首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We used amplified-fragment-length polymorphism (AFLP) markers to evaluate genetic variation in a set of bread wheat (Triticum aestivum L.) landraces and improved materials. Landraces collected from different geographic and agro-ecological zones in Pakistan in 1987, 1989 and 1991 were separated into two groups based on their geographic origins: northern (Himalaya) and south-western (Balochistan) Pakistan. Six AFLP primer combinations detected 453 AFLP markers in the 43 landrace accessions and four high-yield varieties (HYVs). Of these, 225 (49.67%) were rare (shared with < 5% of all accessions). Among these rare alleles, 23 (10.22%) were common in the Himalaya (shared with > 10% of accessions collected there) but were not found in Balochistan. We conclude that there is a higher probability of collecting rare alleles at overall, but which are in contrast locally common ones in the Himalayan region. Gene diversity was 0.17 in the Himalayan group and 0.15 in the Balochistan group. Considerable genetic variability was found in both groups. Accessions from different agro-ecological zones were indistinguishable by cluster analysis, indicating intensive seed trading within the country. Cluster analysis indicated that the landraces and the HYVs are genetically distinct; suggesting that genetic erosion of wheat landraces has been unlikely taken in place. This study provides an example of how analysis of existing materials and data, can serve as a basis for future collection planning and conservation policies.  相似文献   

2.
Bread wheat (Triticum aestivum L.) landraces held within ex situ collections offer a valuable and largely unexplored genetic resource for wheat improvement programs. To maximise full utilisation of such collections the evaluation of landrace accessions for traits of interest is required. In this study, 250 accessions from 21 countries were screened sequentially for tolerance to aluminium (Al) using haematoxylin staining of root tips and by root regrowth measurement. The staining test indicated tolerance in 35 accessions, with an intermediate response to Al exhibited in a further 21 accessions. Of the 35 accessions classified as tolerant, 33 also exhibited increased root length following exposure to Al. The tolerant genotypes originated from Bulgaria, Croatia, India, Italy, Nepal, Spain, Tunisia, and Turkey. AFLP analysis of the 35 tolerant accessions indicated that these represent diverse genetic backgrounds. These accessions form a valuable set of germplasm for the study of Al tolerance and may be of benefit to breeding programs for expanding the diversity of the gene pool from which tolerant cultivars are developed.  相似文献   

3.
The genetic variation and relationships among 31 accessions of Phaseolus vulgaris L., and two representatives of Vigna unguiculata L., were evaluated by AFLP analysis. A total of 263 DNA fragments across all materials were scored using nine primer combinations, averaging 32 per primer. More than 95% of the amplification products showed polymorphism, indicating high variation at the DNA level among these accessions. Pair-wise genetic similarity (Jaccard's coefficient) ranged from 0.553 to 0.840, with a mean of 0.765. Twenty-three accessions (70%) clustered into three groups. A majority of the commercial cultivars (91%) clustered within a single group, whereas the landraces were distributed along all the variation. An apparent correlation with phaseolin types was detected. Results of this study suggest that Brazilian landraces truly represent the overall genetic variability of Phaseolus vulgaris, confirming the multiple origins of these materials, and their potential as a source of variation for breeding programs.  相似文献   

4.
To investigate the genetic diversity of Linum usitatissimumL. in Sweden, 18 accessions, including 13 cultivars and five landraces, were analysed. This study was based on genetic variation in three enzyme systems (i.e., PGD, GPI and MDH) by using horizontal starch gel electrophoresis. The total genetic diversity of the studied flax material was very high (H T= 0.62). Even though the highest genetic diversity lies within the accessions (G ST= 0.07), a clear differentiation between fibre and oil flax was found with respect to three polymorphic loci (Pgd-1, Gpi-2 and Mdh-1). A phenogram, based on Nei's genetic distances between the accessions studied, showed five clearly defined groups but with low variation within the groups. The unexpected high genetic diversity found within accessions in the studied flax material may indicate that flax is more outbreeding than earlier believed.  相似文献   

5.
AFLP markers were used to characterize diversity and asses the genetic structure among 17 accessions of kale landraces, cultivars and wild populations from Europe. The range of average gene diversity in accessions was 0.11–0.27. Several landraces showed higher levels of diversity than the wild populations and one cultivar had the lowest diversity measures. The landraces that were most genetically diverse were from areas where kales are known to be extensively grown, suggesting in situ conservation in these areas as a supplement to storage of seeds in gene banks. An analysis of molecular variance (AMOVA) showed that 62% of the total variation was found within accessions. For most accessions, genetic distance was not related to geographic distance. Similarities among accessions were probably not caused by recent gene flow since they were widely separated geographically; more likely the relationship among them is due to seed dispersal through human interactions. Our results indicate that a kale population found in a natural habitat in Denmark was probably not truly wild but most likely an escape from a cultivated Danish kale that had subsequently become naturalized.  相似文献   

6.
In several regions of Italy as well as other parts of southern Europe, the heterogeneity of the land, the climate and the soil favour the survival in cultivation of a large number of landraces specifically adapted to local conditions. Knowledge on the level and distribution of their genetic variation can help to develop appropriate strategies, in order to suistainably manage in situ these germplasm resources at risk of genetic erosion. C. annuum is an herbaceous diploid species and is considered to be self-pollinating, although different rates of out-crossing have been recorded. We used random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers to assess genetic diversity within and between five populations of a landrace of Capsicum annuum L., grown in a limited area in north-west Italy and locally known as Cuneo pepper. Partitioning the genetic variation with Shannon's diversity index revealed that 41.6% occurred between and 58.4% within populations. Analogous results were obtained when the analysis was based only on RAPD or AFLP markers. However, AFLP was more reliable, since a lower range of variation was observed among primer combinations in detecting the two components of genetic variation. Notwithstanding the rather high level of within genetic variation detected, the five populations were clearly differentiated and differed in the frequency of alleles exclusive and/or present at very low frequencies. Our results show the need for accurate estimation of allele frequencies, in order to identify populations to which priority should be given for dynamic conservation of landraces.  相似文献   

7.
Phenotypic diversity for agronomic characteristics was determined in an experiment with 29 landraces and 14 improved varieties of rye from the Nordic area, Germany and Poland. The accessions were scored for 12 characters. Effects of the location, year, type, and country of origin for landraces were investigated with analysis of variance. Phenotypic variations for the traits were estimated using the Shannon–Weaver diversity index. The genetic variation was high, with an average of H 0 = 0.566. The landraces from Norway, Sweden and Finland showed the highest variation, whereas the improved varieties had the lowest. The German material also had low variation but the status of this material is uncertain. The genetic diversity showed that 70% of the variation was found within the accessions. A cluster analysis was carried out to identify the relationship between the accessions. The material grouped into eight clusters, where clusters I to V included landraces from Sweden, Finland and Norway, except for cluster III, which included one improved variety from Denmark. Cluster VI comprised a single Swedish landrace from Gotland. Most of the improved varieties were in cluster VII and the last cluster contained accessions from Germany and Sweden.  相似文献   

8.
Sweet potato (Ipomoea batatas L.) is the fifth most important crop in the developing countries after rice, wheat, maize and cassava. The amplified fragment length polymorphism (AFLP) method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection of Sokoine University of Agriculture, Morogoro and Sugarcane Research Institute, Kibaha, Tanzania. AFLP analysis of 97 sweet potato accessions using ten primer combinations gave a total of 202 clear polymorphic bands. Each one of the 97 sweet potato accessions could be distinguished based on these primer combinations. Estimates of genetic similarities were obtained by the Dice coefficient, and a final dendrogram was constructed with the un-weight pair-group method using arithmetic average. AFLP-based genetic similarity varied from 0.388 to 0.941, with a mean of 0.709. Cluster analysis using genetic similarity divided the accessions into two main groups suggesting that there are genetic relationships among the accessions. Principal Coordinate analysis confirmed the pattern of the cluster analysis. Analysis of molecular variance revealed greater variation within regions (96.19%) than among regions (3.81%). The results from the AFLP analysis revealed a relatively low genetic diversity among the germplasm accessions and the genetic distances between regions were low. A maximally diverse subset of 13 accessions capturing 97% of the molecular markers diversity was identified. We were able to detect duplicates accessions in the germplasm collection using the highly polymorphic markers obtained by AFLP, which were found to be an efficient tool to characterize the genetic diversity and relationships of sweet potato accessions in the germplasm collection in Tanzania.  相似文献   

9.
Germplasm conserved as seeds in genebanks requires regular regeneration. In this process, selection and genetic drift may cause loss of genetic diversity from accessions. In the case of selfing crops, separation of distinct lines into different accessions may be an efficient strategy to avoid these negative effects. In order to evaluate the applicability of this method for collection management, knowledge about the level of intra-accession genetic diversity is required. By means of AFLP analysis intra-accession variation was investigated in two cultivars, two landraces and two wild populations of ex situ conserved barley germplasm. In the total sample of 216 individuals analysed (36 per accession), 22 genotypes were observed based on 104 polymorphic loci. The number of genotypes detected ranged from 1 to 3 per accession, except for a Nepalese landrace that revealed 12 genotypes. An UPGMA cluster analysis grouped the genotypes unambiguously into the accession they belonged to and genotypes within accessions were generally found to be closely related. In order to determine the repeatability of the results obtained, 11 individuals belonging to 4 genotypes from the Nepalese landrace were scored for a second set of AFLP markers. Matrices of genetic distances calculated for the two AFLP datasets were found to be highly correlated (r = 0.9346, P < 0.001). Separation of genotypes into different accessions was considered a relevant option only for the Nepalese landrace. Analysis of molecular variance indicated that this accession could be well divided into 8 distinct lines. Further implications of the results for genebank practices are discussed.  相似文献   

10.
Amplified fragment length polymorphism markers were used to assess the genetic relatedness between Dioscorea alata and nine other edible Dioscorea. These species include D. abyssinica Hoch., D. bulbifera L., D. cayenensis-rotundata Lamk. et Poir., D. esculenta Burk., D. nummularia Lam., D. pentaphylla L., D. persimilis Prain. et Burk., D. transversa Br. and D. trifida L. Four successive studies were conducted with emphasis on the genetic relationship within D. alata and among species of the Enantiophyllum section from Vanuatu. Study 1 was carried out to select a set of polymorphic primer pairs using 11 combinations and eight species belonging to five distinct sections. The four most polymorphic primer pairs were used in study 2 among six species of the Enantiophyllum section. Study 3 focussed mainly on the genetic relationship among 83 accessions of D. alata, mostly from Vanuatu (78 acc.) but also from Benin, Guadeloupe, New Caledonia and Vietnam. The ploidy level of 53 accessions was determined and results indicated the presence of tetraploid, hexaploid and octoploid cultivars. Study 4, included 35 accessions of D. alata, D. nummularia and D. transversa and was conducted using two primer pairs to verify the taxonomical identity of the cultivars `langlang', `maro' and `netsar' from Vanuatu. The overall results indicated that each accession can be fingerprinted uniquely with AFLP. D. alata is an heterogeneous species which shares a common genetic background with D. nummularia and `langlang', `maro' and `netsar'. UPGMA cluster analysis revealed the existence of three major groups of genotypes within D. alata, each assembling accessions from distant geographical origins and different ploidy levels. The analysis also revealed that `langlang', `maro' and `netsar' clustered together with the cultivar `wael' (D. transversa) from New Caledonia. Results are discussed in the paper.  相似文献   

11.
12.
13.
Genetic variation within and among several Sorghum populations from different agroecological zones in Malawi were investigated using random amplified polymorphic markers (RAPDs). DNA samples from individual plants were analyzed using 35 oligonucleotides of random sequence. Twenty five of these primers allowed amplifications of random polymorphic (RAPD) loci. Overall, 52% of the scored loci were polymorphic. Every accession was genetically distinct. The analysis of molecular variance revealed that the within-region (among accessions) variations accounted for 96.43% of the total molecular variance. Observed variations in allelic frequency was not related to agroecological differences. The degree of band sharing was used to evaluate genetic distance between accessions and to construct a phylogenetic tree. Further analysis revealed that the sorghum accessions analyzed were genetically close despite considerable phenotypic diversity within and among them. It is suggested that all the sorghum landraces currently available in Malawi should be conserved both ex situ and in situ to maintain the current level of genetic diversity.  相似文献   

14.
In order to shed light on the role of Iran in apple evolution and domestication, we chose to investigate the relationships of a collection of 159 accessions of wild and domesticated apples including Iranian indigenous apple cultivars and landraces, selected wild species, and old apple scion and rootstock cultivars from different parts of the world. The majority of the wild species belonged to M. sieversii, which is widely believed to be the main maternal wild ancestor of domestic apples, from Kazakhstan and M. orientalis, which is one of the probable minor ancestors of domestic apples, from Turkey and Russia located on the east and west of Iran, respectively. The accessions were assigned into six arbitrary populations for the purpose of generating information on genetic parameters. Nine simple sequence repeat (SSR) loci selected from previous studies in apple were screened over DNA extracted from all the accessions. Results showed that all SSR loci displayed a very high degree of polymorphism with 11–25 alleles per locus. In total, there were 153 alleles across all loci with an average of 17 alleles per locus. The SSR allelic data were then used for estimation of population genetic parameters, including genetic variation statistics, F-statistics, gene flow, genetic identity, genetic distance and then cluster analysis using POPGENE 1.32 software. The F-statistics and gene flow in particular, showed that there was more intra-population than between population variation. The genetic identity and genetic distance estimates, and the dendrogram generated from the un-weighted pair group arithmetic average (UPGMA) method of cluster analysis showed that the Iranian cultivars and landraces were more closely related to M. sieversii from Central Asia (east of Iran) and M. orientalis native to Turkey and Russia than to other accessions of Malus species. Also, the old apple cultivars from different parts of the world have a closer genetic relationship to M. sieversii, M. orientalis and the Iranian apples, than to other wild species. Based on these results, we suggest that the Iranian apples may occupy an intermediate position between the domesticated varieties and wild species. We propose that Iran could be one of the major players in apples’ domestication and transfer from Central Asia to the western countries.  相似文献   

15.
For millennia, wheat (Triticum spp.) has been grown in traditional aflaj-irrigation systems of remote mountain oases in Oman. However, little is known about the diversity of the ancient landraces used. Given recent reports about the occurrence of novel germplasm in such material, the objective of this study was to evaluate the genetic diversity of hexaploid wheat (Triticum aestivum L.) landraces in relation to their geographic origin using microsatellites. The collection covered most of the cultivation areas in northern Oman where wheat landraces are growing. Total genomic DNA was extracted from six pooled plants representing each accession. A total of 161 wheat accessions were assayed using 35 microsatellite loci in which a total of 305 polymorphic bands were recorded for the 35 microsatellites. The polymorphic information content (PIC) across the 35 microsatellite loci ranged from 0.02 to 0.89 with an average of 0.50. A heterozygosity percentage value of 9.09 was determined and the highest level recorded for accessions from the Batinah district. Rare alleles averaged 1.85 with the highest value being from the Dakhilia district. The results indicated a significant correlation between gene diversity and number of alleles across districts. The correlation coefficient between these two variables over the 35 loci was 0.657, whereby correlation coefficients of 0.718, 0.706, 0.657 and 0.651, respectively, were found for the Batinah, Dhahira, Dakhilia and Sharqia materials. Genetic distances indicated that all landraces were closely related. The cluster analysis discriminated most of the landraces accessions. However, it failed to achieve region-specific groupings of landraces. The present study demonstrated the presence of high diversity in Omani landraces and also indicated the effectiveness of microsatellites to describe it.  相似文献   

16.
Information on genetic diversity and genetic relationships among genotypes of Brassica carinata is currently limited. The objectives of this study were to evaluate patterns and levels of genetic diversity in B. carinata based on amplified fragment length polymorphisms (AFLP) as compared with Brassica juncea and Brassica nigra, and to evaluate agronomic and seed quality data for plants grown in the field in western Canada. A total of 296 AFLP bands were generated from four primer pair combinations and scored for presence/absence in 66, 20 and 7 accessions of B. carinata, B. juncea and B. nigra, respectively. B. carinata was less genetically diverse than the other two species. Differences in diversity were evident in the proportion of polymorphic loci within each species: 23, 35 and 50% for B. carinata, B. nigra and B. juncea, respectively. Pair-wise similarity measures based on the Jaccard coefficient were highest among accessions of B. carinata and showed the narrowest range: 0.911 (0.810–0.981) compared to B. nigra: 0.569 (0.438–0.660) and B. juncea: 0.715 (0.345–0.951). AFLP-based genetic distance information can be used by plant breeders to select diverse genotypes. AFLPs are also useful for fingerprinting cultivars and two primer pair combinations were sufficient to uniquely identify all the accessions of B. carinata. More variation among accessions was identified in the agronomic trial than had previously been described in studies of B. carinata in western Canada, but the data were too limited to draw conclusions regarding specific accessions. Overall, the findings were in agreement with other published work describing the favourable agronomic potential of this species.  相似文献   

17.
Between 1930 and 2003 with emphasis on the 1940s maize landraces (Zea mays L. ssp. mays) from all over Switzerland were collected for maintenance and further use in a new Swiss breeding program. The genetic relationship and diversity among these accessions stored in the Swiss gene bank is largely unknown. Our hypothesis was that due to the unique geographic, climatic, and cultural diversity in Switzerland a diverse population of maize landraces had developed over the past three centuries. The aims were to characterize the genetic diversity of the Swiss landraces and their genetic relationship with accessions from neighbouring regions as well as reviewing their history, collection, and maintenance. The characterization and grouping was based on analyses with ten microsatellite markers. Geographic, cultural, and climatic conditions explained a division in two distinct groups of accessions. One group consisted of landraces collected in the southern parts of Switzerland. This group was related to the Italian Orange Flints. The other group contained accessions from northern Switzerland which were related to Northern European Flints in particular German Flints. Historic evidence was found for a frequent exchange of landraces within the country resulting in a lack of region-specific or landrace-specific genetic groups. The relatively large separation between the accessions, indicated by high F ST (0.42), might be explained partly by a bottleneck during the collection and maintenance phase as well as by geographical and cultural separation of north and south of the country. Due to the high genetic diversity, the accessions here are a potential resource for broadening the European flint pool.  相似文献   

18.
Two hexaploid species of Solanum sect. Solanum are present in Africa: Solanum scabrum and S. nigrum. Solanum scabrum is a widely cultivated species and is used as a leafy vegetable, as a source of medicine and as a source of ink dye. In previous studies a wide range of morphological diversity has been reported in this species and in some studies subspecies have been proposed. Subspecies are also recognized in S. nigrum. However, it has not been established whether or not the morphological differences are reflected at the genomic level. The present study applies AFLPs to study the genetic diversity in S. scabrum and its relationship to geographical provenance, morphological differences and the possible existence of subspecies within S. scabrum and S. nigrum. The data obtained were analyzed with cluster analysis (using UPGMA and NJ). The results indicate that the genetic variation within S. scabrum was higher within accessions than between accessions. Accessions did not cluster according to their geographical provenance, indicating that accessions from different geographical areas were not significantly different genetically. The clustering reflected neither morphological differences nor domestication status (cultivated or wild). The morphological differences exhibited by S. scabrum could be due to selection by farmers for different plant types. The AFLP derived clustering pattern did not segregate the subspecies recognized in S. scabrum and S. nigrum into separate subclusters.  相似文献   

19.
Total 65 lotus accessions in genus Nelumbo mainly collected from China, were subjected to random amplified polymorphic DNA (RAPD) markers to estimate the genetic diversity and to test the genetic basis of the relationships between morphotypes and molecular markers. Seventeen primers generated a total of 195 highly reproducible and discernible loci, among which 173 were polymorphic. Percent polymorphism varied from 66.7 to 100 with an average of 88.72, and five primers out of them, OPC05, OPG10, OPN20, OPP09 and OPS17, showed 100% polymorphism. A relatively high genetic diversity was detected among all the samples with the similarity coefficient values ranging from 0.45 to 0.85, and Nei’s gene diversity (h) 0.30, and Shannon index (I) 0.46. The UPGMA dendrogram clustered 65 accessions in four clusters and the clustering pattern showed two groups, N. nucifera ssp. nucifera and those accessions related to the American lotus, and some special cultivars, landraces, hybrids and the American lotus. Principal Coordinate Analysis (PCA) further indicated that the genetic diversity of Nelumbo accessions was not evenly distributed, instead, was presented by a clustered distribution pattern. Similar to the results revealed by the dendrogram, two main groups representing the two subspecies of N. nucifera, as well as some special landraces, cultivars of Chinese lotus, the Japanese lotus and hybrids out of the two groups were obtained. Neither the UPGMA dendrogram nor the PCA analysis exhibited strict relationship with geographic distribution and morphotypes among the accessions.  相似文献   

20.
Wild annual Cicer gene pools contain valuable germplasm for chickpea improvement programs. Previous research showed that duplication might exist in accessions collected from these gene pools, which would hinder chickpea breeding and related research. AFLP (amplified fragment length polymorphism) markers were used to fingerprint the world collections of the primary and secondary gene pools including C. reticulatum Lad., C. bijugum K.H. Rech., C. judaicum Boiss. and C. pinnatifidum Jaub. et Sp. Duplicates were detected in a total of 24 accessions in both the gene pools, highlighting the necessity to fingerprint the germplasm. Genotypic difference was detected as gene pool specific, species specific and accession specific AFLP markers. These were developed into fingerprinting keys for accession identification between and within species and gene pools. Use of AFLP markers to detect duplicates and to identify accessions is a reliable method which will assist in the characterisation and use of wild annual Cicer germplasm in chickpea improvement programs. We recommend the procedure presented in this paper as a standard approach for the precise genetic identification and characterisation of future world collections of wild Cicer, to keep germplasm integrity and to benefit chickpea breeding and related research programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号