首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colletotrichum acutatum and C. gloeosporioides Cause Anthracnose on Olives   总被引:1,自引:0,他引:1  
Morphological and cultural features and restriction fragment length polymorphism analysis of ITS regions, including 5.8S rDNA, from 26 isolates of Colletotrichum species revealed that isolates from olive fruits, previously identified as C. gloeosporioides, belong to two taxa: C. acutatum and C. gloeosporioides. Comparison of both ITS sequence data with reference isolates confirmed the presence of both species in olives affected by anthracnose disease.  相似文献   

2.
ABSTRACT Spread of strawberry anthracnose, resulting from the rain splash dispersal of Colletotrichum acutatum conidia, was determined in field plots by assessing fruit disease incidence at a range of distances from an introduced point source of infected fruit with sporulating lesions. Four within-row plant densities were established in replicated plots in each of 2 years. A generalized linear model with a logit link function and binomial distribution for incidence was used to quantify the effects of distance and side of the row relative to the inoculum source, plant density treatment, and their interactions on disease incidence. At all assessment times, there was a significant (P 相似文献   

3.
ABSTRACT Anthracnose, caused by Colletotrichum sp., is a serious problem of lupins (Lupinus spp.) worldwide. Morphological characters and molecular markers were used to characterize 43 Colletotrichum isolates from lupins, 8 isolates from other hosts, and 18 reference isolates representing related Colletotrichum spp., to assess the pathogen diversity and resolve its taxonomy. All lupin Colletotrichum isolates tested positive with C. acutatum-specific polymerase chain reaction (PCR) and did not test positive with C. gloeosporioides-specific PCR. Spore shape and colony diameter as well as insensitivity to benomyl grouped the lupin anthracnose isolates closer to C. acutatum than to C. gloeosporioides. Analysis of internal transcribed spacer (ITS) sequences of 57 Colletotrichum isolates grouped all lupin isolates with C. acutatum and distinct from C. gloeosporioides. Further, tub2 and his4 sequences revealed groups concordant with ITS, reducing the excessive dependence on the latter. Arbitrarily primed-PCR and amplified fragment length polymorphism analyses revealed intraspecific subgroups, but neither was useful to decipher species level relationships. ITS, tub2, and his4 results strongly support designating lupin anthracnose pathogen as C. acutatum or its subspecies. Most Colletotrichum isolates from lupins from worldwide locations are genetically homogeneous and form a distinct subgroup within C. acutatum. Present results also underline the potential of the C. acutatum-specific PCR for routine pathogen diagnosis.  相似文献   

4.
ABSTRACT The germination and sporulation of Colletotrichum acutatum were characterized over time on strawberry leaves (cv. Tristar) and plastic coverslips incubated at 26 degrees C under continuous wetness. Conidia germinated within 3 h after inoculation and formed melanized appressoria with pores by 9 h after inoculation. Host penetration was not observed up to 7 days after inoculation. Production of secondary conidia on conidial and hyphal phialides began within 6 h after inoculation. Secondary conidiation was responsible for up to a threefold increase in the total number of conidia within 7 days after inoculation. Primary conidia and hyphae began to collapse 48 h after inoculation, whereas melanized appressoria remained intact. These findings suggest that appressoria and secondary conidia of C. acutatum produced on symptomless strawberry foliage may be significant sources of inoculum for fruit infections.  相似文献   

5.
Tracing Latent Infection of Colletotrichum acutatum on Strawberry by PCR   总被引:1,自引:0,他引:1  
Colletotrichum acutatum, a quarantine organism on strawberries in the EU, was found in Finland for the first time in 2000. Concern about rapid, unnoticeable spread of this pathogen has necessitated studies to find methods with which the quiescent fungus infection can be detected in imported, cold-stored strawberry plant material. Successful detection of C. acutatum in strawberry tissues by polymerase chain reaction (PCR) is dependent on the method of DNA extraction used. Good-quality nucleic acid, free of PCR inhibitors, was successfully prepared by slightly modifying the DNA extraction method of a commercially available kit. Species-specific primers, previously described in the literature, were successfully used in the PCR reaction. C. acutatum was detected by PCR both on symptomatic and asymptomatic plant parts and in artificially and naturally infected strawberry tissues. Positive PCR results were obtained from ripe and unripe berries, runners, petioles and different parts of crowns. The data demonstrate that the PCR technique can be used to detect C. acutatum in strawberry tissue even in plant parts that do not show visible symptoms.  相似文献   

6.
Anthracnose, caused by Colletotrichum acutatum, is an important disease of almond and has caused significant economic losses in California, Israel and Australia. Anthracnose development was monitored for three growing seasons in an almond orchard in South Australia on two almond cultivars, Price and Nonpareil, with up to 80 % of fruit affected in 2004. Lesions, typical of anthracnose, formed on young developing fruit and symptoms continued to appear until the fruit were ca 20 mm long, after which no further lesions developed. Symptoms were observed on leaves, woody tissue showed signs of dieback, but blossom blight was not observed. Maximum disease incidenceperfor, man and Relative Area Under the Disease Progress Curve (RAUDPC) were significantly larger for Price than Nonpareil for each season, but differences in the apparent rates of infection for both cultivars were insignificant for the three growing seasons. The apparent rates of infection were correlated with rainfall and daily temperature for the three years combined but there was no correlation between maximum disease incidence or RAUDPC and these environmental parameters. Considerably more mummified fruit remained on the trees of cv. Price than Nonpareil each year; however, there was no correlation between the number of mummified fruit in one season and maximum disease incidence, RAUDPC or apparent rate of infection, in the following season. C. acutatum was recovered from mummified fruit, peduncles and bark, from both Price and Nonpareil, every month throughout a year-long sampling period. C. acutatum was also recovered from asymptomatic leaves, fruit, bark, buds and blossom, however, less frequently and at lower rates than from mummified fruit and peduncles. Recovery was consistently greater from Price than from Nonpareil for all tissues.  相似文献   

7.
ABSTRACT The causal organism responsible for the recent outbreak of almond and peach anthracnose in California was identified and characterized as Colletotrichum acutatum. Isolates of C. acutatum from almond were found to be similar to California strawberry isolates and South Carolina peach and apple isolates of C. acutatum based on conidial morphology, temperature relationships, fungicide sensitivity, and polymerase chain reaction (PCR) methods using DNA species-specific primers. On almond, blossoms and immature or mature fruit were affected by the disease, causing direct losses of crop. On peach, the disease was observed only on mature fruit. Pathogenicity of almond and peach isolates of C. acutatum was demonstrated on wound- and nonwound-inoculated almond or peach fruit by fulfilling Koch's postulates. Conidial morphology of isolates was variable, depending on the medium or substrate used to culture the isolates. Isolates of C. acutatum from strawberry, almond, and peach were grouped together based on a similar response to temperature, with an optimal growth rate at 25 degrees C (generally less than 10 mm/day), whereas isolates of C. gloeosporioides from citrus and papaya had an optimal growth rate at 30 degrees C (generally greater than 10 mm/day). In fungicide disk assays, isolates of C. acutatum from strawberry, peach, and apple, as well as almond and peach isolates from California, were less sensitive to benomyl at 300, 600, or 1,200 mug/ml. In contrast, C. gloeosporioides isolates from citrus and papaya were very sensitive to benomyl at all concentrations evaluated. All isolates of both species were sensitive to captan (300, 600, or 1,200 mug/ml). Oligonucleotide primers were synthesized for C. acutatum, C. fragariae, or C. gloeosporioides using published DNA sequences from the internal transcribed spacer 1 region of ribosomal DNA. Thirty-two Colletotrichum isolates from almond fruit produced DNA products with a C. acutatum primer (CaInt-2) that matched products and approximate molecular weight of known C. acutatum isolates. No PCR products were produced with primers for C. gloeosporioides or C. fragariae. Isolates from citrus and papaya produced DNA products only with primers from C. gloeosporioides or C. fragariae. Thus, worldwide, anthracnose of almonds may be caused by either C. gloeosporioides, as previously reported, or by C. acutatum, as indicated in this study.  相似文献   

8.
Förster H  Adaskaveg JE 《Phytopathology》1999,89(11):1056-1065
ABSTRACT In recent years, almond anthracnose has developed into a major problem for the California almond industry. The identification of the causal pathogen as Colletotrichum acutatum was confirmed using species-specific primers and restriction fragment length polymorphisms of ribosomal DNA in comparative studies with isolates of C. acutatum from strawberry and C. gloeosporioides from citrus. Two distinct clonal subpopulations among the almond isolates of C. acutatum were identified. These two subpopulations differed in their colony appearance (pink versus gray cultures), conidial morphology, virulence in laboratory inoculation studies, temperature relationships for growth, and molecular fingerprints using random and simple-repeat primers in polymerase chain reactions. Both subpopulations were commonly isolated from the same orchard or even the same fruit. In other orchards, one subpopulation predominated over the other subpopulation. Using random, simple-repeat, and species-specific primers, isolates of the almond anthracnose pathogen from Israel were very similar to the California isolates that produce gray colonies. In addition to fruit, the pathogen was isolated from blighted blossoms, water-soaked or necrotic leaf lesions, symptomless peduncles, and spurs and wood from branches showing dieback symptoms, indicating that the amount of tissue that may be infected is more extensive than previously considered. Overwintering fruit mummies were identified as inoculum sources for early spring infections. Growth studies using almond kernels with different moisture contents indicated that postharvest damage of stored kernels likely originates from preharvest field infections.  相似文献   

9.
Trichoderma isolates are known for their ability to control plant pathogens. It has been shown that various isolates of Trichoderma, including T. harzianum isolate T-39 from the commercial biological control product TRICHODEX, were effective in controlling anthracnose (Colletotrichum acutatum) and grey mould (Botrytis cinerea) in strawberry, under controlled and greenhouse conditions. Three selected Trichoderma strains, namely T-39, T-161 and T-166, were evaluated in large-scale experiments using different timing application and dosage rates for reduction of strawberry anthracnose and grey mould. All possible combinations of single, double or triple mixtures of Trichoderma strains, applied at 0.4% and 0.8% concentrations, and at 7 or 10 day intervals, resulted in reduction of anthracnose severity; the higher concentration (0.8%) was superior in control whether used with single isolates or as a result of combined application of two isolates, each at 0.4%. Only a few treatments resulted in significant control of grey mould. Isolates T-39 applied at 0.4% at 2 day intervals, T-166 at 0.4%, or T-161 combined with T-39 at 0.4% were as effective as the chemical fungicide fenhexamide. The survival dynamics of populations of the Trichoderma isolates (T-39, T-105, T-161 and T-166) applied separately was determined by dilution plating and isolates in the mixtures calculated according to the polymerase chain reaction (PCR) using repeat motif primers. The biocontrol isolates were identified to the respective species T. harzianum (T-39), T. hamatum (T-105), T. atroviride (T-161) and T. longibrachiatum (T-166), according to internal transcribed spacer sequence analysis.  相似文献   

10.
ABSTRACT Anthracnose is one of the major fungal diseases of strawberry occurring worldwide. In Israel, the disease is caused primarily by the species Colletotrichum acutatum. The pathogen causes black spot on fruit, root necrosis, and crown rot resulting in mortality of transplants in the field. The host range and specificity of C. acutatum from strawberry was examined on pepper, eggplant, tomato, bean, and strawberry under greenhouse conditions. The fungus was recovered from all plant species over a 3-month period but caused disease symptoms only on strawberry. Epiphytic and endophytic (colonization) fungal growth in the different plant species was confirmed by reisolation from leaf tissues and by polymerase chain reaction (PCR)-specific primer amplification. C. acutatum was also isolated from healthy looking, asymptomatic plants of the weed genera Vicia and Conyza. Isolates that were recovered from the weeds caused disease symptoms on strawberry and were positively identified as C. acutatum by PCR. The habitation of a large number of plant species, including weeds, by C. acutatum suggests that, although it causes disease only on strawberry and anemone in Israel, this fungus can persist on many other plant species. Therefore, plants that are not considered hosts of C. acutatum may serve as a potential inoculum source for strawberry infection and permit survival of the pathogen between seasons.  相似文献   

11.
Postbloom fruit drop (PFD) is caused by both Colletotrichum acutatum and C. gloeosporioides and is a potentially serious disease in citrus that occurs when flowering coincides with rainfall. The fungus incites necrotic lesions in petals and stigmas leading to premature fruit drop and reduced yield. The mechanisms of infection and survival of the causal agents remain to be fully elucidated. In the present study, we investigated the histopathology of PFD caused by C. acutatum in the petals and stigmas of sweet oranges using electron and light microscopy. In the petals, pathogen penetration occurred intra and intercellularly and also through the stomata, with intercellular penetration occurring most frequently. The distinct tissues of the petals were colonised, including the vascular system, particularly the xylem. Acervuli were observed on both sides of the petals. Although the fungus did not penetrate through the epidermal cells of the stigma, C. acutatum caused necrosis and an increase of phenolics in this tissue. A protective layer rich in lipophilic and phenolic compounds was formed under the necrotic area and crystals of oxalate were associated with the sites where the pathogen was present.  相似文献   

12.
ABSTRACT Conidial suspensions of Colletotrichum acutatum were prepared in 1:27, 1:45, and 1:81 (wt/vol) dilutions of an extract of strawberry (cv. Tristar) flowers or leaves in water. Strawberry leaves and plastic coverslips were sprayed with the conidial suspensions, incubated at 25 degrees C and continuous wetness for 48 h, and the number of conidia and appressoria were counted. In another experiment, leaves and coverslips were sprayed with a conidial suspension in water, incubated for 72 h to establish C. acutatum populations, and placed in a growth chamber under dry conditions for up to 6 weeks. At each sampling time, leaves and coverslips were sprayed with flower extracts, leaf extracts, or water, incubated for 48 h at 25 degrees C and continuous wetness, and the number of conidia and appressoria were counted. Flower extracts significantly (P 相似文献   

13.
Postbloom fruit drop (PFD) is an important citrus disease that causes up to 100% yield losses during years in which conditions are favourable for the occurrence of epidemics. The conidia of Colletotrichum acutatum and C. gloeosporioides, causal agents of PFD, are predominantly dispersed by rain splash. At the beginning of epidemics, the distribution of diseased plants is random and the disease progress rate is very high, which is unusual for pathogens spread by rain splash. As the pathogen produces abundant conidia on diseased petals, pollinating insects may contribute to disease dispersal. This study investigated honeybees (Apis mellifera) as dispersal agents of C. acutatum and C. gloeosporioides among citrus plants. Two experiments were carried out in a screenhouse in which citrus plants were protected (or not) in insect‐proof cages. The source of inoculum was placed on one side of the screenhouse, and a honeybee hive was placed on the opposite side. All uncaged plants showed symptoms of the disease, and none of the caged plants exhibited PFD symptoms. The monomolecular model showed a good fit to disease progress in both experiments. Conidium‐like structures of Colletotrichum spp. were identified attached to the bodies of the honeybees by scanning electron microscopy. These results have revealed that honeybees disperse Colletotrichum among citrus plants.  相似文献   

14.
ABSTRACT Strawberry leaves (cv. Tristar) inoculated with Colletotrichum acuta-tum conidia were incubated at 10, 15, 20, 25, 30, and 35 degrees C under continuous wetness, and at 25 degrees C under six intermittent wetness regimes. The number of conidia and appressoria was quantified on excised leaf disks. In order to assess pathogen survival, inoculated leaves were frozen and incubated to induce acervular development. Germination, secondary3 conidiation, and appressorial development were significantly (P /= 0.95) related to appressorial populations prior to this treatment and was greatest following periods of continuous wetness. Production of secondary conidia and appressoria of C. acutatum on symptomless strawberry leaves under a range of environmental conditions suggests that these processes also occur under field conditions and contribute to inoculum availability during the growing season.  相似文献   

15.
16.
Simple diagnosis by ethanol immersion (SDEI) to detect Glomerella cingulata was used to detect three other fungi that also cause latent infection of strawberry plants. Signs on strawberry leaves with asymptomatic latent infection by Colletotrichum acutatum became visible using SDEI. Salmon-pink conidial masses were produced in the acervuli on the treated leaves 5 days after incubation at 28°C. In the case of Dendrophoma obscurans, pycnidia with amber conidial masses formed 5 days after incubation at 28°C. The pycnidia were observed mainly on the ribs, and conidial masses exuded from the ostiole. These macroscopic conidial masses were similar to those of G. cingulata and C. acutatum. When water was dripped onto a lesion caused by D. obscurans, the pycnidia exuded white filamentous conidial masses, making the distinction of D. obscurans from G. cingulata or C. acutatum. On petioles with latent infection by Fusarium oxysporum f. sp. fragariae, white aerial hyphae grew out from the vascular tissues on the cut surface 3 days after incubation at 28°C and were easily observed by eye or with a loupe. Thus, SDEI was also useful for diagnosing latent infection of strawberry plants by C. acutatum, D. obscurans, and F. oxysporum f. sp. fragariae.  相似文献   

17.
18.
Colletotrichum acutatum causes anthracnose on peppers (Capsicum spp.), resulting in severe yield losses in Taiwan. Fungal isolates Coll-153, Coll-365 and Coll-524 collected from diseased peppers were found to differ in pathogenicity. Pathogenicity assays on various index plants revealed that Coll-524 was highly virulent and Coll-153 was moderately virulent to three commercially available pepper cultivars. Both isolates induced anthracnose lesions and produced abundant conidia. Coll-365 was only weakly virulent on pepper fruit, where it caused small lesions and hardly produced conidia on pepper fruit. However, Coll-365 was highly pathogenic to tomato fruit and mango leaves, where it caused anthracnose lesions and formed acervuli and conidia. All three isolates showed similar abilities in the attachment and germination of conidia, formation of highly branched hyphae and appressoria, penetration of cuticles, and infection of epidermal cells on chili peppers. Coll-365 accumulated less turgor pressure in appressoria but produced higher levels of cutinase and protease activity than Coll-153 and Coll-524 did. All three isolates invaded the neighbouring cells through plasmodesmata in chili peppers and showed similar pectinase or cellulase activities in culture. However, the most virulent strain Coll-524 expressed stronger laccase activity and was more resistant to capsaicin compared to Coll-153 and Coll-365. The three isolates are different in numbers and sizes of double-stranded RNAs. Depending on the cultivar genotypes, cellular resistance of chili pepper to C. acutatum might rely on the ability to restrict penetration, colonization, or conidiation of the pathogen. We conclude that the differences in pathogenicity among the three C. acutatum isolates of pepper are attributed to their ability to colonize the host plant.  相似文献   

19.
PCR-based detection of Colletotrichum acutatum on strawberry   总被引:5,自引:2,他引:5  
An oligonucleotide primer ( Ca Int 2) was synthesized from the variable internal transcribed spacer (ITS) 1 region of ribosomal DNA (rDNA) from Colletotrichum acutatum . PCR with primers Ca Int2 and ITS4 (from a conserved sequence of the rDNA) amplified a 490 bp fragment from several isolates of C. acutatum but not from other members of the genus Colletotrichum . Amplification of this fragment was achieved from 100 fg of fungal DNA. These primers amplified a fragment of the same size from DNA extracted from strawberry tissues infected by C. acutatum . Southern hybridization analysis confirmed the 490 bp fragment from C. acutatum DNA and infected strawberry to be identical. The species-specific primer ( Ca Int2) developed in this work could be used for the accurate identification of C. acutatum and its detection on other host plants.  相似文献   

20.
Postbloom fruit drop (PFD), an important disease caused by Colletotrichum spp., affects citrus yields in Brazil. PFD is characterised by the presence of necrotic lesions on the petals and stigmas of citrus flowers and by the subsequent abscission of young fruit. PFD epidemics have high disease progress rates, which is unusual for a pathogen that produces acervuli and is dispersed by rain. It is possible that other dispersal agents, such as insects and pollen, are involved in the spread of this disease. The objective of this work was to test whether citrus pollen grains can be colonised by Colletotrichum acutatum. Studies using light and electron microscopy showed that the pollen of Citrus sinensis can be infected by C. acutatum. This pathogen can penetrate and colonise citrus pollen grains 24 h after inoculation with the pathogen. The germ tube of conidia either penetrates the pollen sporodermis directly or passes through pollen germ pores. A single hypha can colonise more than one pollen grain. On the surface of the stigma, conidium formation can be observed. This study shows that Citrus sinensis pollen may, in fact, play a role in the spread of C. acutatum in citrus orchards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号