首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Epidemics of aster yellows in lettuce in Ohio are caused by at least seven distinct phytoplasma strains in the aster yellows (AY) group. Five of the strains are newly reported: AY-BW, AY-WB, AY-BD3, AY-SS, and AY-SG. All seven strains were characterized based on symptoms in aster and lettuce, and by polymerase chain reaction (PCR). Strain AY-BD2 (formerly 'Bolt') causes yellowing and leaf distortion in lettuce and bolting in aster, whereas strain AY-S (formerly 'Severe') causes stunting, leaf clustering, and phyllody. Strain AY-WB causes yellowing and wilting in lettuce and witches'-broom in aster. Strain AY-SG induces horizontal growth in lettuce and aster plants. Strain AY-BW causes chlorosis of emerging leaves and abnormally upright growth of leaf petioles. AY-SS causes symptoms similar to those caused by AY-S but has a different PCR-restriction fragment length polymorphism (RFLP) banding pattern. Strains AY-BD2 and AY-BD-3 cause mild leaf and stem distortion in lettuce but are differentiated by PCR-RFLP. All phytoplasma strains collected from lettuce in Ohio belong to the 16SrI group. AY-WB belongs to the 16SrI-A subgroup and the other six belong to the 16SrI-B subgroup. Five of the seven strains were distinguished from each other by primer typing. The results of phylogenetic analyses of sequences of the 16S rRNA genes were basically consistent with the classification based on PCR-RFLP, in which AY-WB clustered with phytoplasmas of the 16rIA subgroup and the other Ohio lettuce strains clustered with phytoplasmas in the 16SrI-B subgroup.  相似文献   

2.
Trade in ornamental plant species comprises a significant segment in the economies of countries in Europe, North America and Asia. Since the quality of ornamental plants is adversely affected by diseases attributed to phytoplasmas, we surveyed plant collections in botanical gardens and floriculture farms in Lithuania for phytoplasmal diseases. Seventeen ornamental species belonging to nine plant families exhibited disease symptoms including general yellowing and stunting, proliferation of shoots, phyllody, virescence and reduced size of flowers, and reddening of leaves. Analysis of the phytoplasmal 16S rRNA gene sequences amplified by PCR revealed that the plants were infected by phytoplasmas belonging to four distinct subgroups (16SrI-A, 16SrI-B, 16SrI-L, and 16SrI-M) of group 16SrI (aster yellows phytoplasma group) and indicated the presence of sequence-heterogeneous 16S rRNA genes in newly recognized strains belonging to subgroups 16Sr-L and 16SrI-M. Infections by these diverse phytoplasmas in a wide array of plant species and families suggests that unidentified, polyphagous insect vectors may actively transmit phytoplasmas threatening the Baltic region's ornamental plant industry.  相似文献   

3.
Okra plants with bunchy top disease were found to be prevalent during the period of August–October 2009 in New Delhi, India. The common symptoms observed were shortening of internodes, aggregation of leaves at the apical region, reduced leaf lamina, stem reddening, fruit bending, phyllody and stunting of plants. The disease incidence ranged from 2–60% accompanied by significant reductions in production of both flowers and seeds. Nested polymerase chain reaction targeting phytoplasma specific 16S rDNA and rp genes revealed all symptomatic plants to be positive for phytoplasma. Homology searches depicted its closest identity to phytoplasmas of 16SrI ‘Candidatus Phytoplasma asteris’, like the Sugarcane yellows and Periwinkle phyllody phytoplasmas. Profiles for 16S rDNA obtained with 10 restriction endonucleases, differed in TaqI sites for two phytoplasma isolates (BHND5 & 10) from the standard pattern of 16SrI-B subgroup, the latter was seen in the case of isolate BHND1. Restriction fragment analysis of rp genes with AluI, Tsp509I matched with patterns of the rpI-B phytoplasmas. Phylogenetic reconstruction of rp genes revealed okra bunchy top phytoplasma (BHND1) as a divergent isolate, the subsequent sequence analysis of which showed the presence of a novel BslI site. These significant differences suggest that multiple phytoplasma strains are affecting okra, one of which is a diverging lineage within the 16SrI-B group while others represent a new 16SrI subgroup not reported so far. Additionally, this is the first report of a phytoplasma associated disease in okra plants worldwide.  相似文献   

4.
Aster yellows group phytoplasmas were reclassified by analysis of the 16S rRNA gene sequence, their phylogeny and the presence of interoperon heterogeneity. Nine phytoplasmas were classified into subgroups 16SrI-B and 16SrI-D using the 16S rRNA gene sequence. Then, based on the presence of interoperon heterogeneity, subgroup 16SrI-B phytoplasmas were differentiated into three subunits as 16SrI-B(a): mulberry dwarf, sumac witches’ broom and porcelain vine witches’ broom; 16SrI-B(b): angustata ash witches’ broom and Japanese spurge yellows; and 16SrI-B(c): onion yellow dwarf, water dropwort witches’ broom and hare’s ear yellow dwarf phytoplasma.  相似文献   

5.
The identity of the presumed phytoplasmal pathogen associated with cranberry false-blossom disease has never been fully clarified. In the present study a molecular-based procedure was employed to determine the identity of the phytoplasma. Tissues of cranberry plants exhibiting cranberry false-blossom symptoms were collected from multiple bogs on each of three randomly selected commercial cranberry farms in New Jersey. Leafhoppers, including the known vector Limotettix vaccinii (Van Duzee) (=Scleroracus vaccinii, Euscellis striatulus) and the sharp-nosed leafhopper Scaphytopius magdalensis (Provancher), a known vector of blueberry stunt disease, were collected from two different farms in New Jersey. Nested PCR assays and RFLP analysis of 16S rRNA gene sequences were employed for the detection and identification of the associated phytoplasmas. All of 20 cranberry plants sampled and five out of 14 batches of leafhoppers tested positive for phytoplasma. Virtual RFLP and sequence analyses revealed that all the associated phytoplasmas were members or variants of a new subgroup, 16SrIII-Y. Phylogenetic analysis of 16S rRNA sequences indicated that cranberry false-blossom phytoplasma strains represented a lineage distinct from other 16SrIII subgroups. This is the first report confirming that a new phytoplasma (designated as a new subgroup 16SrIII-Y) is associated with cranberry false-blossom disease and associated with both leafhopper species in New Jersey.  相似文献   

6.
Winter oilseed rape grown in several areas in South Bohemia showed symptoms of stunting, leaf reddening and extensive malformation of floral parts. Phytoplasmas were consistently observed by using electron microscopy only in phloem tissue of symptomatic plants. DNA isolated from infected and healthy control plants was used in PCR experiments. Primer pairs R16F2/R2, P1/P7 and rpF2/R2, amplifying, respectively, 16S rDNA, 16S rDNA plus spacer region and the beginning of the 23S and ribosomal protein gene L22 specific for phytoplasmas, were used. According to RFLP and sequence analyses of PCR products, the phytoplasma from rape was classified in the aster yellows phytoplasma group, subgroup 16SrI-B. The PCR products from the Czech phytoplasma-infected rape also had RFLP profiles identical to those of phytoplasma strains from Italian Brassica . This first molecular characterization of phytoplasmas infecting rape compared with strains from Brassica does not, however, clearly indicate differences among isolates of the same 16SrI-B subgroup. Further studies on other chromosomal DNA portions could help the research on host specificity or on geographical distribution of these phytoplasmas.  相似文献   

7.
A large scale survey of diseased legume plants (mainly clover and alfalfa in the Fabaceae family) was conducted from 2009 to 2013 in four Economic Regions of Russia, Northern (Arkhangelsk and Vologda oblast), Central (Moscow oblast), Volga (Samara oblast) and West Siberian (Novosibirsk oblast). The majority of infected clover plants exhibited symptoms typical of clover phyllody (CPh), clover yellow edge (CYE), or clover proliferation (CP), and infected alfalfa plants exhibited symptoms typical of alfalfa witches’-broom (AWB). Of 161 symptomatic plants from 22 different legume species, 103 tested positive for phytoplasma infection. Phytoplasmas belonging to four groups and six subgroups were detected, of which 31.1% were group 16SrI, with the majority belonging to subgroup 16SrI-C- (causal agent of CPh disease), two belonging to 16SrI-B and two group 16SrI phytoplasmas not identified to the subgroup level;47.6% were group 16SrIII, with the majority belonging to subgroup 16SrIII-B or 16SrIII-B variant (causal agent of CYE disease), and one strain belonging to16SrIII-F; 8.7% were subgroup 16SrVI-A (causal agent of CP and AWB diseases); 9.7% were subgroup 16SrXII-A (causal agent of AWB disease); and 2.9% were mixed infected with subgroups 16SrIII-B and 16SrI-C. The predominant phytoplasma species detected varied by region. In the Northern and Central Regions, the majority of the phytoplasmas detected belonged to subgroups 16SrI-C and 16SrIII-B. In the West Siberian and the Volga Regions, the phytoplasmas predominately detected belonged to subgroups 16SrVI-A and 16SrXII-A, respectively. Subgroup 16SrIII-F was detected in a single plant in the West Siberian Region and a mixed infection of 16SrIII-B and 16SrI-C was detected in three plants, one in the Northern Region and two in the Central Region. Eleven species of insects of the order Hemiptera, suborder Auchenorrhyncha, were collected from leguminous plants in the Moscow oblast of the Central Region. Euscelis incisus and Aphrodes bicinctus were the most prevalent species and may be potential phytoplasma vectors in the Central Region.  相似文献   

8.
This study examined whether genes that are less conserved than the 16S rRNA gene can distinguish Candidatus Phytoplasma australiense strains that are identical based on their 16S rRNA genes, with a view to providing insight into their origins and distribution, and any patterns of association with particular plant hosts. Sequence analysis of the tuf gene and rp operon showed that Ca . P. australiense strains could be differentiated into four subgroups, named 16SrXII-B ( tuf -Australia I; rp -A), 16SrXII-B ( tuf -New Zealand I; rp -B), 16SrXII-B ( tuf -New Zealand II) and 16SrXII-B ( rp -C). Strawberry lethal yellows 1, strawberry green petal, Australian grapevine yellows, pumpkin yellow leaf curl and cottonbush witches' broom phytoplasmas were designated members of the 16SrXII-B ( tuf -Australia I; rp -A) subgroup. The strawberry lethal yellows 2 and cottonbush reduced yellow leaves phytoplasmas were assigned to the 16SrXII ( tuf -New Zealand II; rp -B) subgroup. No relationship was observed between these phytoplasma subgroups and collection date, location or host plant. However, the study revealed evolutionary divergence in the 16SrXII group.  相似文献   

9.
A total of 62 phytoplasma isolates were collected from North America, Europe and Asia and analysed by heteroduplex mobility assay (HMA) of the 16/23S spacer region amplified by the polymerase chain reaction. The results revealed wide genetic diversity among the phytoplasmas studied and a number of new phytoplasma strains were identified from known or new plant hosts in Alberta, Canada. Two distinctive subgroups were revealed by HMA in phytoplasmas associated with canola yellows, Chinese aster yellows, dandelion yellows and monarda yellows. In Alberta, two subgroups of the aster yellows group of phytoplasmas, I-A and I-B, were prevalent in naturally infected field crops and ornamentals in open gardens. The results indicated that HMA is a simple, but rapid and accurate, alternative method for the detection and estimation of genetic divergence of phytoplasmas when finer molecular characterization of phytoplasmas is required at the subgroup level.  相似文献   

10.
对内蒙古农业大学校园内表现花器绿变症状的菊花样品进行采集和DNA提取,应用植原体16S rRNA基因和rp基因的引物进行巢式PCR扩增,从感病样品中分别扩增得到了长度均约为1.2 kb的片段。序列一致性分析表明,菊花绿变植原体16S rRNA基因与翠菊黄化植原体匈牙利风信子株系(GenBank登录号MN080271)、印度玉米株系(KY565571)、印度繁缕株系(KC623537)和印度马铃薯株系(KC312703)的核酸一致性最高,为99.9%,rp基因序列与翠菊黄化植原体立陶宛洋葱株系(GU228514)的核酸一致性最高,为99.8%。基于16S rRNA基因和rp基因构建系统进化树时发现,菊花绿变植原体均与16SrI-B亚组成员聚为一起。16S rRNA基因相似性系数分析表明,菊花绿变植原体与洋葱黄化植原体(AP006628)的相似性系数最高为1.00,洋葱黄化植原体(AP006628)在分类上属于16SrI-B亚组。因此,我们可以确定该菊花绿变植原体属于16SrI-B亚组。这是我国首次报道菊花绿变病的发生。  相似文献   

11.
Phytoplasmas infecting sour cherry and lilac in Lithuania were found to represent two lineages related to clover phyllody phytoplasma (CPh), a subgroup 16SrI-(R/S)C (formerly 16SrI-C) strain exhibiting rRNA interoperon sequence heterogeneity. 16S rDNAs amplified from the cherry bunchy leaf (ChBL) and lilac little leaf (LcLL) phytoplasmas were identical or nearly identical to those of operon rrnA and operon rrnB, respectively, of CPh. There was no evidence of 16S rRNA interoperon sequence heterogeneity in either LcLL or ChBL phytoplasma. Based on collective RFLP patterns of 16S rDNA, ChBL was classified in subgroup 16SrI-R, and LcLL was classified in new subgroup 16SrI-S. The ribosomal protein (rp) gene sequences from LcLL phytoplasma were identical to those of CPh, and strain LcLL was classified in rp subgroup rpI-C. By contrast, rp gene sequences from ChBL phytoplasma differed from those of subgroup rpI-C; based on RFLP patterns of rp gene sequences, ChBL was classified in new rp subgroup rpI-O. Single nucleotide polymorphisms (SNPs), designated here by a new SNP convention, marked members of rp subgroup rpI-C, and distinguished LcLL and CPh from ChBL and other non-rpI-C phytoplasmas in group 16SrI. The results raise questions concerning phytoplasma biodiversity assessment based on rRNA genes alone and encourage the supplemental use of a single copy gene in phytoplasma identification and classification, while drawing attention to a possible role of horizontal gene transfer in the evolutionary history of these lineages.  相似文献   

12.
Different molecular procedures were compared for the detection of aster yellows phytoplasmas (AYP) in the leafhopper vectorsMacrosteles quadripunctulatus (Kirschbaum),Euscelidius variegatus (Kirschbaum) andEuscelis incisus (Kirschbaum). Polymerase chain reaction (PCR) with universal and group-specific primers designed on the 16S-rDNA sequence was most sensitive in nested assays. A dot-blot procedure with an oligoprobe designed on the 16S-rDNA was less sensitive and consistent to detect phytoplasmas in total insect DNA, but consistently detected amplicons from direct PCR. The dot-blot assay with a probe based on a phytoplasma plasmid sequence detected AYP in most vector specimens and did not react with DNAs from leafhoppers infected by flavescence dorée and psyllids infected by apple proliferation phytoplasmas. This last assay is almost devoid of contamination risks, faster and cheaper compared to PCR, therefore it has to be preferred for field-scale analysis of leafhopper populations. http://www.phytoparasitica.org posting Feb. 24, 2004.  相似文献   

13.
Twelve Argentinean 16SrIII (X-disease)-group phytoplasma strains were analyzed. Ten of them, detected in daisy (Bellis perennis), garlic (Allium sativum), ‘lagaña de perro’ (Caesalpinia gilliesii), periwinkle (Catharanthus roseus), ‘rama negra’ (Conyza bonariensis), ‘romerillo’ (Heterothalamus alienus), summer squash (Cucurbita maxima var. zapallito) and tomato (Solanum lycopersicum), are new phytoplasma strains while two strains, detected in garlic and China tree (Melia azedarach), have been previously described. The plants showed typical symptoms of phytoplasma diseases, such as leaf size reduction, proliferation, stunting and virescence. The identification and genetic diversity analysis of the phytoplasmas were performed based on 16S rDNA and ribosomal protein gene sequences. The classification into 16Sr groups and subgroups was established by actual and virtual RFLP analysis of the PCR products (R16F2/R16R2) compared with reference strains. According to the classification scheme, strains HetLL and ConWB-A and B represent two new subgroups 16SrIII-W and X, respectively. On the other hand, strains CatLL, TomLL and CaesLL are related to subgroup 16SrIII-B, and strains BellVir, TomRed, CucVir and GDIII-207 are related to subgroup 16SrIII-J. Ribosomal protein genes were amplified using primers rpF1/rpR1 and rpIIIF1/rpIIIR1. RFLP analysis performed with AluI, DraI and Tru1I (MseI isoschizomer) distinguished three new rp profiles within subgroup 16SrIII-B, one for subgroup 16SrIII-J, and one shared with strains of the new subgroups 16SrIII-W and X. The phylogenetic analysis based on 16S rDNA and ribosomal protein gene sequences confirmed the separation of HetLL and ConWB strains in two new subgroups and the close relatedness among subgroup J phytoplasmas, which have been detected only in South America.  相似文献   

14.
Phytoplasmas causing a severe decline of three tree species, i.e., Rhus javanica, Hovenia tomentella and Zizyphus jujuba, in Japan were examined for their transmissibility by a leafhopper species Hishimonus sellatus, and for their phylogenetic relatedness. By H. sellatus, Rhus yellows (RhY) phytoplasma was transmissible to white clover and periwinkle seedlings, causing typical symptoms in these plants. Jujube witches' broom (JWB) phytoplasma was also transferred to the host plant, Z. jujuba, by the leafhopper. Because JWB phytoplasma was transmitted to Hovenia tomentella and caused the same symptoms as Hovenia witches' broom (HWB), JWB phytoplasma may be very closely related to HWB phytoplasma. RFLP analysis of the PCR products of 16S rDNA revealed that RhY phytoplasma belongs to the Aster yellows (AY) group, and JWB and HWB phytoplasmas belong to a different group (possibly Elm yellows group). Thus, we found that one species of leafhopper can carry phylogenetically distant phytoplasmas. Received 23 April 2001/ Accepted in revised form 29 October 2001  相似文献   

15.
A new phytoplasma disease of Rehmannia glutinosa var. purpurea was observed in the Czech Republic in 1998. Infected plants showing severely proliferating shoots, leaves reduced in size with vein clearing and chlorosis, shortened internodes and virescent petals died in advanced stages of the disease. Electron microscopy examination of the ultra-thin sections revealed the presence of numerous polymorphic bodies in phloem tissue of leaf midribs and petioles. The disease was successfully transmitted from infected plant via a dodder bridge into periwinkle ( Catharanthus roseus ). The phytoplasma aetiology of this disease was further confirmed by polymerase chain reaction (PCR) using universal primers R16F2/R16R2. Restriction fragment length polymorphism (RFLP) analysis of amplification products indicated the presence of aster yellows related phytoplasmas (16SrI-B) in naturally infected samples of R. glutinosa var . purpurea and in symptomatic periwinkle after dodder transmission of the agent. A comparison of the amplified sequence with 17 sequences available in the GenBank confirmed the classification of the phytoplasma in the subgroup 16SrI-B. This is the first report of natural occurrence of phytoplasma-associated disease in R. glutinosa var. purpurea.  相似文献   

16.
Pepper witches’ broom (PWB) disease was observed in a field in Yangling, Shaanxi Province, China. The result of mechanical inoculation test for this disease was negative. Phytoplasma-like bodies were observed in ultrathin sections of petiole tissues of symptomatic samples. 16S rRNA gene and tuf gene of phytoplasma were amplified from the total DNA of symptomatic samples. Phylogeny analysis of the 16S rRNA gene and tuf gene suggested that the pepper witches’ broom associated phytoplasma belongs to the subgroup 16SrI-B, which was confirmed by the RFLP analysis of the 16S rRNA gene. The phytoplasma subgroup 16SrI-B was also detected in the vector Cicadella viridis trapped from the infected field. To our knowledge, this is the first report of 16SrI-B phytoplasma causing pepper witches’ broom in China.  相似文献   

17.
紫花苜蓿丛枝病植原体的分子检测及鉴定   总被引:1,自引:0,他引:1  
 利用植原体16S rRNA基因通用引物对云南昆明发生的苜蓿丛枝病感病植株总DNA进行巢式PCR扩增,得到1.2kb的特异片段,从分子水平证实了苜蓿丛枝病的病原是植原体。从PCR产物的RFLP酶切图谱可看出,该植原体株系的酶切图谱与马里兰翠菊黄化植原体(AY1)相同。对扩增片段进行克隆及序列测定后,利用最小进化法做Bootstrap验证的系统进化树,表明苜蓿丛枝病植原体为Candidatus Phytoplasma asteris成员之一,与植原体16SrI-B亚组成员关系密切。  相似文献   

18.
 本研究对山东省11个地区的枣疯病样品进行了鉴定和分子变异分析。以样品总DNA为模板,经扩增和序列测定,分别得到16S rRNA (1 432 bp)、核糖体蛋白基因rp (1 196 bp)、转运蛋白基因secA (836 bp) 和secY (1 421 bp) 的序列,secA基因序列是首次从枣疯病植原体中扩增获得。对获得的序列与NCBI数据库中相关植原体序列进行聚类和核苷酸变异分析,结果显示山东省枣疯病植原体属于16SrⅤ-B、rpⅤ-C、secYⅤ-C亚组,相对于16S rRNA基因,rp,secAsecY变异更大,非同义突变更多,更利于对国内不同来源的枣疯病植原体的精细系统进化分析。  相似文献   

19.
ABSTRACT Antisera raised against phloem-limited phytoplasmas generally react only with the phytoplasma strain used to produce the antigen. There is a need for an antiserum that reacts with a variety of phytoplasmas. Here, we show that an antiserum raised against the SecA membrane protein of onion yellows phytoplasma, which belongs to the aster yellows 16S-group, detected eight phytoplasma strains from four distinct 16S-groups (aster yellows, western X, rice yellow dwarf, and elm yellows). In immunoblots, approximately 96-kDa SecA protein was detected in plants infected with each of the eight phytoplasmas. Immunohistochemical staining of thin sections prepared from infected plants was localized in phloem tissues. This antiserum should be useful in the detection and histopathological analysis of a wide range of phytoplasmas.  相似文献   

20.

Plants of corn (Zea mays L.) exhibiting symptoms of stunting and leaf reddening were assayed for the presence of phytoplasma gene sequences through the use of phytoplasma rRNA and ribosomal protein gene and maize bushy stunt (MBS) phytoplasma-specific oligonucleotide primers in polymerase chain reactions (PCR). Polymorphisms in 16S rDNA amplified from diseased plants were those characteristic of phytoplasmas classified in the16S rRNA gene group 16SrI, subgroup IB, of which MBS phytoplasma is a member. Amplification of ribosomal protein (rp) gene sequences in PCR primed by phytoplasma-specific primers confirmed presence of a phytoplasma in the diseased plants. Restriction fragment length polymorphism (RFLP) patterns of the amplified phytoplasma rp gene sequences were similar or identical to those observed for a known strain of MBS phytoplasma. In separate PCR, an MBS-specific oligonucleotide pair primed amplification of a MBS-characteristic DNA from templates derived from the diseased corn. Our data provide the first firm evidence for the presence of maize bushy stunt phytoplasma in corn in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号