one wheat line toxin contamination significantly increased when irrigated, while two genotypes accumulated significantly less toxin. The closest relationships (r=0.73–0.89) between the visual symptoms and the DON content were obtained under moderate mean infection pressure. This relation between visual symptoms and the DON content deteriorated at higher infection levels.  相似文献   

14.
The effect of small temperature differentials (16 vs. 20°C) on the pathogenicity of deoxynivalenol producing single isolates of Fusarium culmorum and F. graminearum and on the fusarium head blight (FHB) response of eight wheat cultivars was examined. Fusarium culmorum inoculation caused greater visual disease symptoms at 20°C than at 16°C, both overall and on an individual cultivar basis (overall AUDPC = 13·5 and 9·6, respectively) ( P  < 0·05). In contrast, F. graminearum inoculation caused greater overall visual disease symptoms at 16°C than at 20°C, both overall and at the individual cultivar level (overall AUDPC = 12·8 and 10·9, respectively) ( P  < 0·05). Results showed both F. culmorum and F. graminearum inoculations caused a greater loss in yield at 20°C (54·3 and 46·9% relative 1000-grain weight, respectively) compared with 16°C (73·3 and 66·9% relative 1000-grain weight, respectively) ( P  < 0·05). Fusarium culmorum -inoculated heads contained similar amounts of fungal DNA at both 16 and 20°C (1·9 and 1·7 ng mg−1 of plant material, respectively) (not significant), while for F. graminearum inoculation, plants contained higher amounts of fungal DNA at 20°C (2·0 and 1·0 ng mg−1 of plant material, respectively) ( P  < 0·05). Overall, there was a significant negative correlation between AUDPC and percentage relative 1000-grain weight at both 16 and 20°C ( r  =−0·693 and −0·794, respectively, P  < 0·01).  相似文献   

15.
Fusarium head blight (FHB) is a complex cereal disease associated with trichothecene production; these mycotoxins are factors of aggressiveness in wheat. Six species (bread and durum wheat, triticale, rye, barley and oats) were submitted to point inoculations with two isogenic strains of Fusarium graminearum; a wild strain (Tri5 +) produced trichothecenes and the mutated strain (Tri5 –) did not. The trichothecene-producing strain was generally more aggressive than the non-producing strain, but this varied according to crop species. The difference in aggressiveness was less pronounced in rye, a very resistant species. High resistance levels were observed in oats due to the large spacing between florets. In six-row barley, despite the existence of a moderate Type II resistance, the fungus was often observed to move externally from one floret to another within the dense spike, without penetrating the rachis. Bread wheat had low resistance to the trichothecene-producing strain and good resistance to the non-producing strain. Triticale responded to the strains in a similar way but was somewhat more resistant to both: symptoms on the spikelets and rachis of the triticales were restricted to below the point of inoculation. Durum wheat was susceptible to the trichothecene-producing strain and only moderately resistant to the non-producing strain, which was able to cause serious damage only to this species. Our study confirmed that the role of trichothecenes in FHB pathogenesis differs among species. The failure of the trichothecene non-producing F. graminearum strain to spread within the inflorescence of wheat, triticale, rye and barley, and the significant reduction of spread in the durum wheat spike strongly suggested that trichothecenes are a major determinant of fungal spread and disease development in Triticeae.  相似文献   

16.
Susceptibility of eight commercial European wheat cultivars to fusarium head blight (FHB) disease caused by Fusarium graminearum , F. culmorum , F. poae and Microdochium nivale (formerly known as Fusarium nivale ) was compared under controlled environment conditions (16°C). FHB did not differentially affect cultivars in terms of disease symptoms, fungal DNA content of grain or deoxynivalenol (DON) contamination. However, the Hungarian-grown cultivars GK-Othalom and Fatima 2 (of Romanian origin) showed greater type V resistance (yield tolerance) to FHB than did the others. Also, nivalenol was produced by F. poae in these two cultivars and in Italian cultivar Norba, but not in other cultivars. Overall, significant relationships were found between the FHB and seedling blight resistance in vitro of these eight cultivars, but such relationships were generally highly dependent on cultivar, and therefore it is likely that the in vitro test is at best measuring components of FHB resistance and/or genotype-specific resistance components.  相似文献   

17.
ABSTRACT Barley has two flowering types, chasmogamous (open-flowering) and cleistogamous (closed-flowering). We examined the effect of the timing of Fusarium graminearum infection on Fusarium head blight (FHB) and mycotoxin accumulation in barley cultivars with different flowering types using greenhouse experiments. In the first experiment, 13 cultivars were spray inoculated at two different developmental stages, and the severity of FHB was evaluated. The effect of the timing of infection differed among cultivars. Cleistogamous cultivars were resistant at anthesis but susceptible at 10 days after anthesis, whereas chasmogamous cultivars were already susceptible at anthesis. In the second experiment, five cultivars were inoculated at three different developmental stages and the concentrations of deoxynivalenol (DON) and nivalenol (NIV) in mature grain were analyzed. Cleistogamous cultivars accumulated more mycotoxins (DON and NIV) when inoculated 10 or 20 days after anthesis than when inoculated at anthesis, whereas chasmogamous cultivars accumulated more mycotoxins when inoculated at anthesis. Thus, the most critical time for F. graminearum infection and mycotoxin accumulation in barley differs with cultivar, and likely is associated with the flowering type. Late infection, even without accompanied FHB symptoms, was also significant in terms of the risk of mycotoxin contamination.  相似文献   

18.
ABSTRACT Fusarium graminearum causes Fusarium head blight (FHB) in small grains worldwide. Although primarily a pathogen of cereals, it also can infect noncereal crops such as potato and sugar beet in the United States. We used a real-time polymerase chain reaction (PCR) method based on intergenic sequences specific to the trichodiene synthase gene (Tri5) from F. graminearum. TaqMan probe and primers were designed and used to estimate DNA content of the pathogen (FgDNA) in the susceptible wheat cv. Grandin after inoculation with the 21 isolates of F. graminearum collected from potato, sugar beet, and wheat. The presence of nine mycotoxins was analyzed in the inoculated wheat heads by gas chromatography and mass spectrometry. All isolates contained the Tri5 gene and were virulent to cv. Grandin. Isolates of F. graminearum differed significantly in virulence (expressed as disease severity), FgDNA content, and mycotoxin accumulation. Potato isolates showed greater variability in producing different mycotoxins than sugar beet and wheat isolates. Correlation analysis showed a significant (P < 0.001) positive relationship between FgDNA content and FHB severity or deoxynivalenol (DON) production. Moreover, a significant (P < 0.001) positive correlation between FHB severity and DON content was observed. Our findings revealed that F. graminearum causing potato dry rot and sugar beet decay could be potential sources of inoculum for FHB epidemics in wheat. Real-time PCR assay provides sensitive and accurate quantification of F. graminearum in wheat and can be useful for monitoring the colonization of wheat grains by F. graminearum in controlled environments, and evaluating wheat germplasms for resistance to FHB.  相似文献   

19.
20.
Mechanisms of resistance to fusarium wilt (Fusarium udum) were investigated in pigeon pea cultivars from Malawi. Wilt-susceptible (Malawi local) and wilt resistant (ICP 9145) plants were stem-inoculated with a spore suspension containing 2·106 conidia/ml of the pathogen. Occlusion of a small proportion of infected vessels was observed, but the resistant reaction appeared to depend mainly on rapid phytoalexin synthesis. Four fungitoxic isoflavonoid phytoalexins—hydroxygenistein, genistein, cajanin and cajanol-were isolated from plants 15 days after inoculation. Cajanol was identified as the main antifungal compound. The concentration of cajanol was 329·4 μg/g in the resistant cultivar as against 88·6 μg/g in the susceptible cultivar 15 days after inoculation. Crude extract from the resistant plants sampled at 24 h after inoculation contained 34·8 μg ml of cajanol. The LD50 value of cajanol for spore germination was determined as 35μg/ml. The cajanol content of fungus-infected ICP 9145 10 days after inoculation totally inhibited conidial germination of F. udum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号