首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究块状花生壳吸附Cd2+和Pb2+的机理,对吸附前后吸附质溶液pH值变化情况、吸附受溶液离子强度的影响及5种典型的解吸液对Cd2+和Pb2+的解吸效果进行了探讨,在此基础上,利用XPS(X-射线光电子能谱)和FTIR(傅立叶红外光谱)对吸附前后的花生壳进行了表征分析。结果表明,Cd2+是通过静电吸附等物理作用和外层络合等作用被吸附;Pb2+的吸附机理可能是静电吸附等物理作用、与H+发生离子交换及与含氧、含氮官能团外层络合。  相似文献   

2.
采用静态批式法研究钢渣对亚铁离子(Fe2+)和还原态硫离子(S2-)的吸附行为,探讨溶液pH、环境温度及溶液离子强度对钢渣吸附Fe2+和S2-特性的影响,并进一步通过解吸试验了解钢渣吸附态Fe2+和S2-的稳定性。结果表明:钢渣吸附Fe2+和S2-的动力学过程均符合Elovich动力学模型,相关系数分别为0.94和0.89;Fe2+和S2-在钢渣上等温吸附特征能较好地用Freundlich等温吸附模型表达,相关系数分别为0.97和0.94;钢渣对Fe2+和S2-的吸附为非优惠型吸附,其中对Fe2+的吸附为非自发反应,对S2-的吸附为自发反应;钢渣对Fe2+和S2-的吸附过程主要为化学吸附,是一个吸热过程,高温有利于吸附作用的进行;钢渣对Fe2+的吸附以内层配位为主,对S2-的吸附以外层络合为主;钢渣具有较大的pH适应性,一定范围内的pH(1.50~11.50)变化对钢渣吸附Fe2+和S2-影响不大;同时,随着离子强度的增加钢渣对Fe2+的吸附量变化不明显,但对S2-的吸附量显著减少。总之,钢渣吸附态Fe2+和S2-具有较好的稳定性,在不同pH条件及离子强度下吸附的Fe2+和S2-解吸率很低,说明钢渣可作为Fe2+和S2-良好的吸附材料加以利用.  相似文献   

3.
【目的】以陕西杨凌某自来水厂铝污泥(Al-WTRs)为原料,对其进行改性,研究改性后铝污泥对Pb2+和Cu2+的吸附性能,以期为Al-WTRs的利用提供途径。【方法】采用KMnO4和FeCl2·4H2O对Al-WTRs进行改性,制备铁锰氧化物改性铝污泥(M-Al-WTRs),采用比表面(BET-N2)、扫描电镜(SEM-EDS)、X射线衍射(XRD)、红外光谱(FTIR)等方法对改性前后Al-WTRs进行表征分析,并探讨不同pH、吸附时间、重金属初始质量浓度、温度和离子强度等条件下M-Al-WTRs对Pb2+和Cu2+的吸附性能。【结果】与Al-WTRs(9.10 m2/g)相比,M-Al-WTRs比表面积显著增大到100.8 m2/g;SEM-EDS、XRD、FTIR分析结果显示,M-Al-WTRs表面粗糙,且负载许多颗粒,并保持无定形态。M-Al-WTRs对Pb2+和Cu2+的吸附量随着pH的增加逐渐增大,最终趋于稳定,其中当pH=5时,M-Al-WTRs对Pb2+和Cu2+的吸附量分别为67.18和20.81 mg/g,分别比Al-WTRs提高了109.1%和68.64%。M-Al-WTRs对Pb2+和Cu2+的吸附动力学符合准二级吸附动力学模型,吸附等温线符合Langmuir等温模型。热力学分析表明,M-Al-WTRs对Pb2+和Cu2+的吸附是自发、吸热、增熵的过程。M-Al-WTRs对Pb2+和Cu2+的吸附几乎不受离子强度的影响,属于专性吸附。【结论】成功制备了对Pb2+和Cu2+具有良好吸附效果的M-Al-WTRs。  相似文献   

4.
利用磁性斜发沸石作吸附剂,考察了含背景电解质溶液初始pH、吸附剂投加量、Pb2+初始浓度、吸附时间等对其吸附Pb2+的影响,通过动力学模型和等温吸附模型探讨了磁性斜发沸石吸附Pb2+可能的作用机制.结果表明,磁性斜发沸石能够有效去除水体中的Pb2+,最大吸容附量达136.1 mg/g.磁性斜发沸石对Pb2+的吸附平衡时间为48h,溶液pH =6.0左右时,吸附剂投加量增大有利于Pb2+的去除;随着溶液中NaNO3背景电解质浓度增大,磁性斜发沸石对Pb2+的吸附量显著降低;吸附行为符合准二级动力学模型及Langmuir等温吸附模型.推测磁性斜发沸石对Pb2+的吸附既有物理吸附又有化学吸附.  相似文献   

5.
为获得去除铅、锌污染的高效菌株,采用浓度梯度筛选法,从受铅锌冶炼污染土壤中分离筛选耐铅锌离子微生物,并研究其对Pb2+和Zn2+离子的吸附特性。结果表明:筛选的菌株(编号0a)在试验条件范围内吸附基本符合Langmuir单分子层吸附行为,重金属离子浓度为300mg/L时0a菌对Zn2+、Pb2+离子最大吸附量分别达23.6mg/g和31.7mg/g;pH为3~6时对Zn2+、Pb2+的去除率较高,pH值为7.5时分别对Zn2+、Pb2+的吸附量最高,为30.96mg/g和23.5mg/g;吸附率与吸附时间符合吸附+细胞膜传输模型。初步鉴定该菌株为绿色木霉(Trichoderma viride)。  相似文献   

6.
游离和固定化香菇废弃菌柄处理含铅废水的比较研究   总被引:1,自引:0,他引:1  
本研究针对水体中常见的铅污染问题,资源化利用香菇废弃菌柄,以聚乙烯醇-海藻酸钠(PVA-SA)为包埋剂制成廉价且易于工业应用的固定化香菇小球,对含Pb2+重金属废水进行净化处理.研究了环境因素包括吸附时间、pH、Pb2+的初始浓度和共存离子对香菇固定化前后Pb2+吸附性能的影响.结果表明,固定后的香菇对Pb2+的平衡吸附时间变长了(7 h>1 h);最适宜pH值范围不变(5~7);共存离子Cd2+/Cu2+对固定化香菇Pb2+的吸附抑制作用较小,对游离香菇Pb2+的吸附抑制作用较强.热力学分析表明,Freundlich模型能较好地描述游离和固定化香菇对Pb2+的等温吸附过程,固定化香菇对Pb2+的理论最大吸附量明显高于游离香菇的理论最大吸附量(943 mg·g-1>14.9 mg·g-1).模拟二级动力学模型能最好地描述游离和固定化香菇对Pb2+的动力学吸附过程.扫描电镜观察显示,Pb2+可以和香菇小球表面相互作用,以Pb2+沉淀的形式被吸附.红外光谱研究发现,在固定化香菇小球吸附Pb2+的过程中香菇细胞壁上的-OH、-CO、-CO-NH及PVA发挥了作用.  相似文献   

7.
以活性污泥中提取的胞外聚合物(EPS)作为吸附剂,考察了pH、EPS投加量及温度对Pb2+吸附效果的影响,通过响应面法对其吸附条件进行优化,并对其热力学吸附特征和吸附动力学进行了探讨。研究结果表明,EPS对Pb2+的最佳吸附条件组合为:温度35℃,pH4.2,m(EPS):m(Pb2+)=2.5:1,在此条件下Pb2+实际去除率达到89.16%。EPS对Pb2+的吸附等温线能较好地用Langmuir方程和Freundlich方程来描述,但更适合用Langmuir方程拟合,3种不同温度下(20、30、40℃)最大单分子层吸附量分别为0.9229、1.0129、1.1191mg·mg-1。EPS对Pb2+的吸附过程可以用准二级动力学方程描述,并在240min达到吸附平衡,平衡时理论最大吸附量为0.45mg·mg-1。  相似文献   

8.
以木质纤维素(LC)为原料,利用巯基乙酸改性LC得到巯基木质纤维素(SLC),通过溶液插层复合法再与蒙脱土(MT)反应制备得到了巯基改性的木质纤维素/蒙脱土纳米复合吸附材料(SLM)。研究了SLM对水体中Pb(Ⅱ)的吸附过程,探讨各吸附因素对SLM吸附效果的影响。分析了吸附动力学和吸附等温特性,并采用FTIR和SEM/EDS表征对吸附机理进行研究。结果表明,SLM对Pb(Ⅱ)有良好的去除效果,SLM对Pb(Ⅱ)离子的最佳吸附条件为SLM用量0. 050 0 g,Pb(Ⅱ)起始浓度3. 52 g/L,pH4. 75,温度45℃,时间120 min,最大平衡吸附量173. 81 mg/g。SLM对Pb(Ⅱ)的吸附行为符合准二级动力学方程和Langmuir等温模型。FTIR和SEM/EDS分析显示,Pb(Ⅱ)和SLM表面的活性官能团进行了单分子层的化学吸附。  相似文献   

9.
土壤胡敏酸对Pb的吸附特征与影响因素   总被引:6,自引:3,他引:6  
采用Pb离子选择电极研究了Pb离子在胡敏酸上的吸附量和动力学特性,以及溶液pH、温度、离子强度对吸附的影响。结果表明胡敏酸对Pb离子的吸附量随着溶液pH增加而增大。当pH<4.00,符合Linear等温吸附式(r=0.9581~0.9547);当4.00≤pH≤7.00时,符合Langmuir等温吸附式(r=0.9776~0.9998)。温度降低,吸附量增加;离子强度增加,吸附量增加。胡敏酸与Pb离子作用的条件稳定常数随溶液pH增大而增加,但pH<4.00和4.00≤pH≤7.00这两个pH段增长规律明显不一致,说明在这2个pH段,存在不同的反应机制。胡敏酸结合1个Pb离子所释放的H+平均数小于1,且与溶液温度、离子强度有关。  相似文献   

10.
为获得去除铅、锌污染的高效菌株,采用浓度梯度筛选法,从受铅锌冶炼污染土壤中分离筛选耐铅锌离子微生物,并研究其对pb2+和Zn2+离子的吸附特性.结果表明:筛选的菌株(编号0a)在试验条件范围内吸附基本符合Langmuir单分子层吸附行为,重金属离子浓度为300 mg/L时0a菌对Zn2+、Pb2+离子最大吸附量分别达23.6 mg/g和31.7 mg/g;pH为3~6时对Zn2+、pb2+的去除率较高,pH值为7.5时分别对Zn2+、Pb2+的吸附量最高,为30.96 mg/g和23.5 mg/g;吸附率与吸附时间符合吸附+细胞膜传输模型.初步鉴定该菌株为绿色木霉( Trichoderma viride).  相似文献   

11.
通过批吸附动力学、等温吸附试验,并结合X射线光电子能谱(XPS)技术和衰减全反射-傅里叶变换红外光谱(ATRFTIR),揭示不同pH下左氧氟沙星(LEV)在铁氧化物表面的吸附机制。结果表明:溶液pH对LEV在针铁矿表面的吸附影响较大,不同pH下,其吸附动力学更符合准二级动力学模型(R2>0.98)。在pH为4时,3 h左右达到吸附平衡,而在pH为8时,12 h达到吸附平衡,并且pH为4的吸附量约是pH为8的2倍。XPS和ATR-FTIR的结果一致表明,静电作用和化学吸附是其主要吸附机制,在低pH(pH为4)时,LEV在针铁矿表面主要以单核双齿形态被吸附,在高pH(pH为8)时,主要以双核双齿形态被吸附。在中间pH(pH为6)时,由于静电排斥作用,导致其吸附量最大。  相似文献   

12.
采用批平衡法,研究了菲和Cu2+在黑垆土上的吸附及其交互影响。结果表明,菲和Cu2+在黑垆土上的吸附动力学曲线较好符合一级动力学方程,菲在黑垆土上的吸附主要通过分配作用,其吸附等温曲线符合线性Henry方程,Cu2+的存在抑制菲在黑垆土上的吸附;而Cu2+在黑垆土上的吸附主要通过表面吸附和专性吸附作用,其吸附等温曲线符合Freundlich方程,菲的存在促进了Cu2+的吸附;对菲和Cu2+来说,pH均是影响黑垆土吸附的主要因素,黑垆土对Cu2+的吸附量随着土壤溶液pH值的增加而增加,而对菲的吸附量随着pH增加而降低。  相似文献   

13.
以碱木质素、谷氨酸钠及甲醛为原料,依据Mannich反应制备谷氨酸-木质素吸附剂(GA-L).采用FT-IR和凯氏定氮表征其化学结构,并分析了吸附时间、吸附剂用量、pH值及反应温度对Pb2+吸附性能的影响.研究结果表明,谷氨酸已接枝到木质素上,产物氮质量分数为2.62%;GA-L在3h达到饱和状态,最佳吸附剂用量为0.2g/L;对酸性介质中的Pb2+具有良好的吸附性能,吸附容量随初始重金属离子质量浓度和温度的增加而增大;引入的胺基和羧基明显提高了木质素的络合能力,GA-L对Pb2+的吸附容量可达87.28mg/g,与未改性木质素(35.07mg/g)相比提高了148.87%.25℃时初始Pb2+质量浓度在20~200mg/L范围内,吸附规律符合Langmuir平衡模型,吸附机理以单分子层化学吸附为主.  相似文献   

14.
聚丙稀酰胺高吸附树脂与重金属离子的相互作用   总被引:1,自引:0,他引:1  
为探究高吸附树脂对重金属离子的吸附能力,用聚丙烯酰胺高吸附树脂对Cu(NO3)2、Pb(NO3)2标准溶液进行吸附,研究高吸附树脂与Cu2+、Pb2+的相互作用关系。结果表明:高吸附树脂吸水倍率随Cu2+、Pb2+浓度增大而显著减小,两者之间存在显著幂函数关系。离子吸附量随Cu2+、Pb2+浓度增大而显著增大,吸附平衡时Cu2+、Pb2+的最大吸附量分别为131.72、242.68 mg/g,高吸附树脂吸附过程符合Freundlich等温吸附方程。高吸附树脂对Cu2+、Pb2+的吸附量随时间增加而增大,吸附速率逐渐减小,吸附动力学可用准二级动力学方程描述。相同质量浓度下,高吸附树脂对Pb2+的吸附量和吸附速率均大于Cu2+。吸水凝胶在去离子水中和硝酸溶液中解吸很快,大约1 h后达到平衡,高吸附树脂在去离子水中解吸率不高,但在1 mol/L HNO3溶液中Cu2+、Pb2+解吸率均大于85%。高吸附树脂3次重复吸附后,Cu2+、Pb2+平衡吸附量分别为第1次吸附量的75.36%和78.12%,重复吸附性能良好。研究结果可为高吸附树脂应用于含有重金属的污水处理和土壤修复提供参考。   相似文献   

15.
通过研究四种改性生物质炭吸附重金属离子Pb(Ⅱ)和阳离子型染料亚甲基蓝的动力学效应、等温吸附效应、溶液初始pH效应和共吸附效应,探讨微波辅助加热在生物质炭氧化改性中的作用。结果表明,改性稻壳基生物质炭能够有效吸附Pb(Ⅱ)和亚甲基蓝,吸附容量显著高于初始生物质炭。Langmuir方程和Freundlich方程能很好地拟合改性稻壳基生物质炭吸附Pb(Ⅱ)和亚甲基蓝的等温数据(R20.90)。改性生物质炭吸附Pb(Ⅱ)和亚甲基蓝的动力学研究显示,改性稻壳基生物质炭对Pb(Ⅱ)和亚甲基蓝的吸附主要发生在前2 h内,吸附过程符合伪二级动力学模型。随着溶液中pH的增大,Pb(Ⅱ)的去除率迅速增加,并在pH6时达到最大,亚甲基蓝的去除率在实验pH范围内也随pH缓慢上升,在pH为8~9时达到最大并逐渐趋于平衡。Pb(Ⅱ)和亚甲基蓝的共吸附效应表明,随着摩尔比值[MB/Pb(Ⅱ)]的增大,亚甲基蓝抑制了改性稻壳基生物质炭对Pb(Ⅱ)的吸附。微波加热硝酸氧化改性显著提高600℃热裂解生物质炭对Pb(Ⅱ)的吸附性能和300℃热裂解生物质炭对亚甲基蓝的吸附性能。  相似文献   

16.
改性泡桐树叶吸附剂对水中铅和镉的吸附特性   总被引:2,自引:0,他引:2  
分别采用酸、碱、巯基乙酸3种化学方法对泡桐树叶粉末进行改性,利用扫描电镜(SEM)和傅立叶变换红外光谱(FTIR)对泡桐树叶吸附剂结构特性进行表征,研究了其对水中Pb2+和Cd2+的吸附行为。结果表明:吸附剂用量为3 g·L-1,温度25℃,溶液pH为5时,3种改性方法制得的泡桐树叶吸附剂4h内都能达到吸附平衡,吸附过程可以用准二级吸附动力学模型描述。NaOH-乙醇改性的泡桐树叶(MPPA No.1)较未改性的泡桐树叶(UMPPA)对Pb2+和Cd2+的吸附能力得到明显提高,Pb2+、Cd2+平衡吸附量分别为15.38 mg·g-1和14.71mg·g-1,对Cd2+的吸附速率较Pb2+快。UMPPA表面平展光滑,改性MPPANo.1表面粗糙呈蜂窝状,MPPANo.1比表面积为3.124 m2·g-1,较UMPPA增大150%。泡桐树叶主要含有羟基、羧基、酰胺等活性基团,有利于对Pb2+和Cd2+的吸附,经NaOH-乙醇改性的泡桐树叶对水中Pb2+和Cd2+有更好的吸附性能。  相似文献   

17.
以农业废弃物玉米(Zea mays L.)衣为吸附剂,研究其对水溶液中Pb(Ⅱ)的吸附作用,采用扫描电镜、红外光谱仪等对玉米衣的表面多孔性、吸附作用基团进行分析,并探究玉米衣的最佳吸附条件、吸附等温线、动力学模型。结果表明,当溶液Pb(Ⅱ)浓度为20 mg/L,p H为6.0,吸附剂投加量为0.10 g时,吸附率最高,达到94.77%;玉米衣对Pb(Ⅱ)的吸附动力学符合准二级动力学方程,以化学吸附为主;其吸附等温线符合Langmuir模型,为单分子层吸附;扫描电镜结果表明玉米衣表面覆盖大量绒毛,断裂形成小孔,有利于增加比表面积;红外光谱分析表明吸附过程中起主要作用的官能团有羧基、羟基等;当溶液中含有Ca2+、Mg2+等阳离子时,一定程度影响Pb(Ⅱ)的吸附。利用0.2 mol/L HCl解吸9.5 h解吸效果更好,其解吸率可达到48%。在众多吸附剂中,玉米衣最大吸附量可达32.468 mg/g,处于较好的吸附水平,因此,利用玉米衣作为吸附剂去除溶液中Pb(Ⅱ)具有潜在的应用前景。  相似文献   

18.
提取以羊粪为原料发酵腐熟的有机肥腐殖酸,研究投加量、溶液pH值对其吸附Pb2+的影响,同时运用准一级、准二级和Elovich吸附动力学模型对数据进行拟合,通过Langmuir和Freundlich方程对等温吸附过程进行拟合.结果表明:有机肥腐殖酸对Pb2+的饱和吸附时间为30 min,最佳的投加量为0.3 g,pH值为6,吸附率达93.39%,理论最大吸附量为36.232 mg/g.准二级动力学吸附方程能够更好地描述有机肥腐殖酸对Pb2+的吸附过程,Langmuir模型能更加准确地反映吸附过程;同时,随着温度的升高有机肥腐殖酸对Pb2+的吸附量也随之增加,说明吸附过程以物理吸附为主.  相似文献   

19.
以龙眼(Dimocarpus longan Lour.)壳为原料,硝酸为改性剂,制备硝酸改性龙眼壳活性炭(LCN),并吸附水溶液中的Pb(Ⅱ),研究了pH、吸附温度、Pb(Ⅱ)质量浓度、吸附时间对Pb(Ⅱ)吸附量的影响。结果表明,硝酸改性能显著提高龙眼壳活性炭对Pb(Ⅱ)的吸附能力,当溶液pH 5、吸附温度298K、Pb(Ⅱ)质量浓度100mg/L、吸附时间40min时,LCN对Pb(Ⅱ)的吸附量为192.72mg/g。准二级动力学模型更符合LCN对Pb(Ⅱ)的吸附过程。与Freundlich等温吸附方程相比,Langmuir等温吸附方程更符合LCN对Pb(Ⅱ)的吸附行为,说明LCN对Pb(Ⅱ)的吸附是以单分子层吸附为主。  相似文献   

20.
玉米秸秆生物炭对Cd2+的吸附特性及影响因素   总被引:7,自引:0,他引:7  
以玉米秸秆生物炭为实验材料,研究了生物炭吸附重金属Cd2+的性能,分析了吸附温度、吸附时间、初始pH值以及生物炭粒径对吸附的影响,并对吸附前后生物炭样品进行傅里叶变换红外光谱分析(FITR)、X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征以分析吸附机理。结果表明:玉米秸秆生物炭对Cd2+的吸附可用Langmuir等温方程较好地拟合,在不同温度下其饱和吸附量分别为18.49 mg·g-1(288.15 K)、23.51 mg·g-1(298.15 K)、23.59 mg·g-1(308.15 K)和24.43 mg·g-1(318.15 K),吸附动力学过程可以由准二级动力学方程很好地拟合,约40 min即达平衡,pH值为5时吸附量最大,生物炭粒径对吸附无明显影响。结构表征表明,生物炭对Cd2+的吸附机理主要为表面羟基(-C-OH)和羰基(-C=O)与Cd2+发生络合化学反应作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号