首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerase chain reaction (PCR) assays were used to detect phytoplasmas in foliage samples from Chinaberry ( Melia azedarach ) trees displaying symptoms of yellowing, little leaf and dieback in Bolivia. A ribosomal coding nuclear DNA (rDNA) product (1·8 kb) was amplified from one or more samples from seven of 17 affected trees by PCR employing phytoplasma-universal rRNA primer pair P1/P7. When P1/P7 products were reamplified using nested rRNA primer pair R16F2n/R16R2, phytoplasmas were detected in at least one sample from 13 of 17 trees with symptoms. Restriction fragment length polymorphism (RFLP) analysis of P1/P7 products indicated that trees CbY1 and CbY17 harboured Mexican periwinkle virescence (16SrXIII)-group and X-disease (16SrIII)-group phytoplasmas, respectively. Identification of two different phytoplasma types was supported by reamplification of P1/P7 products by nested PCR employing X-disease-group-specific rRNA primer pair R16mF2/WXint or stolbur-group-related primer pair fSTOL/rSTOL. These assays selectively amplified rDNA products of 1656 and 579 bp from nine and five trees with symptoms, respectively, of which two trees were coinfected with both phytoplasma types. Phylogenetic analysis of 16S rDNA sequences revealed Chinaberry yellows phytoplasma strain CbY17 to be most similar to the chayote witches'-broom (ChWBIII-Ch10) agent, a previously classified 16SrIII-J subgroup phytoplasma. Strain CbY1 resembled the Mexican periwinkle virescence phytoplasma, a 16SrXIII-group member. The latter strain varied from all known phytoplasmas composing group 16SrXIII. On this basis, strain CbY1 was assigned to a new subgroup, 16SrXIII-C.  相似文献   

2.
臭矢菜丛枝病植原体的分子鉴定研究   总被引:1,自引:0,他引:1  
 本实验采用DAPI荧光显微镜、PCR、克隆和测序等技术,对海南臭矢菜丛枝病样进行了检测和鉴定。以染病臭矢菜总DNA为模板应用3对植原体特异性引物进行PCR扩增,获得PCR产物为16S rDNA(1 430 bp)、16S-23S rDNA(358bp)、rp DNA(1 294 bp)。应用DNA回收试剂盒获得了3个PCR扩增片断的纯化产物,并克隆到DH5α大肠杆菌中测序。应用DNAMAN和MEGA软件对获得的序列与NCBI数据库中植原体序列进行同源性分析和构建系统发育树。结果显示臭矢菜丛枝病植原体与花生丛枝病植原体序列同源性最高,16S rDNA的序列同源性为99.9%,16S-23S rDNA高达100%,rp为99.7%,因而将臭矢菜丛枝病植原体归为花生丛枝组(16SrⅡ),根据16S rDNA的RFLP分析,将其归为16SrⅡ-A亚组。  相似文献   

3.
榆树黄化病植原体的分子检测与鉴定   总被引:5,自引:0,他引:5  
 利用植原体16SrRNA基因的通用引物R16rrLF2/R16mR1和R16F2n/R16R2对山东泰山上发生的榆树(Ulmus parvifolia)黄化病感病植株总DNA进行巢式PCR扩增,得到了约1.2kb的特异性片段,从分子水平证实了榆树黄化病的病原(EY-China)为植原体。将扩增到的片段测序,并进行一致性和系统进化树分析。结果表明,该分离物属于植原体榆树黄化组(Candidatus Phytoplasma ulmi),与该组成员16SrRNA序列的一致性均在98.2%以上,其中与16SrV-B亚组中的纸桑丛枝(Paper mulberry wiches'-broom)和枣疯病(Jujube witches'-broom)植原体一致性最高,达到99.4%,在系统进化树中与该亚组成员聚类到同一个分支,说明该分离物属于植原体16SrV-B亚组。本研究首次对在中国引致榆树黄化病的植原体进行了分子检测,并通过核酸序列分析将其鉴定到亚组水平。  相似文献   

4.
Wang K  Hiruki C 《Phytopathology》2001,91(6):546-552
ABSTRACT This paper describes the identification and differentiation of phytoplasmas by a highly sensitive diagnostic technique, DNA heteroduplex mobility assay (HMA). Closely related phytoplasma isolates of clover proliferation (CP), potato witches'-broom (PWB), and alfalfa witches'-broom (AWB) were collected from the field from 1990 to 1999. The entire 16S rRNA gene and 16/23S spacer region were amplified by polymerase chain reaction (PCR) from the field samples and standard CP, PWB, and AWB phytoplasmas and were subjected to restriction fragment length polymorphism (RFLP) analysis and HMA. Two subgroups (I and II) of phytoplasmas in the CP group were identified by HMA but not by RFLP analysis. The results were confirmed by 16/23S spacer region sequence data analysis. After HMA analyses of the PCR-amplified 16/23S spacer region, 14 phytoplasma isolates from field samples were classified into two aster yellows subgroups: subgroup I, phytoplasma isolates from China aster (Callistephus chinensis) yellows, French marigold (Tagetes patula) yellows, cosmos (Cosmos bipinnatus cv. Dazzler) yellows, clarkia (Clarkia unguiculata) yellows, California poppy (Eschscholzia californica cv. Tai Silk) yellows, monarda (Monarda fistulosa) yellows, and strawflower (Helichrysum bracteatum) yellows; and subgroup II, phytoplasma isolates from zinnia (Zinnia elegans cv. Dahlia Flower) yellows, Queen-Annes-Lace (Daucus carota) yellows, scabiosa (Scabiosa atropurpurea cv. Giant Imperial) yellows, Swan River daisy (Brachycombe multifida cv. Misty Pink) yellows, pot marigold (Calendula officinalis) yellows, purple coneflower (Echinacea purpurea) yellows, and feverfew (Chrysanthemum parthenium) yellows. The results indicate that HMA is a simple, rapid, highly sensitive and accurate method not only for identifying and classifying phytoplasmas but also for studying the molecular epidemiology of phytoplasmas.  相似文献   

5.
The polymerase chain reaction (PCR) incorporating phytoplasma-specific ribosomal RNA primer pair P1 and P7 consistently amplified a product of expected size (1.8 kb) when template DNA for PCR was extracted from leaf and shoot samples of Gliricidia sepium from Honduras exhibiting symptoms of little-leaf disease (LLD). Restriction fragment length polymorphism analysis (RFLP) of amplified rDNA products indicated that phytoplasmas detected in LLD-affected G. sepium were very similar although not identical to phytoplasmas associated with pigeon pea witches'-broom (PPWB) disease in the western Caribbean region. Phytoplasma detection in trees was enhanced by reamplification of the P1/P7-primed PCR products with nested primers PPf1 and Tint. Nested reactions enabled additional positive detections in foliage of several G. sepium trees showing only mild or no apparent LLD symptoms. Neither rDNA RFLP nor sequence analyses of 16–23 S rRNA spacer regions revealed differences among Honduran LLD phytoplasma or between these strains and phytoplasmas detected in G. sepium with LLD-like symptoms in El Salvador, Guatemala, and Nicaragua, indicating that closely related, possibly identical, pathogens presently affect this tree species in all four countries.  相似文献   

6.
从表现黄化(丛枝)症状的桉树上采集病叶,抽提主脉总DNA,采用植原体通用引物与巢式引物进行PCR和巢式PCR扩增,对扩增产物进行克隆和序列测定,获得了植原体的近全长16S rRNA基因及部分16~23S rRNA基因间隔区序列.序列分析揭示,所获得的序列与已知植原体基因组相应区段的序列高度同源,与柳叶菜变叶植原体(epilobium phyllody)和白腊树丛枝植原体(ash witches'-broom)相应序列(GenBank登录号:AY101386和AY566302)同源率为99.9%,与白腊树黄化植原体(aster yellows BD2)相应序列和番茄巨芽植原体(tomato big bud)相应序列同源率分别为99.6%和99.3%.该序列构建的系统进化树表明,引起我国广州地区桉树黄化(丛枝)病的植原体属于16SrI组(即翠菊黄化组),将其暂命名为桉树黄化(丛枝)植原体广东株系(Eucalyp-tus yellowing and witches'-broom phytoplasma strain Guangdong,EYWB-Gd).建立了桉树植原体巢式PCR检测方法,对疑似病样及桉树组培苗进行了检测,多数疑似病样检测结果为阳性,供试的10株组培苗未发现阳性样品.  相似文献   

7.
A 2-year study of host association, molecular characterisation and vector transmission of a phytoplasma related to the 16SrII group in a vineyard of south-eastern Serbia was conducted. Grapevine, eight common weeds and 31 Auchenorrhyncha species were collected and analysed for phytoplasma presence. PCR-RFLP analyses of the 16S rRNA gene identified the presence of a new strain of phytoplasma related to the 16SrII group in P. hieracioides with symptoms of stunting or bushy stunting. Grapevine samples, all without symptoms, were negative for phytoplasma presence. Plants of Erigeron annuus, Cynodon dactylon, Daucus carota and P. hieracioides, either exhibiting symptoms of yellowing or without symptoms, were positive for the presence of stolbur phytoplasma. Among the tested cicada species, seven were infected with phytoplasmas from the aster yellows group, two with stolbur phytoplasma, two with 16SrII phytoplasma, and one with the 16SrV-C phytoplasma subgroup. The phytoplasma strain of the 16SrII group was recorded in approximately 50?% of the collected leafhopper species Neoaliturus fenestratus and in a few specimens of the planthopper Dictyophara europaea. The vector status of N. fenestratus was tested using the second generation of the planthopper in two separate transmission trials with P. hieracioides and periwinkle seedlings. In both tests, the leafhopper successfully transmitted 16SrII phytoplasma to exposed plants, proving its role as a natural vector of this phytoplasma in Europe. A finer molecular characterisation and phylogenetic relatedness of the 16SrII phytoplasma strain by sequence analyses of the 16S rRNA and ribosomal protein genes rpl22-rps3 indicated that it was most closely related to the 16SrII-E subgroup.  相似文献   

8.
In the United States, yellow starthistle (Centaurea solstitialis) is an annual invasive weed with Mediterranean origins. Malformed plants displaying witches' broom, fasciations, abortion of buds and flower virescence symptoms were observed in central Italy. Attempts to transmit the causal agent from the natural yellow starthistle host to periwinkle by grafting, resulted in typical symptoms of a phytoplasma, i.e. yellowing and shortening of internodes. The detection of phytoplasmas was obtained from both symptomatic yellow starthistle and periwinkle by the specific amplification of their 16S-23S rRNA genes. PCR amplification of extracted DNA from symptomatic plant samples gave a product of expected size. Asymptomatic plants did not give positive results. An amplicon obtained by direct PCR with universal primers P1/P7 was cloned and sequenced. The homology search using CLUSTALW program showed more than 99% similarity with Illinois elm yellows (ILEY) phytoplasma from Illinois (United States) and 97% with Brinjal little leaf (BLL) phytoplasma from India. Digestion of the nested-PCR products with restriction enzymes led to restriction fragment length polymorphism patterns referable to those described for phytoplasmas belonging to the clover proliferation (16S-VI) group. Since this is a previously undescribed disease, the name Centaurea solstitialis virescence has been tentatively assigned to it. This is a new phytoplasma with closest relationships to ILEY and BLL, but distinguishable from them on the basis of 16S rDNA homology, the different associated plant hosts and their geographical origin.  相似文献   

9.
Flax plants (Linum usitatissimum) of the white (album) flower variety exhibiting typical phytoplasma-like symptoms were found for the first time in Pakistan during 2011. The symptoms included floral virescence, phyllody, little leaf, stunting and stem fasciation. Light microscopy of hand-cut stem sections treated with Dienes’ stain showed blue areas in the phloem region of symptomatic plants. To confirm phytoplasma infection, total DNA was extracted separately from five plants showing virescence/phyllody and from five others showing fasciation, and was amplified by nested PCR using universal 16S rDNA phytoplasma primers P1/P7 followed by R16F2n/R16R2. All samples from plants with virescence/phyllody and fasciation yielded a 1,250 bp PCR product, and identical RFLP profiles using the enzymes AluI and HpaII. Direct sequencing of the 16S rDNA of one representative PCR amplicon (GenBank Accession No. JX567504 for phyllody and Accession No. JX567505 for fasciation) showed highest sequence identity (99%) with 16SrII ‘Candidatus Phytoplasma aurantifolia’ phytoplasmas, and phylogenetic analysis placed the phytoplasma in subgroup 16SrII-D. Disease was successfully transmitted by grafting and by the leafhopper Orosius albicinctus. To our knowledge, flax is a new natural host for 16SrII-D phytoplasmas in Pakistan.  相似文献   

10.
Peach (Prunus persica L.) plants with symptoms of yellowing, reddening, curling and leaf necrosis, premature defoliation and internode shortening were observed in production fields in Jujuy province (Argentina). A phytoplasma was detected by PCR using the universal primer pairs P1/P7 and R16F2n/R16R2 in all the symptomatic samples analysed. The RFLP profile of PCR products, amplified with R16F2n/R16R2 primers, shows that this phytoplasma, named Argentinean Peach Yellows (ArPY), belongs to subgroup 16Sr III-B. The phylogenetic analysis of the 1244 bp 16S rDNA cloned sequence, grouped the ArPY phytoplasma into the X-disease group with a closer relationship with CFSD, PssWB and ChTDIII phytoplasmas. This is the first report of a phytoplasma infecting peach trees in Argentina.  相似文献   

11.
Purple coneflower plants showing leaf reddening and flower abnormalities were observed in South Bohemia (Czech Republic). Transmission electron microscopy observations showed phytoplasmas in sieve cells of symptomatic plants but not in healthy ones. Polymerase chain reactions with universal and group specific phytoplasma primers followed by restriction fragment length polymorphism analyses of 16S rDNA allowed us to classify the detected phytoplasmas into the X-disease group, ribosomal subgroup 16SrIII-B. Sequence analyses of the 16S-23S ribosomal operon (1684 bp), ribosomal protein L15, and protein translocase genes (1566 bp) confirmed the closest relationship with phytoplasmas belonging to the 16SrIII ribosomal group, specifically the 16SrIII-B subgroup. The current study reports purple coneflower as a new host for the X-disease phytoplasma group in the Czech Republic and worldwide.  相似文献   

12.
Russian olive trees (Elaeagnus angustifolia) showing witches’ broom symptoms typical of phytoplasma infection were observed in the Urmia region of Iran. A phytoplasma named Russian olive witches’ broom phytoplasma (ROWBp-U) was detected from all symptomatic samples by amplification of the 16S rRNA gene and 16S/23S rDNA spacer region using the polymerase chain reaction (PCR) which gave a product of expected length. DNA from symptomless plants used as a negative control yielded no product. The sequence of the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U showed 99% similarity with the homologous genes of members of the aster yellows group. We also detected a phytoplasma in neighboring alfalfa plants (AlWBp-U) showing severe witches’ broom symptoms. An 1107 bp PCR product from the 16S rRNA gene showed 99% homology with the corresponding product in ROWBp-U, suggesting the presence of the same phytoplasma actively vectored in the area. Further observations showed that Russian olive trees with typical ROWB symptoms were present in an orchard near Tehran which is located over 530 km south-east of the original Urmia site. The corresponding sequence of this phytoplasma (ROWBp-T) showed 99% homology to that of the ROWBp-U. A sequence homology study based on the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U and other phytoplasmas showed that ROWBp-U is most closely related to the 16SrI group. To our knowledge, this is the first report of a phytoplasma infection in a member of the Elaeagnaceae.  相似文献   

13.
三叶草(Trifolium pratense Linn.)为车轴草属,蝶形花科多年生草本植物,原产亚洲南部和欧洲东南部,是一种世界性分布与栽培的优良牧草.因其花叶兼优、草姿美、绿期长而具有较高的观赏价值,近几年作为草坪用草被广泛种植.在自然条件下,三叶草很容易受到不同种植原体的侵染,国外已报道的侵染三叶草的植原体有:三叶草绿变植原体( Clover phyllody phytoplasma,CPh)和三叶草增殖植原体(Clover proliferation phytoplasma,CP)等,这些植原体分别属于16SrI组和16SrⅥ组[1,2].  相似文献   

14.
A large scale survey of diseased legume plants (mainly clover and alfalfa in the Fabaceae family) was conducted from 2009 to 2013 in four Economic Regions of Russia, Northern (Arkhangelsk and Vologda oblast), Central (Moscow oblast), Volga (Samara oblast) and West Siberian (Novosibirsk oblast). The majority of infected clover plants exhibited symptoms typical of clover phyllody (CPh), clover yellow edge (CYE), or clover proliferation (CP), and infected alfalfa plants exhibited symptoms typical of alfalfa witches’-broom (AWB). Of 161 symptomatic plants from 22 different legume species, 103 tested positive for phytoplasma infection. Phytoplasmas belonging to four groups and six subgroups were detected, of which 31.1% were group 16SrI, with the majority belonging to subgroup 16SrI-C- (causal agent of CPh disease), two belonging to 16SrI-B and two group 16SrI phytoplasmas not identified to the subgroup level;47.6% were group 16SrIII, with the majority belonging to subgroup 16SrIII-B or 16SrIII-B variant (causal agent of CYE disease), and one strain belonging to16SrIII-F; 8.7% were subgroup 16SrVI-A (causal agent of CP and AWB diseases); 9.7% were subgroup 16SrXII-A (causal agent of AWB disease); and 2.9% were mixed infected with subgroups 16SrIII-B and 16SrI-C. The predominant phytoplasma species detected varied by region. In the Northern and Central Regions, the majority of the phytoplasmas detected belonged to subgroups 16SrI-C and 16SrIII-B. In the West Siberian and the Volga Regions, the phytoplasmas predominately detected belonged to subgroups 16SrVI-A and 16SrXII-A, respectively. Subgroup 16SrIII-F was detected in a single plant in the West Siberian Region and a mixed infection of 16SrIII-B and 16SrI-C was detected in three plants, one in the Northern Region and two in the Central Region. Eleven species of insects of the order Hemiptera, suborder Auchenorrhyncha, were collected from leguminous plants in the Moscow oblast of the Central Region. Euscelis incisus and Aphrodes bicinctus were the most prevalent species and may be potential phytoplasma vectors in the Central Region.  相似文献   

15.
2022年首次在广州市发现园林植物雪花木小叶病病株, 采用分子生物学技术对其进行植原体的种类鉴定。以雪花木叶片总DNA为模板, 利用植原体16S rRNA通用引物P1/P7进行PCR扩增, 获得广东雪花木小叶病植原体(BLL-GD2022)16S rRNA基因片段(1 811 bp, GenBank登录号为OQ625536)。16S rRNA序列相似性显示, BLL-GD2022与16SrVI组植原体株系的相似性最高, 为97.05%~99.83%, 其中与隶属于16SrVI-D亚组的10个植原体株系相似性为99.21%~99.83%。系统进化分析显示, BLL-GD2022与16SrVI组各植原体株系聚类在一个大分支, 其中与16SrVI-D亚组成员聚类在一个小分支, 亲缘关系最近。基于16S rRNA序列的iPhyClassifier限制性内切酶虚拟RFLP分析表明, BLL-GD2022与16SrVI-D亚组的参考株系Brinjal little leaf phytoplasma (GenBank登录号为X83431)的酶切图谱一致, 相似系数为1.00。基于上述研究结果, 明确广州市雪花木小叶病植原体隶属16SrVI-D亚组成员。本研究首次在园林植物雪花木上检测到植原体, 通过16S rRNA序列分析明确为16SrVI-D亚组成员, 为开展16SrVI-D亚组植原体在蔬菜、花卉和园林植物的发生监测及病害防控提供科学依据。  相似文献   

16.
ABSTRACT Epidemics of aster yellows in lettuce in Ohio are caused by at least seven distinct phytoplasma strains in the aster yellows (AY) group. Five of the strains are newly reported: AY-BW, AY-WB, AY-BD3, AY-SS, and AY-SG. All seven strains were characterized based on symptoms in aster and lettuce, and by polymerase chain reaction (PCR). Strain AY-BD2 (formerly 'Bolt') causes yellowing and leaf distortion in lettuce and bolting in aster, whereas strain AY-S (formerly 'Severe') causes stunting, leaf clustering, and phyllody. Strain AY-WB causes yellowing and wilting in lettuce and witches'-broom in aster. Strain AY-SG induces horizontal growth in lettuce and aster plants. Strain AY-BW causes chlorosis of emerging leaves and abnormally upright growth of leaf petioles. AY-SS causes symptoms similar to those caused by AY-S but has a different PCR-restriction fragment length polymorphism (RFLP) banding pattern. Strains AY-BD2 and AY-BD-3 cause mild leaf and stem distortion in lettuce but are differentiated by PCR-RFLP. All phytoplasma strains collected from lettuce in Ohio belong to the 16SrI group. AY-WB belongs to the 16SrI-A subgroup and the other six belong to the 16SrI-B subgroup. Five of the seven strains were distinguished from each other by primer typing. The results of phylogenetic analyses of sequences of the 16S rRNA genes were basically consistent with the classification based on PCR-RFLP, in which AY-WB clustered with phytoplasmas of the 16rIA subgroup and the other Ohio lettuce strains clustered with phytoplasmas in the 16SrI-B subgroup.  相似文献   

17.
The genetic relatedness of phytoplasmas associated with dieback (PDB), yellow crinkle (PYC) and mosaic (PM) diseases in papaya was studied by restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and 16S rRNA/23S rRNA spacer region (SR). RFLP and SR sequence comparisons indicated that PYC and PM phytoplasmas were identical and most closely related to members of the faba bean phyllody strain cluster. By comparison the PDB phytoplasma was most closely related to Phormium yellow leaf (PYL) phytoplasma from New Zealand and the Australian grapevine yellows (AGY) phytoplasma from Australia. These three phytoplasmas cluster with the stolbur and German grapevine yellows (VK) phytoplasmas within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify gene products from members of the AY strain cluster, also amplified a DNA product from the PDB phytoplasma but not from either the PYC or PM phytoplasmas. Primers deduced from the 16S rRNA/SR selectively amplified rDNA sequences from the PDB and AGY phytoplasmas but not from other members of the stolbur strain cluster. Similarly, primers designed from 16S rRNA/SR amplified rDNA from the PYC and PM phytoplasmas but not from the PDB phytoplasma. These primers may provide for more specific detection of these pathogens in epidemiological studies.  相似文献   

18.
In February 2007, sweet orange trees with characteristic symptoms of huanglongbing (HLB) were encountered in a region of S?o Paulo state (SPs) hitherto free of HLB. These trees tested negative for the three liberibacter species associated with HLB. A polymerase chain reaction (PCR) product from symptomatic fruit columella DNA amplifications with universal primers fD1/rP1 was cloned and sequenced. The corresponding agent was found to have highest 16S rDNA sequence identity (99%) with the pigeon pea witches'-broom phytoplasma of group 16Sr IX. Sequences of PCR products obtained with phytoplasma 16S rDNA primer pairs fU5/rU3, fU5/P7 confirm these results. With two primers D7f2/D7r2 designed based on the 16S rDNA sequence of the cloned DNA fragment, positive amplifications were obtained from more than one hundred samples including symptomatic fruits and blotchy mottle leaves. Samples positive for phytoplasmas were negative for liberibacters, except for four samples, which were positive for both the phytoplasma and 'Candidatus Liberibacter asiaticus'. The phytoplasma was detected by electron microscopy in the sieve tubes of midribs from symptomatic leaves. These results show that a phytoplasma of group IX is associated with citrus HLB symptoms in northern, central, and southern SPs. This phytoplasma has very probably been transmitted to citrus from an external source of inoculum, but the putative insect vector is not yet known.  相似文献   

19.
紫花苜蓿丛枝病植原体的分子检测及鉴定   总被引:1,自引:0,他引:1  
 利用植原体16S rRNA基因通用引物对云南昆明发生的苜蓿丛枝病感病植株总DNA进行巢式PCR扩增,得到1.2kb的特异片段,从分子水平证实了苜蓿丛枝病的病原是植原体。从PCR产物的RFLP酶切图谱可看出,该植原体株系的酶切图谱与马里兰翠菊黄化植原体(AY1)相同。对扩增片段进行克隆及序列测定后,利用最小进化法做Bootstrap验证的系统进化树,表明苜蓿丛枝病植原体为Candidatus Phytoplasma asteris成员之一,与植原体16SrI-B亚组成员关系密切。  相似文献   

20.
Winter oilseed rape grown in several areas in South Bohemia showed symptoms of stunting, leaf reddening and extensive malformation of floral parts. Phytoplasmas were consistently observed by using electron microscopy only in phloem tissue of symptomatic plants. DNA isolated from infected and healthy control plants was used in PCR experiments. Primer pairs R16F2/R2, P1/P7 and rpF2/R2, amplifying, respectively, 16S rDNA, 16S rDNA plus spacer region and the beginning of the 23S and ribosomal protein gene L22 specific for phytoplasmas, were used. According to RFLP and sequence analyses of PCR products, the phytoplasma from rape was classified in the aster yellows phytoplasma group, subgroup 16SrI-B. The PCR products from the Czech phytoplasma-infected rape also had RFLP profiles identical to those of phytoplasma strains from Italian Brassica . This first molecular characterization of phytoplasmas infecting rape compared with strains from Brassica does not, however, clearly indicate differences among isolates of the same 16SrI-B subgroup. Further studies on other chromosomal DNA portions could help the research on host specificity or on geographical distribution of these phytoplasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号