首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Development of common bean cultivars with partial white mould resistance through breeding techniques has been a challenge in Brazil. As yet, lines/cultivars from breeding programmes have not been investigated for resistance; therefore, this study screened 107 lines/cultivars for their reactions to white mould in 14 preliminary trials conducted under irrigation. Thirteen resistant lines/cultivars (three of Andean origin) and six Mesoamerican cultivars (three intermediately resistant and three susceptible) were selected for further investigation. These lines/cultivars and the resistant control A195 were evaluated in six advanced trials and two straw tests to assess the effectiveness of the screening procedure. In 11 preliminary trials, screenings were performed under moderate/high or higher disease pressure. These pressures occurred in two advanced trials in which, when yields were averaged across moderate/high and high pressures, 10 Mesoamerican lines/cultivars selected for resistance yielded 14%, 23%, and 38% more than intermediately resistant cultivars, A195, and susceptible cultivars, with median disease ratings (1–9 scale) of 4.5, 5.7, 5.7, and 6.7, respectively. In the straw test, three Andean lines/cultivars (A195 included) and two susceptible cultivars in the field were among those with the highest levels of physiological resistance. Thus, field rating under high disease pressure and greenhouse rating did not correlate significantly, suggesting that field trials are critical to evaluating resistance and to identifying high-yielding beans. Therefore, lines/cultivars from breeding programmes assessed in field trials may provide a low cost and fast way to identify high-yielding bean cultivars with partial resistance to white mould in the subtropical southern hemisphere.  相似文献   

2.
Common bacterial blight (CBB) of common bean (Phaseolus vulgaris L.) is caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans, and is the most important bacterial disease of this crop in many regions of the world. In 2005 and 2006, dark red kidney bean fields in a major bean-growing region in central Wisconsin were surveyed for CBB incidence and representative symptomatic leaves collected. Xanthomonad-like bacteria were isolated from these leaves and characterized based upon phenotypic (colony) characteristics, pathogenicity on common bean, polymerase chain reaction (PCR) with X. campestris pv. phaseoli- and X. fuscans subsp. fuscans-specific primers, and repetitive-element PCR (rep-PCR) and 16S-28S ribosomal RNA spacer region sequence analyses. Of 348 isolates that were characterized, 293 were identified as common blight bacteria (i.e., pathogenic on common bean and positive in PCR tests with the X. campestris pv. phaseoli- and X. fuscans subsp. fuscans-specific primers), whereas the other isolates were nonpathogenic xanthomonads. Most (98%) of the pathogenic xanthomonads were X. campestris pv. phaseoli, consistent with the association of this bacterium with CBB in large-seeded bean cultivars of the Andean gene pool. Two types of X. campestris pv. phaseoli were involved with CBB in this region: typical X. campestris pv. phaseoli (P) isolates with yellow mucoid colonies, no brown pigment production, and a typical X. campestris pv. phaseoli rep-PCR fingerprint (60% of strains); and a new phenotype and genotype (Px) with an X. campestris pv. phaseoli-type fingerprint and less mucoid colonies that produced brown pigment (40% of strains). In addition, a small number of X. fuscans subsp. fuscans strains, representing a new genotype (FH), were isolated from two fields in 2005. Representative P and Px X. campestris pv. phaseoli strains, an FH X. fuscans subsp. fuscans strain, plus five previously characterized X. campestris pv. phaseoli and X. fuscans subsp. fuscans genotypes were inoculated onto 28 common bean genotypes having various combinations of known CBB resistance quantitative trait loci (QTL) and associated sequence-characterized amplified region markers. Different levels of virulence were observed for X. campestris pv. phaseoli strains, whereas X. fuscans subsp. fuscans strains were similar in virulence. The typical X. campestris pv. phaseoli strain from Wisconsin was most virulent, whereas X. campestris pv. phaseoli genotypes from East Africa were the least virulent. Host genotypes having the SU91 marker-associated resistance and one or more other QTL (i.e., pyramided resistance), such as the VAX lines, were highly resistant to all genotypes of common blight bacteria tested. This information will help in the development of CBB resistance-breeding strategies for different common bean market classes in different geographical regions, as well as the identification of appropriate pathogen genotypes for screening for resistance.  相似文献   

3.
The aim of this study was to investigate changes in defence compounds of common bean cultivars with different levels of resistance to the fungus Sclerotinia sclerotiorum and determine the relation of the compounds to pathogen tolerance. The lines were inoculated with the pathogen and assessed for enzymatic and non-enzymatic parameters related to plant defence: peroxidases (POX), polyphenol oxidases (PPO), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX), total soluble phenol and lignin contents. Stem tissue samples were collected from two regions of the plant for biochemical analyses. Stem tissue samples were collected from two regions of the plant for biochemical analyses. In the position one, 5 cm of the stem was collected from the region with necrosis caused by the pathogen, and in the position two, 5 cm of the stem was collected from the end of the position one at the times of 12, 24, 48, 72, 96 and 120 h after inoculation (HAI). Greater lignin and total soluble phenol contents and greater induction of POX and SOD activity in inoculated plants in the region near the inoculation (position one) indicate local activation with later signalling for activation of defence mechanisms in other regions of the plant. The genotype with a greater level of resistance was superior to the susceptible one in regard to lignin production and the activities of POX, APX and SOD defence enzymes. These results suggest that a combination of these defence responses in common bean may contribute to greater plant resistance to the pathogen and that these enzymes have potential use in selection of common bean genotypes.  相似文献   

4.
Phytophthora root and stem rot of soybean caused by Phytophthora sojae is a destructive disease affecting soybean production worldwide. In nature, soybean is the only economically important cultivated host of P. sojae. The aim of this study was to explain different resistance mechanisms to P. sojae in nonhost common bean and host soybean as a basis for the control of Phytophthora root and stem rot of soybean via nonhost resistance. Observations and measurements of disease resistance-related variables showed slight differences in structural and biochemical resistance mechanisms between common bean and soybean. P. sojae infection induced a stronger hypersensitive response in nonhost common bean than in host resistant soybean. Moreover, phytoalexin phaseollidin synthesis-related vestitone reductase gene was extremely highly up-regulated, and phytoalexin glyceollin synthesis-related isoflavone reductase gene was slightly less up-regulated in common bean than in soybean, which resulted in a higher level of phaseollidin and a lower level of glyceollin in common bean. Phaseollidin had stronger inhibitory effects on mycelial growth and oospore formation of P. sojae than glyceollin, and more cell wall depositions and callose accumulated in common bean, which are probably related to the stronger resistance of nonhost common bean to P. sojae.  相似文献   

5.
Abstract

Charcoal rot caused by Macrophomina phaseolina (Deuteromycetes: Coelomycetes) is found throughout the tropics and subtropics and has a wide host range. Together with most of the legume crops, the common bean (Phaseolus vulgaris) Is a good host for the fungus which causes a range of symptoms, depending on environmental conditions and age of the plant. In addition to charcoal rot, which is a stem or stalk rot disease, the pathogen also causes damping‐off and seedling blight in beans. Charcoal rot in the mature plant is associated with senescence which is accelerated by water stress. The disease is most damaging in areas of unreliable rainfall and high temperature. In Kenya, beans are usually grown in mixed stands with maize, sorghum or millet. Population pressure has led to the cultivation of beans on land prone to drought. M. phaseolina is one of the most important pathogens affecting all the main crops of the farming systems in the semi‐arid areas of eastern Kenya and resistance to charcoal rot is a priority if beans are to be increasingly grown in these areas. The paper reviews the literature on charcoal rot of beans and on other crops where similar work has not been reported specifically for beans.  相似文献   

6.
The main goal of the present work was to characterize the rust resistance (RR) gene present in the Mesoamerican common bean cultivar Ouro Negro, temporarily named Ur‐OuroNegro or Ur‐ON, which is the main RR source used in Brazil. The RR spectrum presented by cv. Ouro Negro was compared with those of other bean lines harbouring known RR genes when inoculated with nine selected races of Uromyces appendiculatus, the causal agent of bean rust. In addition, all bean lines were screened with molecular markers linked to Ur‐ON in order to identify additional evidence for the presence of alleles for this locus in the screened RR sources. The allelic relationships of Ur‐ON were tested with previously characterized RR genes from lines resistant to at least one race of the pathogen. Allelism tests were also carried out between cv. Ouro Negro and cvs CNC and CSW 643, important RR sources in Brazil harbouring unnamed RR genes. The results showed that the major dominant gene conditioning RR in cv. Ouro Negro is positioned at a locus distinct from those with which it was compared. It is proposed that this gene – or complex gene locus – is unique and be designated Ur‐14.  相似文献   

7.
Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.  相似文献   

8.
Bean rust, caused by Uramyces appendiculatus, is one of the major diseases in dry and snap bean production world-wide. Numerous advancements in disease management have been made to reduce rust losses. Host resistance is an important component of rust management. However, durability of disease resistance has often been short due to the use of single genes for resistance interacting with extremely high virulence diversity of the bean rust fungus. The challenge to increase durability of resistance has led to strategies such as gene pyramiding of race-specific resistance, selection and use of partial resistance, and investigation and discovery of leaf morphological features that may slow the rust epidemic. Germplasm with multiple sources of rust resistance has been developed in specific bean seed classes and released for public and commercial use in intensive production systems such as those in the United States. However, progress to develop rust resistant germplasm for the subsistence agriculture of Latin America and Africa where intercropping and mixed cultivars dominate the production system has been slow. Incorporation of high yielding, disease-resistant components as partial replacement in farmer's mixtures has the potential to reduce severity in the crop and increase yield in the presence of rust. This strategy would not erode the genetic diversity that is historically known to enhance resistance durability and for many years has given stability in production in the subsistent agriculture systems.  相似文献   

9.
Bacterial diseases of bean cause economically important losses worldwide. The most important method for managing bacterial diseases on bean is the use of pathogen-free seed. In this study, 198 different dry bean seed samples of six different cultivars including Dermason, Cali, Sira, Battal, Bombay and Seker, were collected from 12 provinces of Central Anatolia Region of Turkey. All were tested to investigate the seedlots as primary inoculum sources of the major bacterial diseases. The data revealed that 22,72 %, 13,63 %, 11,11 %, 1,51 % and 0.5 % of seed samples tested were contaminated with five seedborne bacterial pathogens, Pseudomonas savastanoi pv. phaseolicola (Psp), Pseudomonas syringae pv. syringae (Pss), Xanthomonas axonopodis pv. phaseoli (Xap), X. axonopodis pv. phaseoli var. fuscans (Xapf) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), respectively. All bacterial strains isolated were identified based on morphological, physiological, biochemical, molecular and pathogenicity tests. The results showed that Psp and Pss were found together on cv. Cali; Psp and Xap on cv. Dermason and cv. Sira; and Pss and Xap on cv. Seker, cv. Dermason, and cv. Cali. Therefore, the results in the present study suggested that evaluation and selection of pathogen-free seeds are very important for preventing the spread of pathogens and effective management of seed borne bacterial diseases prevalent in bean growing regions; in addition to implementation of integrated crop production strategies such as crop rotation, sanitation, seed treatment, tolerant/resistant cultivar selection and proper bactericide application.  相似文献   

10.
11.
谷子锈病是谷子上的一种流行性强、毁灭性大的病害,严重影响谷子生产.种植抗病品种是防治锈病最经济有效的方法,但谷子抗锈病种质资源非 常贫乏,而且高抗锈病的材料其农艺性状又很差.很难通过传统育种方法培育抗锈病品种,因此克隆谷子抗锈病基因尤为重要.目前克隆到的许多植 物抗病基因编码的氨基酸序列都有一定的保守结构域.根据抗病基因保守结构域,已克隆的抗病基因主要分为5类,其中最主要的是NBS-LRR(nu- leotide-binding site leucine-rich epeat)和STK(Se-rine/Threonine protein kinase)类.因而根据抗病基因保守结构域设计引物,从植物的DNA中扩增植物的抗病基因同源序列RGA(resistance geneanalogs)更加快捷有效,目前通过RGA方法克隆植物抗病基因已有报道[1,2].  相似文献   

12.
The cytochrome b (cyt b) gene structure was characterized for different agronomically important plant pathogens, such as Puccinia recondita f sp tritici (Erikss) CO Johnston, P graminis f sp tritici Erikss and Hennings, P striiformis f sp tritici Erikss, P coronata f sp avenae P Syd & Syd, P hordei GH Otth, P recondita f sp secalis Roberge, P sorghi Schwein, P horiana Henn, Uromyces appendiculatus (Pers) Unger, Phakopsora pachyrhizi Syd & P Syd, Hemileia vastatrix Berk & Broome, Alternaria solani Sorauer, A alternata (Fr) Keissl and Plasmopara viticola (Berk & Curt) Berlese & de Toni. The sequenced fragment included the two hot spot regions in which mutations conferring resistance to QoI fungicides may occur. The cyt b gene structure of these pathogens was compared with that of other species from public databases, including the strobilurin-producing fungus Mycena galopoda (Pers) P Kumm, Saccharomyces cerevisiae Meyer ex Hansen, Venturia inaequalis (Cooke) Winter and Mycosphaerella fijiensis Morelet. In all rust species, as well as in A solani, resistance to QoI fungicides caused by the mutation G143A has never been reported. A type I intron was observed directly after the codon for glycine at position 143 in these species. This intron was absent in pathogens such as A alternata, Blumeria graminis (DC) Speer, Pyricularia grisea Sacc, Mycosphaerella graminicola (Fuckel) J Schr?t, M fijiensis, V inaequalis and P viticola, in which resistance to QoI fungicides has occurred and the glycine is replaced by alanine at position 143 in the resistant genotype. The present authors predict that a nucleotide substitution in codon 143 would prevent splicing of the intron, leading to a deficient cytochrome b, which is lethal. As a consequence, the evolution of resistance to QoI fungicides based on G143A is not likely to evolve in pathogens carrying an intron directly after this codon.  相似文献   

13.
The interrelationships among bean productivity, prevalence of pathogens in roots, seeds and soil, and root rot disease were described at the pod maturity stage in 13 commercial fields. The soil population and frequency of pathogens isolated from seeds varied by pathogen species and field location. Fusarium solani was the most prevalent fungus isolated from bean seeds and field soil compared to Rhizoctonia solani, Macrophomina phaseolina and F. oxysporum. Principal component analysis revealed that the first component explaining 32% of the total variance was correlated with the root rot index. PC1 was more strongly linked to root and seed infections in comparison with soil populations of pathogens. Based on a correlation between PC2 (accounting for 23% of the total variance) and the number of seeds per bean plant, charcoal, Fusarium and Rhizoctonia root rots were recognized as more important determinants of seed losses to root rot disease. There were correlations among the major pathogens infecting either roots or seeds of beans. These findings provide useful information for future experimental plans to optimize management strategies for bean root rots.  相似文献   

14.
[目的]从黄龙病耐病寄主植物cDNA中筛选抗病基因相关序列并对其进行表达分析研究。[方法]根据已克隆的植物抗性基因表达产物NBS-LRR保守区域设计简并引物,以耐HLB的柑橘属柚cDNA为模板扩增RGAs,并进行实时荧光定量PCR。[结果]通过RFLP分析及克隆测序共得到5个NBS类抗病基因相似序列(RGAs)片段,在GenBank上登录号为HM777043~HM777047。通过Clustalx、DNAMAN等软件分析5个RGAs及其推导的氨基酸的相似性,结果显示它们均含有典型NBS-LRR类抗性基因所具有的保守区域:P-loop、Kinase-2a、GL-PLAL,其与已克隆的烟草N、亚麻L6、拟南芥RPS2、RPS5、RPP8、RPM1等抗病基因在保守区域氨基酸水平上的相似性为19.71%~42.86%。根据得到的序列设计特异性引物,对5个RGAs在HLB侵染过程中的表达进行定量PCR,结果显示嫁接病芽接穗后的8次连续采样中5个RGA的表达受到不同程度的调控。[结论]表明5个RGAs可能与黄龙病的侵染有关。  相似文献   

15.
The deployment of the dominant gene I for the control of bean common mosaic predisposes a bean crop to the risk of death by black root if one or more recessive genes to prevent the hypersensitive plant reaction are lacking. However, during 3 years of observation in Kenya black root occurred only exceptionally to more than 10%, and in such cases the yields from crops having the dominant gene I exceeded significantly those from mosaic-susceptible crops. The use of the dominant resistance factor in Kenya is therefore recommended, but continued caution and monitoring of the disease situation are required. Broadening the resistance basis by adding recessive genes to control black root is advisable.Samenvatting Het gebruik van het dominante gen I voor de bestrijding van de virusziekte bonerolmozaïek stelt een bonengewas bloot aan het gevaar van systemische necrose, als niet een of meer recessieve genen aanwezig zijn om deze overgevoeligheidsreactie van de planten te voorkomen. Gedurende een periode van drie jaar werden waarnemingen verricht om na te gaan hoe vaak deze necrose optrad. Slechts bij uitzondering bleek meer dan 10% van de planten te worden aangetast. In die gevallen werd de opbrengst toch aanmerkelijk verhoogd door de aanwezigheid van het dominante gen I. Het gebruik van dit gen ter bestrijding van het bonerolmozaïek wordt daarom voor Kenya aanbevolen. Voortdurend moet echter worden nagegaan in welke mate necrose-inducerende stammen van het virus voorkomen. Een verbreding van de erfelijke basis van de resistentie ter voorkoming van de necrotische reactie door introductie van recessieve resistentiegenen is raadzaam.
Résumé L'emploi du gène dominant I pour la lutte préventive contre la mosaïque commune du haricot, en I'absence d'un ou plusiers gènes récessifs pour éviter une réaction hypersensible de la plante, entraine un danger de mort de la plante par racines noires. Néanmoins, pendant les 3 ans d'observations au Kénya, les cas de racines noires ne sont apparus qu'exceptionnellement à un taux superieur à 10%, et, dans de tels cas, le rendement du végétal ayant le gène dominant I était, de façon significative, supérieur à celui des végétaux prédisposées à la mosaïque. L'utilisation au Kénya du facteur de résistance dominant est par conséquent recommendé mais une attention et une surveillance permanentes de I'évolution de la maladie sont nécessaires. On peut conseiller I'élargissement de la base de résistance par addition de gènes récessifs pour le contrôle de la maladie des racines noires.
  相似文献   

16.
17.
Crop plants exhibit reduced levels of disease resistance, but little is known about the specific resistance mechanisms that are affected by breeding for increased yields. We investigated basal and chemically induced resistance of two wild accessions and four cultivars (including one landrace and three ??modern??, yield-improved cultivars that have been produced by hybridisation and pedigree breeding) of common bean (Phaseolus vulgaris) under greenhouse and field conditions. After treatment with benzothiadiazole, a widely used inducer of systemic acquired resistance, plants were challenged with one of two bacterial pathogens (Pseudomonas syringae pv. syringae and Enterobacter sp. strain FCB1). Basal resistance to Pseudomonas in the wild accessions was significantly higher than in the cultivars. Moreover, benzothiadiazole-treatment elevated resistance to the same pathogen in a wild accession and the landrace, but not in the yield-improved cultivars. Similarly, benzothiadiazole-induced resistance to Enterobacter FCB1 was detected in both wild accessions and the landrace, whereas the same treatment enhanced susceptibility to Enterobacter FCB1 in two of the yield-improved cultivars. Basal resistance to Pseudomonas was highly (but negatively) correlated to induced resistance over all accessions, and basal and inducible resistance to Enterobacter FCB1 were negatively correlated for the cultivars, but not when considering all six accessions. Benzothiadiazole-treatment increased growth rates under pathogen pressure of the wild accessions but not the cultivars. Apparently, the yield-improved cultivars investigated here have lost a considerable part of the basal and induced broad-spectrum disease resistance that characterises their wild relatives and to some degree also the landrace. Two of the yield-improved cultivars even became highly susceptible to infection by an Enterobacter strain that has not yet been described as a pathogen of bean and that is likely to represent a common environmental or phyllosphere bacterium. Future studies should disentangle the effects of domestication on the various layers of plant resistance to pathogens and consider the potential of wild accessions and landraces for future breeding programmes.  相似文献   

18.
19.
In recent years, common bean (Phaseolus vulgaris) and cowpea (Vigna unguiculata) plants in the north of Iran have exhibited symptoms resembling Cercospora leaf spot (CLS) disease. This study was initiated to elucidate the taxonomy and pathogenicity of cercosporoid taxa associated with leaf spot diseases of these two legume crops in Iran. A total of 138 samples with CLS symptoms were collected from cultivated common bean and cowpea species in northern Iran and subjected to microscopic examination, resulting in identification of 98 Cercospora and 59 Pseudocercospora samples. A six-locus phylogenetic analysis (ITS, actA, tef1, gapdh, his3, and cmdA) coupled with examination of the morphology of 42 representative isolates from these samples confirmed that several cercosporoid fungi occur on common bean and cowpea in Iran. Five Cercospora species (C. iranica, C. cf. flagellaris, Cercospora sp. G, Cercospora sp. T, and C. vignigena) and two Pseudocercospora species (P. griseola f. griseola and P. cf. cruenta) were found; of these, C. cf. flagellaris was the dominant species, occurring on both common bean and cowpea. Pathogenicity tests confirmed that all seven species could infect leaves of common bean and/or cowpea. This is the first report of C. iranica, Cercospora sp. G, and Cercospora sp. T associated with common bean and/or cowpea in the world. In addition, C. vignigena was recorded for the first time in Iran. Results achieved in this study will assist strategies for the management of CLS disease of common bean and cowpea.  相似文献   

20.
Unifoliate leaves of 9-day-old green bean, Phaseolus vulgaris cv. Redlands Pioneer, were inoculated with 104 conidia/ml Colletotrichum lindemuthianum , causing local lesions, or sprayed with 20 μg 2, 6-dichloro-isonicotinic acid/ml formulated by Ciba-Geigy Ltd as CGA 41396. At various times afterwards (7–16 days), first, second or third trifoliate leaves of these plants were challenge-inoculated with 105 conidia/ml C. lindemuthianum or with the rust pathogen, Uromyces appendiculatus. The numbers of anthracnose lesions or rust uredinia resulting from challenge-inoculation were reduced to similar extents by both pre-treatments compared with control plants. Halo blight, caused by Pseudomonas syringae pv. phaseolicola , was reduced in first trifoliates following treatment of unifoliate leaves 6 days earlier with CGA 41396. Induced resistance to root-infecting pathogens was not observed when stems of either 14- or 16-day-old plants were inoculated with mycelial plugs of Fusarium solani f. sp. phaseoli , or when 11- and 15-day-old plants were inoculated with Rhizoctonia sp., Treatment with CGA 41396 did not protect seedlings when they were transplanted into a mix containing the Fusarium sp. 1 day later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号