首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】探索黑木耳黑色素的高效提取工艺,为促进黑木耳黑色素功能产品的开发和应用提供参考。【方法】以黑木耳子实体干品为材料,设计纤维素酶、果胶酶、木瓜蛋白酶用量单因素试验,在此基础上,再进行3种酶质量比、复合酶添加量、酶解pH、液料比、酶解温度和酶解时间的单因素试验,然后采用响应面法对复合酶提取黑木耳黑色素的工艺条件进行优化,并对优化后的黑木耳黑色素进行鉴定,分析其对DPPH、ABTS和OH自由基的体外抗氧化活性。【结果】响应面法优化复合酶提取黑木耳黑色素的最佳参数为纤维素酶/果胶酶/木瓜蛋白酶的质量比1∶3∶0,复合酶添加量25 mg/g,酶解pH 6.0,液(mL)料(g)比20∶1,酶解温度33 ℃,酶解时间60 min,在此条件下黑色素得率为13.80%。在相同酶添加量下,其提取得率分别是纤维素酶、果胶酶和木瓜蛋白酶单酶处理组的2.03,1.90和1.36倍。复合酶提取获得的黑木耳黑色素对DPPH和ABTS自由基的清除效果较好,其EC50值分别为1.62和0.99 mg/mL。【结论】用复合酶提取黑木耳黑色素的得率显著提高,且提取的黑色素具有良好的体外抗氧化活性。  相似文献   

2.
张明 《安徽农业科学》2010,38(26):14352-14353
[目的]优化大青叶多糖的提取工艺。[方法]以山东大青叶为材料,采用复合酶(纤维素酶、果胶酶、胰蛋白酶)水解、乙醇沉淀法提取其中的多糖,并通过正交试验确定复合酶的最佳配比及浸提温度、浸提时间、pH值等对多糖得率的影响。[结果]复合酶的最佳配比为:纤维素酶1.5%,果胶酶2.0%,胰蛋白酶1.5%;最佳反应条件为温度40℃,pH值5,时间90min,此条件下大青叶多糖的平均得率为18.24%。[结论]该研究确定了复合酶法提取大青叶多糖的最佳工艺。  相似文献   

3.
探讨了竹笋多糖复合酶法辅助提取及醇沉工艺,并对其体外抗氧化活性进行研究,为其工业化生产 提供参考。结果表明,复合酶最佳添加量为每0.3 g 样品添加纤维素酶、果胶酶、木瓜蛋白酶分别为360、1 080、7 200 U;最佳提取条件为院提取温度60益,提取时间2.2 h,料液比1颐35;多糖最佳醇沉条件为80%乙醇20益醇沉4 h;抗氧化活性结果表明竹笋多糖具有较高的体外抗氧化活性,对DPPH 自由基和ABTS 自由基的清除率分别达到 88.1%和86.5%。  相似文献   

4.
应用响应面法优化复合酶提取绣球菌多糖工艺   总被引:1,自引:1,他引:0  
采用纤维素酶、果胶酶和木瓜蛋白酶3种酶复合提取绣球菌多糖,在酶解p H值、酶解时间、酶解温度、液料比等单因素试验的基础上,采用响应面法分析优化工艺参数。结果表明,在添加果胶酶0.4%、纤维素酶0.6%、木瓜蛋白酶0.6%时最佳提取工艺为:酶解p H值4.16、酶解时间3.41 h、酶解温度53.73℃、液料比15.63∶1。在此提取条件下多糖得率达到14.33%。  相似文献   

5.
复合酶提取灵芝多糖工艺及其抗氧化能力研究   总被引:1,自引:1,他引:0  
[目的]获得复合酶提取灵芝多糖的最佳工艺,探讨灵芝多糖的体外抗氧化能力。[方法]以多糖提取率为指标,在单因素试验的基础上,采用正交试验对复合酶用量配比、酶解条件进行优化;采用清除1,1-二苯基苦基苯肼(DPPH)自由基模型评价灵芝多糖的体外抗氧化能力。[结果]复合酶提取优于单酶提取,酶用量最佳配比为纤维素酶1.5%、木瓜蛋白酶0.8%、菠萝蛋白酶3.5%(质量分数,相对于底物浓度);最佳酶解条件为pH5.5,温度50℃、酶解时间为100 min。复合酶提取的灵芝多糖具有良好的清除DPPH自由基作用,其清除能力优于水提灵芝多糖(P〈0.01),且在浓度0.8~4.8 mg/ml范围内,其对DPPH自由基的清除率随浓度增大而增大。[结论]该研究为灵芝多糖的开发提供了科学依据。  相似文献   

6.
为了探究平菇多糖的提取工艺,本试验选用甘露聚糖酶、木瓜蛋白酶、纤维素酶作为提取平菇多糖的复合酶,通过正交设计试验优化复合酶用量,采用响应面优化法考察液料比、酶解温度、酶解时间、pH值四个因素对多糖提取率的影响。结果显示,复合酶的最佳用量分别为甘露聚糖酶400 U/g,木瓜蛋白酶240 U/g,纤维素酶600 U/g,最佳提取工艺条件为液料比21∶1 (mL/g),酶解温度52.0℃,酶解时间3.1 h,pH值5.7验证试验,多糖提取率为5.90%,纯度60.91%;相比之下,热水浸提法多糖提取率为5.72%,纯度59.71%。因此,复合酶法提取可作为一种平菇多糖适宜的提取方法。  相似文献   

7.
[目的]采用水酶法提取扁桃仁油.[方法]采用单因素试验和正交试验,研究单一酶和复合酶种类及浓度、酶解时间、酶解温度、酶解pH、料液比对出油率的影响.[结果]水酶法提取扁桃仁油的最佳工艺条件为:采用由果胶酶、纤维素酶和木瓜蛋白酶组成的复合酶,酶解温度55℃,酶解时间3h,酶浓度2;,酶解pH7.0、料液比1∶4,在此条件下出油率达77.31;.[结论]单一酶中碱性蛋白酶,复合酶中果胶酶、纤维素酶、木瓜蛋白酶的组合对扁桃仁油的提取率最高;复合酶的出油率比单一酶高.  相似文献   

8.
[目的]探讨超声波复合酶法提取海带多糖的制备工艺。[方法]采用单因素分析和正交试验方法,以多糖提取率为评价指标,确定超声波复合酶法提取海带多糖的最佳条件。[结果]超声波提取优化条件为料液比1∶45,功率80 W,时间40 min。在超声波优化的基础上进行复合酶的处理,当pH 4.0,纤维素酶、果胶酶和木瓜蛋白酶的加酶率分别为2.5%、2.0%和1.0%,55℃下酶解210 min时,提取率最高,为18.16%。[结论]超声波复合酶法可有效提高海带多糖的提取率。  相似文献   

9.
为了优化复合酶辅助提取柚子皮多糖的工艺,以柚皮为原料,利用纤维素酶与果胶酶辅助提取,以多糖得率为指标,对提取过程中纤维素酶与果胶酶的用量、提取时间、提取温度和p H值等工艺参数进行优化。结果表明:优化后工艺条件为酶用量2.0%、提取温度60℃、p H值为4.0、提取时间80 min,柚子皮中多糖的平均得率为8.26%。这说明利用纤维素酶与果胶酶辅助提取柚子皮多糖的提取率较高,方法稳定可行。  相似文献   

10.
采用Box-Behnken中心组合试验设计,以果胶酶添加量、酶解温度、料液比为自变量,以多糖得率和羟基自由基(·OH)清除率为因变量,利用响应面法优化果胶酶酶解提取马齿苋多糖的工艺。结果表明,料液比1∶37(g/ml)、果胶酶添加量10.67 g/kg、酶解温度36.4℃、pH值5.0、酶解时间80 min条件下,马齿苋多糖得率预测值与测定值的相对标准偏差为2.29%,模型拟合度较高。体外抗氧化试验结果表明,马齿苋多糖具有较好的抗氧化性。因此,采用响应面法优化酶法提取马齿苋多糖工艺条件是可行的。  相似文献   

11.
复合酶法提取金针菇多糖及光谱分析   总被引:1,自引:0,他引:1  
研究了复合酶法提取金针菇(Flammulina velutipes)多糖的最佳工艺条件,并对金针菇多糖进行了光谱分析.采用木瓜蛋白酶、纤维素酶复合处理,对加酶质量比、酶解温度、pH、酶解时间4个因素对多糖提取率的影响进行了正交试验.确定了复合酶法提取金针菇多糖的最佳工艺条件为酶解温度60℃,复合酶添加量0.5%,加酶质量比(木瓜蛋白酶:纤维素酶)2∶1,pH 6.0,酶解时间2h,此条件下多糖提取率可达9.1%.  相似文献   

12.
以民族药白雪茶为材料,多糖提取率为检测指标,在单因素试验基础上,设计正交试验确定复合酶法提取多糖的最佳工艺条件,并测定多糖在体外清除DPPH和亚硝酸盐能力。结果表明,在复合酶为纤维素酶和木瓜蛋白酶(质量比1∶4)条件下,酶解温度50℃,酶解时长1.0 h,pH 5.0,酶浓度3.0%,白雪茶多糖提取为10.81%。白雪茶多糖对亚硝酸盐和DPPH自由基均有一定的清除作用,且表现为剂量效应关系。当白雪茶多糖浓度为2.5 mg/mL时,对DPPH自由基的清除率达98%。多糖浓度为2.0 mg/mL时,对亚硝酸钠的清除率达19.8%。采用复合酶法提取白雪茶多糖,可以明显提高多糖的提取率,且该工艺提取的白雪茶多糖对DPPH自由基有很好的清除作用。  相似文献   

13.
[目的]优化复合酶法提取南瓜多糖的工艺条件,研究南瓜多糖的抗氧化性。[方法]采用单因素试验设计研究了不同提取时间、温度、料液比、pH值对南瓜多糖提取率的影响,并通过正交试验确定了提取南瓜多糖的最佳复合酶配比和最佳提取条件。采用水杨酸法检测南瓜多糖对羟基自由基(.OH)和改进的邻苯酚自氧化法检测其对超氧阴离子自由基(O-2)的清除效果。[结果]当纤维素酶的浓度为1.0%、果胶酶为1.5%、木瓜蛋白酶为1.0%时,以及温度为40℃、pH=4.6、料液比为1∶30、提取时间为30 m in的条件下南瓜多糖的提取率最高;南瓜多糖对.OH具有较好的清除效果,对O-2有部分清除作用。[结论]该研究为南瓜多糖的研究及应用提供了基础资料。  相似文献   

14.
【目的】研究木瓜蛋白酶解法提取林蛙卵多糖的最佳工艺,测定提取的林蛙卵多糖的抗氧化活性。【方法】以林蛙卵为材料,通过单因素试验和正交试验分析料(g)液(mL)比、木瓜蛋白酶加酶量、pH值和酶解时间对多糖提取率的影响,确定林蛙卵多糖的木瓜蛋白酶法最佳提取工艺;应用1,1-二苯基-2-三硝基苯肼(DPPH)法测定林蛙卵多糖的抗氧化活性。【结果】木瓜蛋白酶提取林蛙卵多糖的最佳条件为:料(g)液(mL)比1∶20,酶添加量为每g样品70mg,pH 6.0,酶解时间2.5h,在此条件下,林蛙卵多糖提取率为2.67%。林蛙卵多糖对DPPH自由基的半数清除率为1.81mg/mL。【结论】木瓜蛋白酶法对林蛙卵多糖的提取效果较好,林蛙卵多糖具有明显的抗氧化作用。  相似文献   

15.
采用酶法提取杏鲍菇有效成分,以氨基态氮含量和多糖得率为主要评价指标,通过单因素试验确定酶解过程中的料液比和复合酶组成比例,采用三因素二次回归正交旋转组合设计,研究酶解温度、酶解pH以及酶的添加量对酶解杏鲍菇的影响.研究结果显示:最佳料液比为1∶20;第一步纤维素酶酶解杏鲍菇的最佳工艺参数为酶解温度48.5℃,酶解pH 5.50,酶的添加量0.102×103U.g-1;第二步复合酶酶解杏鲍菇的复合酶的质量组成比例为中性蛋白酶∶木瓜蛋白酶=3∶2,最佳工艺参数为酶解温度57.5℃,酶解pH 6.75,酶的添加量4.08×103U.g-1.二步酶解最优条件下,酶解液中氨基酸总含量为5.82 g.L-1,多糖得率3.792%.  相似文献   

16.
酶解法提取黑豆多糖的研究   总被引:1,自引:0,他引:1  
以黑豆为原料,采用不同种类的酶研究了提取黑豆多糖的技术,试验在不同的酶解浓度、温度、时间、pH值对黑豆多糖提取率的影响的基础上,用星点设计法优化了酶法提取黑豆多糖的最佳工艺参数。结果表明:在用纤维素酶、果胶酶、木瓜蛋白酶进行的提取中,纤维素酶法提取率最高;最优的提取参数为酶浓度3mg/100ml、pH6.0、酶解时间120min、酶解温度50℃、黑豆多糖得率为0.3214%,与理论贴近度99.41%,各因素对多糖得率的影响顺序为pH>酶解时间>酶解温度。  相似文献   

17.
猪苓发酵菌丝胞内多糖提取工艺研究   总被引:1,自引:0,他引:1  
【目的】优化猪苓发酵菌丝胞内多糖的提取工艺,以提高猪苓胞内多糖浸提的得率。【方法】通过单因素试验、正交试验和对比试验确定猪苓发酵菌丝胞内多糖的浸提方法、辅助浸提方法和除蛋白方法。【结果】与水浸提相比,弱碱性溶剂浸提猪苓菌丝胞内多糖的效果更好,具体工艺参数为:按料液比1∶40添加40倍体积pH=11的NaOH,90℃浸提4次,每次60 min;酶解辅助法和超声波辅助法可有效提高猪苓发酵菌丝胞内多糖的浸提得率,其中酶解辅助浸提的效果更好,其最佳工艺参数为:复合酶配比为m(纤维素酶)∶m(果胶酶)=1∶1,复合酶用量为10 mg/g,酶解80 min;蛋白酶和Sevag配合的除蛋白方法,是去除猪苓胞内蛋白的最佳方法。【结论】猪苓发酵菌丝胞内多糖的最适提取工艺流程为:猪苓菌丝干粉-添加10 mg/g复合酶〔m(纤维素酶)∶m(果胶酶)=1∶1〕和40倍体积蒸馏水?50℃酶解80 min-NaOH溶液调pH=11,90℃浸提4次,每次60 min-浸提液合并、浓缩-HCl溶液调pH=6.5-蛋白酶酶解1 h-85℃酶灭活-Sevag除蛋白至无蛋白检出-浓缩-醇沉-干燥。  相似文献   

18.
以银杏叶渣为原料,分别采用水提醇沉法和复合酶辅助醇水溶剂提取法获取银杏叶渣多糖和总黄酮;通过DPPH自由基、ABTS+自由基、羟自由基清除试验考查其体外抗氧化活性。结果显示,银杏叶渣与纯水1∶9,85℃提取3 h,其粗多糖得率为17.90%,多糖提取率达3.03%。提取多糖后的银杏叶渣,添加β-葡萄糖甘酶、纤维素酶与果胶酶(1∶1∶2)复合酶,添加量为8.0%,p H值为5,50℃酶解2.5 h,之后在80%乙醇、料液比1∶8、80℃条件下提取4 h,银杏叶渣总黄酮提取率0.59‰,3种游离苷元(槲皮素、山奈酚、异鼠李素)提取率0.93‰,与仅用80%乙醇提取的银杏叶渣总黄酮相比,其总黄酮提取率增加126.9%,游离苷元提取率增长102.2%。3.0 mg/m L多糖对DPPH自由基、ABTS+自由基、羟自由基清除率分别为67.59%、52.56%、56.47%;复合酶辅助醇水溶剂提取法提取的银杏叶渣总黄酮对3种自由基IC50值分别为0.63、1.08、0.35 mg/m L,与溶剂提取法所得银杏叶渣总黄酮IC...  相似文献   

19.
酶法提取蝉拟青霉多糖的研究   总被引:2,自引:1,他引:1  
用正交优化的方法分别研究木瓜蛋白酶、纤维素酶、果胶酶对蝉拟青霉多糖得率的影响。结果表明,木瓜蛋白酶法提取的多糖产量最高,其最佳提取条件是:温度50℃、pH7、木瓜蛋白酶1%、酶作用时间2h。  相似文献   

20.
复合酶法提取海黍子中海藻酸钠的工艺研究   总被引:1,自引:0,他引:1  
海黍子是北太平洋西部特有的暖温带性褐藻,主要分布在我国黄海渤海沿岸,具有较高的经济价值和生态价值,可以作为海藻酸提取的原材料。采用复合酶法(包括纤维素酶、果胶酶和木瓜蛋白酶)提取海黍子中海藻酸钠,在酶添加量、酶解温度、pH、提取时间的单因素实验基础上,通过正交实验进行优化。最佳提取工艺筛选结果为:纤维素酶添加量3%、果胶酶添加量3%、木瓜蛋白酶添加量1%、料液比1∶20,在55℃和pH 4的条件下酶解105 min,通过消化、脱色、钙析、酸化和醇沉等工艺制备海藻酸钠,提取率达到16.82%。结果为海黍子的高值化加工提供有效的技术途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号