首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Losses in serological reactivity of Papaya leaf distortion mosaic virus (PLDMV) were demonstrated. An antibody, IgG-papaya, raised against PLDMV purified from papaya (Carica papaya L.) did not react with virus particles in Cucumis metuliferus leaf extracts in ELISA or SSEM-PAG (serologically specific electron microscopy using protein A-gold). In addition, IgG-papaya and IgG- Cucumis raised against PLDMV purified from C. metuliferus did not react with virus particles in papaya leaf extracts after western blotting. From results of electrophoresis, the coat protein (CP) of PLDMV purified from papaya had degraded and migrated in two bands. Similar degradation was also observed when virus purified from C. metuliferus was treated with papain. These results indicated that the CP of PLDMV purified from papaya was degraded during the purification process by papain in the host plant. IgG-papaya was reactive to papain-degraded CP, while IgG-Cucumiswas reactive to both intact and degraded CP. Modified serological methods using antipain (a protease inhibitor) or papain were established to detect PLDMV. Received 16 February 2001/ Accepted in revised form 26 September 2001  相似文献   

3.
The coat protein (CP) gene mediated transgenic resistance is found to be the best approach for protecting papaya plants against the destructive disease caused by Papaya ringspot viruses(PRSV). In order to study the variability of PRSV and the potential threat to the CP-transgenic resistance, five virus isolates were collected from transgenic plants of papaya line 16-0-1, which carry the CP gene of the typical mosaic strain of Taiwan PRSV YK, in an approved test field and fourteen from untransformed papaya plants in different areas of Taiwan. The results of biological, serological, and molecular characterization indicated that all isolates are related to PRSV YK. Among them, the isolate 5--19 from the transgenic line and the isolates CS and TD2 from untransformed papaya were able to overcome the YK CP gene-mediated resistance of papaya lines 18--2--4, 17-0-5, and 16-0-1, which provide high degrees of resistance to different geographic PRSV strains of Hawaii (HA), Mexico (MX), and Thailand (TH). These three isolates were also able to cause symptoms on untransformed papaya plants more severe than those induced by YK. In addition to the host reactions, the variability of the collected 19 isolates was also analyzed and compared with YK and other geographic strains by heteroduplex mobility assay (HMA) and sequence analyses. The results of HMA indicated that the CP genes of isolates 5--19 and TD2 are more divergent than those of other isolates when compared with YK. However, sequence analyses of the transgenic-resistance overcoming isolates 5-19, CS, and TD2 revealed that their CP coding regions and the 3 untranslated regions (UTRs) share nucleotide identities of 93.9–96.6% and 94.2–97.9% with those of YK, respectively; whereas the other geographic strains of HA, MX, and TH that could not overcome the transgenic resistance share lower nucleotide identities of 89.8–92.6% and 92.3–95.3% with those of YK, respectively. Our results indicate that the ability for overcoming the transgenic resistance is not solely correlated with higher degrees of sequence divergence from the transgene. The possible mechanism for overcoming the transgenic resistance and the potential threat of these PRSV strains to the application of the transgenic papaya lines carrying PRSV YK CP gene are discussed.  相似文献   

4.
尤毅  李华平  谢大森 《植物保护》2016,42(2):182-186
本研究在我国主要冬瓜产区采集具有典型病毒病症状的病叶材料105份,根据葫芦科作物上常见的5种病毒病原的CP基因设计特异性引物,对105份待检冬瓜材料进行RT-PCR检测。检测结果表明:5对特异引物可分别在105份待检材料的95份中检测到小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)、西瓜花叶病毒(Watermelon mosaic virus,WMV)、黄瓜花叶病毒(Cucumber mosaic virus,CMV)、番木瓜环斑病毒(Papaya ringspot virus,PRSV)4种病毒,未检测到南瓜花叶病毒(Squash mosaic virus,SqMV);并且发现不同的冬瓜主产区致病的病毒种类有较大差异;同时还发现,在这些待检样品中4种病毒复合侵染现象较普遍,其中以PRSV与WMV组合最常见,占复合侵染现象的31.25%;未发现有4种病毒复合侵染。  相似文献   

5.
Papaya ringspot virus is an RNA virus that belongs to the genus Potyvirus, family Potyviridae and affects both papaya and cucurbits, causing great economic losses. PRSV isolates are divided into biotypes P and W; both biotypes naturally infect plants in the family Cucurbitaceae, whereas the P type also naturally infects papaya (Carica papaya L). In the present study, we report the full-length genome sequence of two PRSV-P isolates sampled from the Campo Hermoso (PRSV-CH) and Villa del Rosario (PRSV-VR) localities in Norte de Santander, Colombia. The genomes of these PRSV isolates are 10,326 nt in length and have a predicted ORF of 3344 aa. The identity among Colombian PRSV isolates is 96.9% and 97.3% at the nucleotide and deduced amino acid levels, respectively. PRSV isolates from China had the lowest identity at 78.3% and 89.2% (nucleotide-amino acid), whereas the highest identities were detected in PRSV isolates from Mexico, Venezuela and Hawaii. At the polyprotein level, the amino acid composition surrounding the active polyprotein cleavage sites differ in the Colombian PRSV sequences. The predicted cleavage site in P1/HC-Pro is LEQY/N – LEQY/S instead of MEQY/N. Both of the Colombian PRSV isolates have a putative recombination event in the P1 coding region, which is common in all PRSV isolates from the American continent. The new full-length PRSV sequences from Colombia provide a better understanding of the dynamics of papaya ringspot virus infections in papaya in Colombia and worldwide.  相似文献   

6.
You BJ  Chiang CH  Chen LF  Su WC  Yeh SD 《Phytopathology》2005,95(5):533-540
ABSTRACT Papaya ringspot virus (PRSV) HA5-1, a mild mutant of type P Hawaii severe strain (PRSV P-HA), has been widely used for the control of PRSV type P strains in papaya, but did not provide practical protection against PRSV type W strains in cucurbits. In order to widen the protection effectiveness against W strains, chimeric mild strains were constructed from HA5-1 to carry the heterologous 3' genomic region of a type W strain W-CI. Virus accumulation of recombinants and their crossprotection effectiveness against W-CI and P-HA were investigated. In horn melon and squash plants, the recombinant carrying both the heterologous coat protein (CP) coding region and the 3' untranslated region (3'UTR), but not the heterologous CP coding region alone, significantly enhanced the protection against W-CI. The heterologous 3'UTR alone is critical for the enhancement of the protection against W-CI in horn melon, but not in zucchini squash. In papaya, the heterologous CP coding region or 3'UTR alone, but not both together, significantly reduced the effectiveness of cross protection against P-HA. Our recombinants provide broader protection against both type W and P strains in cucurbits; however, the protective effectiveness is also affected by virus accumulation, the organization of the 3' genomic region, and host factors.  相似文献   

7.
8.
Bau HJ  Cheng YH  Yu TA  Yang JS  Yeh SD 《Phytopathology》2003,93(1):112-120
ABSTRACT Papaya ringspot virus (PRSV) is a major limiting factor for cultivation of papaya (Carica papaya) in tropical and subtropical areas throughout the world. Although the coat protein (CP) gene of PRSV has been transferred into papaya by particle bombardment and transgenic lines with high resistance to Hawaii strains have been obtained, they are susceptible to PRSV isolates outside of Hawaii. This strain-specific resistance limits the application of the transgenic lines in other areas of the world. In this investigation, the CP gene of a local strain isolated from Taiwan, designated PRSV YK, was transferred into papaya via Agrobacterium-mediated transformation. A total of 45 putative transgenic lines were obtained and the presence of the transgene in papaya was confirmed by polymerase chain reaction amplification. When the plants of transgenic lines were challenged with PRSV YK by mechanical inoculation, they showed different levels of resistance ranging from delay of symptom development to complete immunity. Molecular analysis of nine selected lines that exhibited different levels of resistance revealed that the expression level of the transgene is negatively correlated with the degree of resistance, suggesting that the resistance is manifested by a RNA-mediated mechanism. The segregation analysis showed that the transgene in the immune line 18-0-9 has an inheritance of two dominant loci and the other four highly resistant lines have a single dominant locus. Seven selected lines were tested further for resistance to three PRSV heterologous strains that originated in Hawaii, Thailand, and Mexico. Six of the seven lines showed varying degrees of resistance to the heterologous strains, and one line, 19-0-1, was immune not only to the homologous YK strain but also to the three heterologous strains. Thus, these CP-transgenic papaya lines with broad-spectrum resistance have great potential for use in Taiwan and other geographic areas to control PRSV.  相似文献   

9.
为明确引起云南文山州广南县西葫芦发生蕨叶、斑驳、泡状斑等症状的病原,从采集的西葫芦病样中提取总RNA,利用RT-PCR扩增后经电泳检测及测序获得大小为887bp的片段;经过BLAST序列同源性比对分析,该病原与番木瓜环斑病毒Papaya ringspot virus(PRSV)(KY996464)基因序列同源性达87%。由此可知,侵染文山州西葫芦的病毒病原是番木瓜环斑病毒。  相似文献   

10.
 从采集于海南儋州地区表现黄脉症状的长蒴母草(Lindernia anagallis)上分离到病毒分离物L2, DNA-A全序列分析结果表明, 全长2739个核苷酸(nt)(GenBank登录号:AY795900), 共编码6个ORF, 其中病毒链编码AV1(CP)、AV2, 互补链编码AC1、AC2、AC3、AC4。利用BLAST程序对DNA-A进行分析表明, 与L2 DNA-A有同源关系的病毒均为双生病毒科(Geminiviridae)菜豆金色黄花叶病毒属(Begomovirus)成员。进一步比较发现, L2 DNA-A与我国广东报道的广东番茄曲叶病毒(Tomato leaf curl Guangdong virus, ToLCGuV)(AY602165)全基因组核苷酸序列的同源性最近, 仅为77.0%, 说明L2为Begomovirus中的一个新种, 命名为长蒴母草黄脉病毒(Lindernia anagallis yellow vein virus, LAYVV)。与L2的IR区及各基因编码的氨基酸序列有最高同源性的病毒均来源于亚洲。利用DNA-B特异引物和DNA-β的特异引物, 均未检测到DNA-B和卫星DNA-β的存在。  相似文献   

11.
Pumpkin yellow vein mosaic disease (PYVMD) causes significant damage to pumpkin production throughout India. A begomovirus causing PYVMD in South India was characterized recently but the nature of virus causing the disease in North India was not known. Samples of PYVMD were obtained from North India and two putative begomoviruses were PCR‐amplified and sequenced. Comparison of complete DNA‐A sequences indicated that PYVMD in North and South India were caused by two distinct begomoviruses and shared only approximately 88% DNA‐A nucleotide identity. The South Indian isolate was most closely related to Squash leaf curl China virus between 91 and 96% identities, and the two North Indian isolates to Tomato leaf curl New Delhi virus between 94 and 96% identities. The South Indian isolate was previously shown to be transmitted by the indigenous biotype of Bemisia tabaci, however, the situation has since changed with the introduction of the B‐biotype to South India in 1999. Comparative transmission experiments between the indigenous biotype v/s the introduced B‐biotype for the time required for virus acquisition (30 min v/s 15 min), inoculation (15 min v/s 10 min) and incubation (30 min v/s 4 h) have indicated that the B‐biotype transmits the virus quickly and more efficiently than the indigenous biotype. An epidemic of PYVMD was recorded for the first time in South India in 2004 with disease incidences of up to 100% and significant yield losses. This may be due to a combination of several factors including the large numbers of B‐biotype populations, the ability of the B‐biotype to transmit the virus efficiently and the cultivation of susceptible varieties. These possibilities and the threat to pumpkin cultivation associated with the spread of the B‐biotype in India are discussed.  相似文献   

12.
 采自河北承德11 个表现矮花叶症状的玉米样品,用甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)和白草花叶病毒
(Pennisetum mosaic virus, PenMV)简并引物扩增了基因组3′ 端约2. 1 kb 的片段并进行测序。Blast 结果表明其中8 个样
品含有PenMV。扩增到的PenMV 序列均为2 135 nt,包括部分NIb 基因(985 nt)、完整的CP 基因(909 nt)和3′-UTR(241
nt)。这8 个分离物CP 基因和3′-UTR 与GenBank 上其他PenMV 分离物相应序列的核苷酸一致率分别为89. 8% ~ 93. 4%
和95. 9% ~ 97. 9% 。根据扩增的2 135 nt 序列和CP 基因序列构建系统发育树,8 个分离物与GenBank 上其他PenMV 分离
物都分为2 个组:山西组和承德组。重组分析表明CD9 的CP 基因存在重组。  相似文献   

13.
Global papaya production is severely affected by papaya ringspot disease caused by Papaya ringspot virus (PRSV). Management of this potyvirus is challenging, due to 1) its non-persistent transmission by numerous aphid species and 2) the diversity of PRSV strains that exists within a country or between different geographical regions. Papaya cultivars with transgenic resistance have reduced the impact of the disease. There are no effective alternatives to transgenic resistance available in areas where disease pressure is high. In Hawaii, transgenic papayas such as “SunUp” and “Rainbow” have remained resistant to PRSV more than two decades saving the commercial papaya industry. Following the success in Hawaii, researchers from other countries have focused on developing PRSV-resistant transgenic papaya. These transgenic cultivars often demonstrated an initial transitory resistance that was ultimately overcome by the virus. For other cases, resistance was inconsistent. That is, some transgenic lines were resistant while others were not. Transgenic cultivars are now losing PRSV-resistance for various reasons in China and Taiwan. In this review, we present an update on work with transgenic papaya with resistance to PRSV. The focus is on factors affecting transgenic resistance in papaya and our attempt to explain why the Hawaiian scenario of complete and durable resistance has not been replicated in other regions. The utilization of more recent technologies to the development of virus resistance in papaya is also discussed.  相似文献   

14.
Papaya ringspot virus type P (PRSV‐P) systemically infects Carica papaya and species belonging to the family Cucurbitaceae. Attempts to recover PRSV‐P from naturally infected cucurbit plants grown near or among diseased papaya trees have shown conflicting results worldwide. This study aimed to evaluate the natural infection of cucurbit species grown among and near papaya trees infected with PRSV‐P in Brazil. Natural infection of cucurbits with PRSV‐P occurred in zucchini squash but not in watermelon and cucumber. However, several attempts to recover PRSV‐P from numerous Cucurbita pepo cv. Caserta (zucchini squash) plants grown 5–80 m from diseased papaya trees in the field failed. Mechanical inoculations of Cucurbita pepo cv. Caserta, Cucurbita maxima cv. Exposição (pumpkin), Cucumis sativus cv. Primepack Plus (cucumber) and Citrullus lanatus cv. Crimson Sweet (watermelon) with five Brazilian PRSV‐P isolates showed that zucchini squash was the most susceptible species followed by watermelon and cucumber, while pumpkin was not infected. The results confirmed the variable susceptibility of cucurbit species to experimental and natural PRSV‐P infection. Given these facts, the control of the disease through roguing should focus mainly on diseased papaya plants, as has been practised successfully in Brazil for many years, and on those cucurbits particularly known to be susceptible to natural infection with PRSV‐P.  相似文献   

15.
ABSTRACT The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5' leader and 149-nt 3'-untranslated region and is polyadenylated at the 3' end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5'-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3'). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus "Ipomovirus." In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.  相似文献   

16.
利用电镜和酶联免疫法在云南省采集到的5份南瓜病样中检测到番木瓜环斑病毒(Papayaring spot virus,PRSV)。为了进一步从分子水平确定云南省南瓜病毒病原种类,并为下一步转基因育种提供抗性基因,采用反转录PCR(RT-PCR)方法扩增了5个分离物的外壳蛋白(coat protein,CP)基因片段,并克隆到pGEM-T载体中。核苷酸序列测定表明,番木瓜环斑病毒石屏分离物(PRSV-SP)和番木瓜环斑病毒蒙自分离物(PRSV-MZ)的CP基因长873nt,编码290个氨基酸,番木瓜环斑病毒峨山分离物(PRSV-ES)、番木瓜环斑病毒版纳分离物(PRSV-BN)和番木瓜环斑病毒宾川分离物(PRSV-BC),3个分离物CP基因长867nt,编码288个氨基酸。PRSV5个分离物核苷酸序列的同源性在94%以上,氨基酸序列的同源性在96%以上。与国内外17个分离物相比,核苷酸序列同源性为89.6%~98.7%,氨基酸序列同源性为86.5%~99.6%。其中PRSV-SP和来自于越南分离物PRSV-V47无论是核苷酸序列,还是氨基酸序列同源性都达到了最高,而5个分离物与来自于巴西(PRSV-BR)、美国(PRSV-USA)、墨西哥(PRSV-Y)核苷酸序列同源性均低于90%。  相似文献   

17.
The transmission efficiency of Papaya ringspot virus (PRSV) by three aphid vectors (i.e., Aphis gossypii, A. craccivora, and Myzus persicae) was studied. Efficiency was measured by single-aphid inoculation, group inoculation (using five aphids), duration of virus retention, and the number of plants following a single acquisition access period (AAP) to which the aphids could successfully transmit the virus. Single-aphid inoculation studies indicated that M. persicae (56%) and A. gossypii (53%) were significantly more efficient in transmitting PRSV than A. craccivora (38%). Further, in the former two species, the time required for initiation of the first probe on the inoculation test plant was significantly shorter compared to A. craccivora. PRSV transmission efficiency was 100% in all three species when a group of five aphids were used per plant. There was a perceptible decline in transmission efficiency as the sequestration period increased, although M. persicae successfully transmitted PRSV after 30 min of sequestration. A simple leaf-disk assay technique was employed for evaluating the transmission efficiency of three species of aphids. The results of leaf-disk assays also indicated that A. gossypii (48%) and M. persicae (56%) were more efficient PRSV vectors than A. craccivora. Using leaf-disk assays, the ability of individual aphids to inoculate PRSV serially to a number of plants was studied. Following a single AAP on an infected leaf, M. persicae was more efficient than the other two species with 52.5% transmission after the first inoculation access period (IAP). However, its inoculation efficiency significantly decreased with the second and subsequent IAPs. A. gossypii was able to transmit PRSV sequentially up to four successive leaf disks, but with significantly declining efficiency. Since A. gossypii is reported to be the numerically dominant vector in south India in addition to being a more efficient vector capable of inoculating PRSV to multiple plants, it should be the target vector for control strategies.  相似文献   

18.
ABSTRACT Three isolates of the bipartite begomovirus Pepper golden mosaic virus (PepGMV) were characterized for genomic and biological properties. The complete nucleotide sequences of the DNA-A and DNA-B components were determined from infectious clones of PepGMV-Serrano (PepGMV-Ser), PepGMV-Mosaic (PepGMV-Mo), and PepGMV-Distortion (PepGMV-D). Nucleotide sequence identity among PepGMV components ranged from 91 to 96% for DNA-A and from 84 to 99% for DNA-B, with each PepGMV component most closely related to the corresponding component of Cabbage leaf curl virus (CaLCV). However, phylogenetic relationships among begomovirus components were incongruent because DNA-A of PepGMV and CaLCV share an inferred evolutionary history distinct from that of DNA-B. The cloned components of PepGMV-Ser, -Mo, and -D were infectious by biolistic inoculation to pepper but differed in symptom expression: PepGMV-Ser exhibited a bright golden mosaic, PepGMV-Mo produced a yellow-green mosaic, and PepGMV-D caused only a mild mosaic and foliar distortion followed by a "recovery" phenotype in which leaves developing after initial symptom expression appeared normal. Differences in symptoms also were observed on tomato, tobacco, and Datura stramonium. Progeny virus derived from clones of PepGMV-Ser and -Mo were transmitted from pepper to pepper by the B biotype of Bemisia tabaci; progeny virus derived from PepGMV-D clones was not transmissible by the B biotype. Reassortant genomes derived from heterologous DNA components of the three isolates were infectious in all possible pairwise combinations, with symptom phenotype in pepper determined by the DNA-B component. Collectively, these results indicate that the three virus isolates examined may be considered distinct strains of PepGMV that have the capacity to exchange genetic material.  相似文献   

19.
To identify possible sites of viral attenuation, the complete nucleotide sequences of two isolates of Zucchini yellow mosaic virus (ZYMV) were determined; a severe isolate Z5-1 and an attenuated isolate from Z5-1 (designated ZYMV-2002). The viral genome of both isolates consisted of 9593 nucleotides in size and contained an open reading frame encoding a single polyprotein of 3080 amino acids. Comparison of the nucleotide sequences for Z5-1 and ZYMV-2002 revealed 14 nucleotide mutations, resulting in seven amino acid substitutions with four in the HC-Pro region, two in the CI region, and one in the NIb region. These results provide a genetic basis for future manipulation of the ZYMV reverse genetics system. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB188115 and AB188116  相似文献   

20.
ABSTRACT Sixangle foldwing, Dicliptera sexangularis (Acanthaceae), showing severe yellow mottle and leaf distortion symptoms was collected from the shoreline of Calusa Island (Lee County, FL). The putative virus was transmitted from infected D. sexangularis to healthy seedlings by mechanical, whitefly (Bemisia tabaci biotype B), and graft-inoculations. Different forms of geminivirus-like DNAs were detected in total DNA extracted from infected plants by Southern blot hybridization analyses using DNA-A and -B of Bean golden mosaic virus (BGMV) from Guatemala as probes. Preliminary polymerase chain reaction experiments and sequence comparisons indicated that the virus was a distinct bipartite begomovirus. The virus was designated Dicliptera yellow mottle virus (DiYMV). Replicative dsDNAs of DiYMV were extracted, digested with selected restriction enzymes, and cloned into a plasmid vector. Both DNA-A and -B were sequenced and compared with those of other begomoviruses. Phylogenetic analyses using AV1, AC1, and BV1 nucleotide sequences indicated that DiYMV has a close relationship with the New World begomoviruses, especially those distributed in the nearby geographic areas of the Florida coast and the Caribbean Basin. However, different percent nucleotide sequence identities and phylogenetic relationships were detected when different open reading frames (ORFs) of DiYMV were compared with their counterparts from begomoviruses from the Caribbean Basin. Based on phylogenetic analyses of the AC1 and BV1 ORFs, DiYMV was closely related to BGMV type II isolates, whereas sequence comparisons of the common region and the AC4-derived amino acid sequences indicated its close relationship with Potato yellow mosaic virus from Venezuela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号