首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT To investigate host specialization in Macrophomina phaseolina, the fungus was isolated from soybean, corn, sorghum, and cotton root tissue and soil from fields cropped continuously to these species for 15 years in St. Joseph, LA. Chlorate phenotype of each isolate was determined after growing on a minimal medium containing 120 mM potassium chlorate. Consistent differences in chlorate sensitivity were detected among isolates from different hosts and from soil versus root. To further explore genetic differentiation among fungal isolates from each host, these isolates were examined by restriction fragment length polymorphism and random amplified polymorphic DNA (RAPD) analysis. No variations were observed among isolates in restriction patterns of DNA fragments amplified by polymerase chain reaction covering the internal transcribed spacer region, 5.8S rRNA and part of 25S rRNA, suggesting that M. phaseolina constitutes a single species. Ten random primers were used to amplify the total DNA of 45 isolates, and banding patterns resulting from RAPD analysis were compared with the neighbor-joining method. Isolates from a given host were genetically similar to each other but distinctly different from those from other hosts. Chlorate-sensitive isolates were distinct from chlorate-resistant isolates within a given host. In greenhouse tests, soybean, sorghum, corn, and cotton were grown separately in soil infested with individual isolates of M. phaseolina that were chosen based on their host of origin and chlorate phenotype. Root colonization and plant weight were measured after harvesting. More colonization of corn roots occurred when corn was grown in soil containing corn isolates compared with isolates from other hosts. However, there was no host specialization in isolates from soybean, sorghum, or cotton. More root colonization in soybean occurred with chlorate-sensitive than with chlorate-resistant isolates.  相似文献   

2.
ABSTRACT Analyses of multiple field experiments indicated that the incidence and relative abundance of root-colonizing phlD+ Pseudomonas spp. were influenced by crop rotation, tillage, organic amendments, and chemical seed treatments in subtle but reproducible ways. In no-till corn plots, 2-year rotations with soybean resulted in plants with approximately twofold fewer phlD+ pseudomonads per gram of root, but 3-year rotations with oat and hay led to population increases of the same magnitude. Interestingly, tillage inverted these observed effects of cropping sequence in two consecutive growing seasons, indicating a complex but reproducible interaction between rotation and tillage on the rhizosphere abundance of 2,4-diacetlyphloroglucinol (DAPG) producers. Amending conventionally managed sweet corn plots with dairy manure compost improved plant health and also increased the incidence of root colonization when compared with nonamended plots. Soil pH was negatively correlated to rhizosphere abundance of phlD+ pseudomonads in no-till and nonamended soils, with the exception of the continuous corn treatments. Chemical seed treatments intended to control fungal pathogens and insect pests on corn also led to more abundant populations of phlD in different tilled soils. However, increased root disease severity generally was associated with elevated levels of root colonization by phlD+ pseudomonads in no-till plots. Interestingly, within a cropping sequence treatment, correlations between the relative abundance of phlD and crop stand or yield were generally positive on corn, and the strength of those correlations was greater in plots experiencing more root disease pressure. In contrast, such correlations were generally negative in soybean, a difference that may be partially explained by difference in application of N fertilizers and soil pH. Our findings indicate that farming practices can alter the relative abundance and incidence of phlD+ pseudomonads in the rhizosphere and that practices that reduce root disease severity (i.e., rotation, tillage, and chemical seed treatment) are not universally linked to increased root colonization by DAPG-producers.  相似文献   

3.
ABSTRACT Strains of Pseudomonas fluorescens producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are biocontrol agents which play a key role in the suppressiveness of some soils against soilborne pathogens. We evaluated the effect of the host plant genotype on rhizosphere colonization by both indigenous and introduced 2,4-DAPG-producing P. fluorescens. First, population densities of indigenous 2,4-DAPG producers in the rhizospheres of alfalfa, barley, bean, flax, lentil, lupine, oat, pea, and wheat grown in a Fusarium wilt-suppressive Puget silt loam were determined. Population densities differed among the various crops and among pea cultivars, with lentil and oat supporting the highest and lowest densities of 2,4-DAPG producers, respectively. Second, to determine the interactions among 2,4-DAPG producers in the rhizosphere, a Shano sandy loam was inoculated individually and with all possible combinations of P. fluorescens Q8r1-96 (genotype D), F113 (genotype K), and MVP1-4 (genotype P) and sown to wheat or pea, and the rhizosphere population dynamics of each strain was monitored. All three strains were similar in ability to colonize the rhizosphere of wheat and pea when introduced alone into the soil; however, when introduced together in equal densities, the outcome of the interactions differed according to the host crop. In the wheat rhizosphere, the population density of strain F113 was significantly greater than that of Q8r1-96 in the mixed inoculation studies, but no significant differences were observed on pea. The population density of strain Q8r1-96 was greater than that of MVP1-4 in the mixed inoculation on wheat, but the opposite occurred on pea. In the wheat rhizosphere, the population of MVP1-4 dropped below the detection limit (log 3.26 CFU g(-1) of root) in the presence of F113; however, on pea, the population density of MVP1-4 was higher than that of F113. When all three strains were present together, F113 had the greatest density in the wheat rhizosphere, but MVP1-4 was dominant in the pea rhizosphere. Finally, eight pea cultivars were grown in soil inoculated with either MVP1-4 or Q8r1-96. The effect of the pea cultivar on rhizosphere colonization was dependent on the bacterial strain inoculated. Rhizosphere population densities of MVP1-4 did not differ significantly among pea cultivars, whereas population densities of Q8r1-96 did. We conclude from these studies that the host crop plays a key role in modulating both rhizosphere colonization by 2,4-DAPG-producing P. fluorescens and the interactions among different genotypes present in the same rhizosphere.  相似文献   

4.
 取北方5种作物轮作茬口和休闲土壤种植火豆、玉米、小麦、亚麻和甜菜,出苗后22 d制备作物的根渗出物,观察其对大豆胞囊线虫卯孵化的影响。试验表明,麦豆麦迎茬的甜菜根渗出物在后期大豆胞囊线虫(SCN)的卵孵化率最高,豆麦米轮作茬的大豆根渗出物9 d后SCN的卵孵化率明显高于其它作物,米豆米茬口的玉米根渗出物SCN的卵孵化率较高,豆麦豆迎茬甜菜根渗出物SCN的卵孵化率明显高于所有供试作物,12年大豆连作茬甜菜从一开始卵孵化率就高于对照和其它4种作物,休闲区的5种作物根渗出物也有对SCN卵孵化的刺激作用。  相似文献   

5.
Silvar C  Díaz J  Merino F 《Phytopathology》2005,95(12):1423-1429
ABSTRACT Reliable and sensitive quantification of Phytophthora capsici in pepper plants is of crucial importance in managing the multiple syndromes caused by this pathogen. A real-time polymerase chain reaction (PCR) assay was developed for the determination of P. capsici in pepper tissues. DNA levels of a highly virulent and a less virulent isolate were measured in different pepper genotypes with varying degrees of resistance. Using SYBR Green and specific primers for P. capsici, the minimal amount of pathogen DNA quantified was 10 pg. Pathogen DNA was recorded as early as 8 h postinoculation. Thereafter, the increase was rapid in susceptible cultivars and slower in resistant ones. The amount of pathogen DNA quantified in each pepper genotype correlated with susceptibility to Phytophthora root rot. Likewise, there was a relationship between the virulence of the pathogen and the degree of colonization. Differences also were found in oomycete amount among pepper tissues, with maximal pathogen biomass occurring in stems. The real-time PCR technique developed in this study was sensitive and robust enough to assess both pathogen development and resistance to Phytophthora root rot in different pepper genotypes.  相似文献   

6.
It recently has been reported that the non-plant-pathogenic oomycete Pythium oligandrum suppresses bacterial wilt caused by Ralstonia solanacearum in tomato. As one approach to determine disease-suppressive mechanisms of action, we analyzed the colonization of P. oligandrum in rhizospheres of tomato using real-time polymerase chain reaction (PCR) and confocal laser-scanning microscopy. The real-time PCR specifically quantified P. oligandrum in the tomato rhizosphere that is reliable over a range of 0.1 pg to 1 ng of P. oligandrum DNA from 25 mg dry weight of soil. Rhizosphere populations of P. oligandrum from tomato grown for 3 weeks in both unsterilized and sterilized field soils similarly increased with the initial application of at least 5 x 10(5) oospores per plant. Confocal microscopic observation also showed that hyphal development was frequent on the root surface and some hyphae penetrated into root epidermis. However, rhizosphere population dynamics after transplanting into sterilized soil showed that the P. oligandrum population decreased with time after transplanting, particularly at the root tips, indicating that this biocontrol fungus is rhizosphere competent but does not actively spread along roots. Protection over the long term from root-infecting pathogens does not seem to involve direct competition. However, sparse rhizosphere colonization of P. oligandrum reduced the bacterial wilt as well as more extensive colonization, which did not reduce the rhizosphere population of R. solanacearum. These results suggest that competition for infection sites and nutrients in rhizosphere is not the primary biocontrol mechanism of bacterial wilt by P. oligandrum.  相似文献   

7.
ABSTRACT Genetic variation and variation in aggressiveness in Phialophora gregata f. sp. sojae, the cause of brown stem rot of soybean, was characterized in a sample of 209 isolates from the north-central region. The isolates were collected from soybean plants without regard to symptoms from randomly selected soybean fields. Seven genotypes (A1, A2, A4, A5, A6, M1, and M2) were distinguished based on DNA fingerprinting with microsatellite probes (CAT)(5) and (CAC)(5), with only minor genetic variation within the A or M genotypes. Only the A1, A2, and M1 genotypes were represented by more than one isolate. The A genotypes dominated in the eastern Iowa, Illinois, and Ohio samples, whereas the M genotypes were dominant in samples from western Iowa, Minnesota, and Missouri. In growth chamber experiments, isolates segregated into two pathogenicity groups based on their aggressiveness toward soybean cvs. Kenwood and BSR101, which are relatively susceptible and resistant, respectively, to brown stem rot. In both root dip inoculation and inoculation by injecting spores into the stem near the ground line (stab inoculations), isolates of the A genotypes caused greater foliar symptoms and more vascular discoloration than isolates of the M genotypes on both cultivars of soybean. All isolates caused foliar symptoms in both cultivars and in three additional cultivars of soybean with resistance to brown stem rot. Greater differences between the A and M genotypes were seen in foliar symptoms than in the linear extent of xylem discoloration, and greater differences were seen in Kenwood than in BSR101. Inoculation of these genotypes into five cultivars of soybean with different resistance genes to brown stem rot showed a genotype x cultivar interaction. A similar distinction was found in an earlier study of the adzuki bean pathogen, P. gregata f. sp. adzukicola, and consistent with the nomenclature of that pathogen, the soybean pathogens are named the aggressive race (race A) and the mild race (race M) of P. gregata f. sp. sojae.  相似文献   

8.
ABSTRACT Strains of fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG) are among the most effective rhizobacteria controlling diseases caused by soilborne pathogens. The genotypic diversity that exists among 2,4-DAPG producers can be exploited to improve rhizosphere competence and biocontrol activity. Knowing that D-genotype 2,4-DAPG-producing strains are enriched in some take-all decline soils and that P. fluorescens Q8r1-96, a representative D-genotype strain, as defined by whole-cell repetitive sequence-based polymerase chain reaction (rep-PCR) with the BOXA1R primer, is a superior colonizer of wheat roots, we analyzed whether the exceptional rhizosphere competence of strain Q8r1-96 on wheat is characteristic of other D-genotype isolates. The rhizosphere population densities of four D-genotype strains and a K-genotype strain introduced individually into the soil were significantly greater than the densities of four strains belonging to other genotypes (A, B, and L) and remained above log 6.8 CFU/g of root over a 30-week cycling experiment in which wheat was grown for 10 successive cycles of 3 weeks each. We also explored the competitive interactions between strains of different genotypes inhabiting the same soil or rhizosphere when coinoculated into the soil. Strain Q8r1-96 became dominant in the rhizosphere and in nonrhizosphere soil during a 15-week cycling experiment when mixed in a 1:1 ratio with either strain Pf-5 (A genotype), Q2-87 (B genotype), or 1M1-96 (L genotype). Furthermore, the use of the de Wit replacement series demonstrated a competitive disadvantage for strain Q2-87 or strong antagonism by strain Q8r1-96 against Q2-87 in the wheat rhizosphere. Amplified rDNA restriction analysis and sequence analysis of 16S rDNA showed that species of Arthrobacter, Chryseobacterium, Flavobacterium, Massilia, Microbacterium, and Ralstonia also were enriched in culturable populations from the rhizosphere of wheat at the end of a 30-week cycling experiment in the presence of 2,4-DAPG producers. Identifying the interactions among 2,4-DAPG producers and with other indigenous bacteria in the wheat rhizosphere will help to elucidate the variability in biocontrol efficacy of introduced 2,4-DAPG producers and fluctuations in the robustness of take-all suppressive soils.  相似文献   

9.
Chen W  Grau CR  Adee EA  Meng X 《Phytopathology》2000,90(8):875-883
ABSTRACT A molecular marker was developed to separate and identify subspecific populations of Phialophora gregata, the causal agent of soybean brown stem rot. A variable DNA region in the intergenic spacer of the nuclear rDNA was identified. Two specific primers flanking the variable region were developed for easy identification of the genotypes using polymerase chain reaction (PCR). These two specific primers amplified three DNA products. The three PCR products were used to separate isolates of P. gregata into distinct genotypes: A (1,020 bp), B (830 bp), and C (660 bp). Genotype C was found in isolates obtained from Adzuki beans from Japan, whereas all 292 isolates obtained from soybean and the 8 isolates from mung bean belonged to either genotype A or B. The original nondefoliating (type II) strain ATCC 11073 (type culture of P. gregata) belonged to genotype B. The difference between genotypes A and B was due only to an 188-bp insertion or deletion; genotype C, however, differs from genotypes A and B at 58 point mutations, in addition to the length difference. Isolates of both genotypes A and B were widespread in seven Midwestern states. Genotype A was found mostly in certain susceptible soybean cultivars like Sturdy and Pioneer 9305, whereas genotype B was found predominately in brown stem rot-resistant soybean cvs. Bell, IA 3003, and Seiben SS282N. The specific primers were also used to directly detect cultivar-preferential infection by the two genotypes in infected soybean stems growing in the same field. Data from direct detection in soybean stems showed that cultivar-preferential infection by the two genotypes of P. gregata was significant.  相似文献   

10.
ABSTRACT The hypothesis that host plants exert selection pressure on Heterodera schachtii populations was tested. Host selection of genotypes from three genetically distinct isolates of H. schachtii was assessed using cabbage, sugar beet, oilseed radish (Raphanus sativus), and white mustard (Sinapis alba). The plants represent a range of susceptibility to H. schachtii and included R. sativus and S. alba, because cultivars of those species have been used as trap crops for H. schachtii in Europe. Genotypic differences in amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers were detected among the isolates after they reproduced on the different hosts. The poorest host plant, R. sativus, resulted in the greatest number of changes in both AFLP and RAPD markers. Oilseed radish selected nematode genotypes in less than four nematode generations. The nematode population genotypes detected by RAPD analyses after selection on oilseed radish were observed even after nematode populations were transferred back to the other three hosts. The genetic markers that were detected after selection were influenced by the genotypes of the original nematode isolates. The results indicate the utility of RAPDs and AFLPs for identifying and monitoring intraspecific genetic variability in nematodes and for understanding nematode population responses to host plants. Nematode management practices such as using resistant cultivars may alter gene frequencies, thereby reducing the efficacy of the tactic and exacerbating the nematode's potential to damage subsequent crops.  相似文献   

11.
ABSTRACT Phytophthora root and stem rot of soybeans caused by Phytophthora sojae is a serious limitation to soybean production in the United States. Partial resistance to P. sojae in soybeans is effective against all the races of the pathogen and is a form of incomplete resistance in which the level of colonization of the root is reduced following inoculation. Other forms of incomplete resistance include the single dominant gene Rps2 and Ripley's root resistance, which are both race-specific. To differentiate partial resistance from the other types of incomplete resistance, the components lesion length, numbers of oospores, and infection frequency were measured in eight soybean genotypes inoculated with two P. sojae isolates. The Rps2 and root-resistant genotypes had significantly lower oospore production and infection frequency compared with the partially resistant genotype Conrad, while the root-resistant genotype also had significantly smaller lesion lengths. However, the high levels of partial resistance in Jack were indistinguishable from Rps2 in L76-1988, based on the evaluation of these components. Root resistance in Ripley and Rps2 in L76-1988 had similar responses for all components measured in this study. Partial resistance expressed in Conrad, Williams, Jack, and General was comprised of various components that interact for defense against P. sojae in the roots, and different levels of each component were found in each of the genotypes. However, forms of incomplete resistance expressed via single genes in Ripley and Rps2 in L76-1988, could not be distinguished from high levels of partial resistance based on lesion length, oospore production, and infection frequency.  相似文献   

12.
Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts, and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of some soils to certain soilborne pathogens. Root colonization by 2,4-DAPG-producing P. fluorescens strains Pf-5 (genotype A), Q2-87 (genotype B), Q8r1-96 (genotype D), and HT5-1 (genotype N) produced induced systemic resistance (ISR) in Arabidopsis thaliana accession Col-0 against bacterial speck caused by P. syringae pv. tomato. The ISR-eliciting activity of the four bacterial genotypes was similar, and all genotypes were equivalent in activity to the well-characterized strain P. fluorescens WCS417r. The 2,4-DAPG biosynthetic locus consists of the genes phlHGF and phlACBDE. phlD or phlBC mutants of Q2-87 (2,4-DAPG minus) were significantly reduced in ISR activity, and genetic complementation of the mutants restored ISR activity back to wild-type levels. A phlF regulatory mutant (overproducer of 2,4-DAPG) had ISR activity equivalent to the wild-type Q2-87. Introduction of DAPG into soil at concentrations of 10 to 250 μM 4 days before challenge inoculation induced resistance equivalent to or better than the bacteria. Strain Q2-87 induced resistance on transgenic NahG plants but not on npr1-1, jar1, and etr1 Arabidopsis mutants. These results indicate that the antibiotic 2,4-DAPG is a major determinant of ISR in 2,4-DAPG-producing P. fluorescens, that the genotype of the strain does not affect its ISR activity, and that the activity induced by these bacteria operates through the ethylene- and jasmonic acid-dependent signal transduction pathway.  相似文献   

13.
ABSTRACT The associations of Pythium oligandrum with the root cortex, rhizoplane, and rhizosphere were measured with 11 crop species. This work was expedited by the use of a semiselective technique for isolation of P. oligandrum from soil and plant material. Cortical colonization of roots by P. oligandrum was not detected, and the rhizoplanes of the roots of most crops were free of the fungus. However, P. oligandrum was detected in large quantities with every crop tested when roots with adhering soil (rhizosphere soil) were assayed. Different crop species and cultivars of cantaloupe, cauliflower, and tomato varied in rhizosphere densities of P. oligandrum, but rhizosphere population densities of the fungus were consistently higher than in nonrhizosphere soils with plants grown in P. oligandrum-infested sterilized potting mix or an unsterilized mineral soil. After transplanting tomatoes into potting mix infested with P. oligandrum, increases in CFU occurred over time in the rhizosphere but not in the nonrhizosphere soil. In trials on delivery methods of inoculum of P. oligandrum, the rhizosphere populations of tomato plants grown in potting mix were about sixfold higher compared to seed-coat treatments when ground, alginate pelleted oospores were applied to seedlings growing in plug containers prior to transplanting or to pots containing potting mix before direct seeding.  相似文献   

14.
Fusarium oxysporum f. sp. ciceris, and the root-knot nematode Meloidogyne artiellia, coinfect chickpea crops in several countries of the Mediterranean Basin. The influence of root infection by M. artiellia on the reactions of chickpea genotypes with different reaction to infection with F. oxysporum f. sp. ciceris races 0, 1A, and 2 was investigated under controlled environmental conditions. Results demonstrated that co-infection of chickpea genotypes resistant to specific fungal races by M. artiellia did not influence the Fusarium wilt reaction of the plant, irrespective of the F. oxysporum f. sp. ciceris race assayed. However, in some of the assayed combinations, coinfection by both pathogens significantly affected the level of colonization by the fungus or reproduction of the nematode in the root system. Thus, coinfection of chickpea plants with Foc-0 and M. artiellia significantly decreased the level of colonization of the root system by F. oxysporum f. sp. ciceris in genotypes 'CA 336.14.3.0' and 'PV 61', but not in 'ICC 14216 K' and 'UC 27'. Similarly, the nematode reproduction index was also significantly reduced by coinfection with Foc-0 in the four chickpea genotypes tested and inoculated with this race. Conversely, coinfection of chickpea plants with Foc-1A and M. artiellia significantly increased colonization of the root system by the fungus in all genotypes inoculated with this race, except for line BG 212. Altogether, we confirmed the complete resistance phenotype of 'UC 27' and 'ICC 14216 K' to Foc-0, and of 'ICC 14216 K' to Foc-1A and Foc-2, and demonstrated that this resistance was not modified by coinfection of the resistant plant with M. artiellia.  相似文献   

15.
This study assessed current research methods and applied them to tests of oviposition preference by Diabrotica speciosa (Germar) for different soybean genotypes; the correlation between the number of eggs per plant and leaf intake was evaluated. The experiments were divided into four parts: (i) assessing the preferred oviposition substrate; (ii) standardizing the number of D. speciosa pairs, (iii) evaluating the preferred soybean plant age, and (iv) testing the preference for oviposition on different soybean genotypes, and evaluating its correlation with leaf intake under laboratory conditions. Females of D. speciosa preferred to lay eggs in the soil, with the highest number of eggs laid in the presence of a growing soybean plant. The genotypes PI 227687, DM 339, and PI 274454 were the least preferred varieties for oviposition, while BRSGO 8360 was the most preferred genotype. Egg counts were not correlated with leaf intake, except for the variety IGRA RA 626 RR, which showed positive correlation. Our discoveries may be helpful for second-crop use of resistant genotypes in areas where different crops are cultivated, by reducing the pest density off-season.  相似文献   

16.
One of the most serious diseases of banana is fusarium wilt, caused by Fusarium oxysporum f.sp. cubense ( Foc ). The objectives of this study were to isolate and identify nonpathogenic F. oxysporum strains from soils suppressive to banana wilt, and to determine the diversity of these isolates. More than 100 Fusarium strains were isolated from the rhizosphere of banana plants and identified to species level. Pathogenicity testing was carried out to confirm that these isolates were nonpathogens of banana. A PCR-based RFLP analysis of the intergenic spacer region of the ribosomal RNA operon was used to characterize the nonpathogens. The isolates were also compared with isolates of Foc from South Africa and the known biological control isolate of F. oxysporum , Fo47. The species-specific primers FOF1 and FOR1, in addition to morphological features, were used to confirm the identity of F. oxysporum isolates included in the PCR-RFLP analysis. Twelve different genotypes could be distinguished, identified by a six-letter code allocated to each isolate following digestion with the restriction enzymes Hae III, Hha I, Hin fI, Msp I, Rsa I and Scrf I. Eleven of these included nonpathogenic F. oxysporum isolates, and these groups could all be distinguished from the genotype that included Foc . Fo47 was included in one of the genotype groups consisting of nonpathogenic F. oxysporum isolates from South Africa.  相似文献   

17.
We have been using mutagenesis to determine how biocontrol bacteria such as Enterobacter cloacae 501R3 deal with complex nutritional environments found in association with plants. E. cloacae C10, a mutant of 501R3 with a transposon insertion in degS, was diminished in growth on synthetic cucumber root exudate (SRE), colonization of cucumber seed and roots, and control of damping-off of cucumber caused by Pythium ultimum. DegS, a periplasmic serine protease in the closely related bacterium Escherichia coli K12, is required for the RpoE-mediated stress response. C10 containing wild-type degS from 501R3 or from E. coli K12 on pBeloBAC11 was significantly increased in growth on SRE, colonization of cucumber roots, and control of P. ultimum relative to C10 containing pBeloBAC11 alone. C10 and 501R3 were similar in sensitivity to acidic conditions, plant-derived phenolic compounds, oxidative stress caused by hydrogen peroxide, dessication, and high osmoticum; stress conditions potentially associated with plants. This study demonstrates a role for degS in the spermosphere and rhizosphere during colonization and disease control by Enterobacter cloacae. This study implicates, for the first time, the involvement of DegS and, by extension, the RpoE-mediated stress response, in reducing stress on E. cloacae resulting from the complex nutritional environments in the spermosphere and rhizosphere.  相似文献   

18.
Pythium and Phytopythium spp. cause seed decay, damping off, and root rot in soybean, wheat, and many other crops. However, their diversity and importance as pathogens, particularly in different crop rotation systems, are largely unknown. A survey was conducted in the Huang-Huai region, one of the main areas of soybean–wheat rotation farming in China. In 2016–2018, we collected 300 soybean seedlings and 150 field soil samples from several representative locations, and identified 26 Pythium and 6 Phytopythium spp. from 212 isolates, based on internal transcribed spacer 2 (ITS2) and cytochrome oxidase subunit 1 sequences. The pathogenicity of these isolates was evaluated by growing soybean and wheat seeds in dishes and pots containing oomycete cultures. We found that 12 Pythium spp. (but no Phytopythium spp.) showed high pathogenicity on soybean and/or wheat, and nine of them (75%) were highly pathogenic on both crops. Among the nine species, Pythium spinosumPythium ultimum, Pythium species 1 (tentatively designated as ‘Candidatus Pythium huanghuaiense’), Pythium aphanidermatum, and Pythium myriotylum were highly abundant among all isolates (15%, 10%, 9%, 8%, and 5%, respectively). Nine species were selected for testing of sensitivity to the fungicides metalaxyl and mefenoxam. The EC50 values were all less than 10 μg/ml, indicating little resistance. Minimum inhibitory concentration values indicated isolates were about twice as sensitive to mefenoxam as to metalaxyl. These results provide a systematic understanding of Pythium and Phytopythium species associated with soybean in the Huang-Huai region, which is important for disease management and breeding programmes.  相似文献   

19.
ABSTRACT The temporal and spatial patterns of Phytophthora infestans population genetic structure were analyzed in the Del Fuerte Valley, Sinaloa, Mexico, during the crop seasons of 1994 to 1995, 1995 to 1996, and 1996 to 1997 by geographical information systems. Isolates of P. infestans were obtained from infected tissue of tomato and potato collected from two areas: (i) where both potatoes and tomatoes are grown, and (ii) where only tomatoes are grown. The isolates were characterized by mating type, allozymes at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism (RFLP) fingerprint with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. The results suggest presence of an asexual population with frequent immigrations from outside the valley. There was a shift of mating type in the population from predominantly A2 to completely A1 in this period. The co-occurrence of mating types was restricted to very few fields in the area around Los Mochis where tomato and potato crops are grown. Genotype variation based on allozyme analysis and mating type was low with only one genotype affecting both crops each year. The genotypes affecting both crops were the only genotypes highly aggressive to both tomato and potato in laboratory aggressiveness tests and the only genotypes widespread on both the tomato and potato crops in the valley each year. These predominant genotypes were highly resistant to the fungicide metalaxyl. Data on metalaxyl sensitivity indicate that allozyme analysis can discriminate between sensitive and resistant isolates in the Del Fuerte Valley. RFLP analysis with the probe RG57 gives further discrimination of genotypes within an allozyme genotype. In the 1995 to 1996 season, four different RFLP genotypes were found within an allozyme genotype. However, there were five other dilocus allozyme genotypes that could not be further split by RFLP analysis in 1995 to 1996 and 1996 to 1997 seasons. Spatial analysis of genotypes suggests that each season individual fields near Los Mochis became infected with one or more genotypes, but only a single genotype, aggressive on both potato and tomato, occurred south and east to the Guasave area.  相似文献   

20.
茄科蔬菜立枯丝核菌的融合群鉴定   总被引:3,自引:0,他引:3  
 Sixty-five samples were collected from rhizosphere soil, hot pepper and tomato plants showing damping-off, root rot and stem rot in Taian, Shouguang of Shandong province and Zhouzhi, Taibai of Shaanxi province. Thirty-nine Rhizoctonia solani isolates were obtained from these samples. The results of anastomosis group (AG) identification and sequence analysis of 5.8S rDNA-ITS of the isolates showed that thirty-six isolates (92.3%) belonged to AG-4, while only three (7.7%) belonged to AG-5. The isolates of AG4 could further be divided into two subgroups of AG4-HG-Ⅰ and AG4-HG-Ⅲ. The 5.8S rDNA-ITS sequences of the selected isolates of the two subgroups had the 99%-100% identity with standard isolates of AG4-HG-Ⅰ and AG4-HG-Ⅲ (from GenBank). Among the analyzed isolates, AG4-HG-Ⅰ subgroup was the dominant with the frequency of 79.5%. Subgroup AG-4-HG-Ⅲ with the frequency of 12.8% was the second. This is the first report that subgroup AG4-HG-Ⅲ of R. solani isolated from Solanaceae vegetable crops in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号