首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the ovary, but the localization of VEGF in the ovary of neonatal animals is poorly understood. A clear understanding of the relationship between the formation of the thecal layer and the cell‐specific expression of the VEGF system during follicular development in the neonatal ovary is still lacking. Immature female Wistar‐Imamichi rats used in this study were killed by decapitation 5, 7, 9 and 11 days after birth, and their ovaries were removed and subjected to histological and immunohistochemical observation. The number of primordial follicles had decreased in the ovaries at day 11 compared with that at day 5. The number of secondary follicles significantly increased with age. In the morphological observation of secondary follicles, we found that the theca layer (70 µm in diameter of follicles) began to form at day 9 and was completely formed at day 11. An endothelial cell marker, CD31, VEGF and Flk‐1 were located in the stromal tissues in the ovaries on each day examined after birth. In particular, in the ovaries at day 9 and day 11, when the secondary follicles appeared, CD31, VEGF and Flk‐1 were expressed in the theca layer. Flt‐1 was expressed in the oocytes of the ovaries at day 5 and day 7, and the sites of its expression changed to stromal and thecal tissues at day 9 and day 11. In conclusion, we provide the first evidence that the theca layer of secondary follicles begin to form at day 9 after birth and that VEGF and Flk‐1 may be able to stimulate the differentiation of stromal‐interstitial cells into thecal cells and the formation of the thecal vasculature in the neonatal rat ovaries, suggesting that the VEGF system may be involved in the formation of the thecal layer and vasculature during folliculogenesis in the neonatal rat.  相似文献   

2.
Angiogenic factors are associated with angiogenesis during follicular development in the mammalian ovary. The aim of the present study was to determine the relationships between the vascular network and mRNA expressions of angiopoietins (Ang)-1, Ang-2 and hepatocyte growth factor (HGF), and their receptors in follicles at different developmental stages during follicular development. Ovaries in gilts were collected 72 h after equine chorionic gonadotropin (eCG, 1250 IU) treatment for histological observation of the capillary network. Granulosa cells and thecal tissues in small (<4 mm), medium (4-5 mm) or large (>5 mm) individual follicles were collected for detection of mRNA expression of HGF, Ang-1 and Ang-2 in granulosa cells, and HGF receptor (HGF-R) and Tie-2 in the theca cells by semi-quantitative RT-PCR. The number of capillaries in the thecal cell layer increased significantly in healthy follicles at all developmental stages in the eCG group compared with those in controls. The expression of Ang-1 mRNA declined in granulosa cells of medium and large follicles and the level of Ang-2 mRNA increased in granulosa cells of small follicles after eCG treatment. The ratio of Ang-2/Ang-1 increased in small, medium and large follicles from ovaries after eCG treatment, but Tie-2 mRNA expression in the theca cells did not change. The level of HGF mRNA increased in granulosa cells of small follicles after eCG treatment but HGF-R in theca cells was not increased by eCG. These data suggested that the angiopoietins might be associated with thecal angiogenesis during follicular development in eCG-treated gilts.  相似文献   

3.
The cellular localization of nerve growth factor (NGF) and its receptors (TrkA, p75) was investigated during the estrous cycle in gilts. Also, the levels of expression of these factors in walls of tertiary follicles and corpora lutea (CLs) were determined using Western blot. The ovaries from days 3, 7, 16 and 20 of the cycle revealed the presence of NGF and its receptors in oocytes of secondary and tertiary follicles, follicular cells of primary and secondary follicles, thecal and granulosa cells of tertiary follicles and steroidogenic cells of CLs. In wall cells of primary follicles, NGF, TrkA and p75 staining was strongest on day 16, while in secondary follicles, only p75 was more intensely stained on day 16 and 20. In walls of small (to 3 mm in diameter) and medium (4-6 mm in diameter) follicles, NGF staining was lower on day 16, and the p75 reaction was strongest on day 20. On day 20, NGF staining in large follicles (7-10 mm in diameter) was higher than in smaller follicles. The levels of NGF and p75 in small and medium follicles were highest on day 20. The contents of NGF and TrkA in large follicles on day 20 were higher than in smaller follicles. NGF and TrkA contents in CLs were highest on day 7. Our study demonstrates that NGF, TrkA and p75 are expressed in the ovary during the estrous cycle in gilts. These results suggest that NGF and its receptors may be important for ovarian function in cycling gilts.  相似文献   

4.
应用免疫组化方法结合计算机图像分析技术,分析同期发情后0、5、9、12、15d的绵羊卵巢中血管内皮生长因子(Vascular endothelial growth factor,VEGF)表达强度变化,以期了解VEGF在绵羊卵巢发情周期不同时期的表达规律。结果显示:VEGF阳性目标主要出现于卵泡膜与颗粒细胞。原始卵泡、初级卵泡、次级卵泡VEGF表达依次增强(P〈0.05)。发情周期0~5d,大窦腔卵泡(颗粒细胞4~8层)VEGF表达量骤然上升(P〈0.05),而9d开始显著下降,与5d比较差异显著(P〈0.05)。12d继续下降(P〈0.05)且为最低值,15d又明显上升(P〈0.05)。VEGF在卵巢间质呈弱表达,各个时期之间差异不显著(P〉0.05)。结果表明,绵羊卵巢存在着血管周期性新生的变化特点,而VEGF在这种周期性血管新生过程中起着重要的调控作用。  相似文献   

5.
Growth differentiation factor-9 (GDF-9) and bone morphogenetic proteins (BMPs), comprise the largest subgroups of ligands in the TGF-β superfamily, and have been shown to be involved in follicle development in mammals. However, whether these factors are involved in folliculogenesis in pigs is still unknown. The present study was performed to determine the relationships between early folliculogenesis and the expression of GDF-9 and BMP (BMP-4, -5 and -6) mRNAs in neonatal pigs. Ovaries were removed at 5, 16, 28 and 39 days after birth to examine the follicular population (the right ovary of each animal) and to detect mRNA expression (the left ovary of each animal). Primordial follicles accounted for >80% of the ovarian follicles from 5 days until 39 days after birth. A marked increase in primary follicles and the appearance of secondary follicles were observed in the ovaries at 28 days after birth. BMP-4, -5, and -6 and GDF-9 mRNAs were expressed by ovaries at 5-, 16-, 28- and 39-day-old pigs. The peak expression of BMP-4, -5, and -6 and GDF-9 mRNAs was observed in the ovaries at 5, 39, 28 and 16 days, respectively, after birth. These data demonstrate that folliculogenesis in piglets might be controlled by the interaction with these factors. We conclude that BMPs and GDF-9 may have distinct functions in several stages of follicle development in neonatal pig ovaries.  相似文献   

6.
To improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor‐9 (GDF‐9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF‐9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen–thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF‐9. After culture, ovarian slices were fixed, sectioned and stained. The follicles were morphologically analysed and counted. Expression pattern of GDF‐9 was detected in oocytes from primordial follicles onwards, besides, also presented in granulosa cells. Moreover, GDF‐9 was detected in mural granulosa cells and theca cells of pre‐antral follicles. In antral follicles, cumulus cells and theca cells displayed positive expression of GDF‐9. In corpora lutea, GDF‐9 was expressed in both granulosa and theca lutein cells. After in vitro culture, there was no difference in the number of primordial follicles between cultured plus GDF‐9 and cultured control that indicated the GDF‐9 treatment has no effect on the primordial to primary follicle transition. GDF‐9 treatment caused a significant decrease in the number of primary and secondary follicles compared with controls accompanied with a significant increase in pre‐antral and antral follicles. These results suggest that a larger number of primary and secondary follicles were stimulated to progress to later developmental stages when treated with GDF‐9. Vitrification/warming of buffalo ovarian tissue had a little remarkable effect, in contrast to culturing for 14 days, on the expression of GDF‐9. In conclusion, treatment with GDF‐9 was found to promote progression of primary follicle that could provide an alternative approach to stimulate early follicle development and to improve therapies for the most common infertility problem in buffaloes (ovarian inactivity).  相似文献   

7.
To establish a tool for the study of follicular growth and development, we xenotransplanted small pieces (approximately 1 mm3) of porcine ovarian cortical tissues containing only primordial follicles and small preantral follicles under the capsules of kidneys of severe combined immunodeficient (SCID) mice (8-10 weeks old). The changes in cell proliferation and cell death/apoptosis, and vascularization in xenotransplanted follicles during follicular growth and development were analyzed histochemically at 1-26 weeks after operation. Follicles in grafted ovarian tissues grew rapidly forming an antral cavity (a hallmark of tertiary follicles) at 1 week after grafting. The diameter of the follicles in transplanted tissues ranged from 0.5 to 1.5 mm, from 0.5 to 2.0 mm and from 0.5 to 3.0 mm at 1, 2 and 26 weeks after the operation, respectively. Histological observation of ovarian tissues at 26 weeks after grafting revealed that all grafts had abundant capillary vessels, which invaded from murine organs and surrounded the growing follicles. Grafted small preantral follicles developed to the antral stages at 1 week after grafting and growing antral follicles survived at 26 weeks after grafting. The oocytes in the growing follicles were easily recovered for evaluating the quality. Our simple xenografting system is easy to use and a good experimental tool for the study of folliclular growth and development in porcine ovaries.  相似文献   

8.
The genetic and molecular mechanisms that control the development of capillary blood vessels during follicular development are beginning to be elucidated. Ovarian follicles contain and produce angiogenic factors that may act alone or in concert to regulate the process of thecal angiogenesis. These factors are ultimately controlled by endocrine, paracrine and autocrine regulation. A recent study indicated that vascular endothelial growth factor (VEGF) plays an important role in the process of thecal angiogenesis during follicular development. We are developing a novel technology for the induction of follicular development using the technique of in vivo gene administration. Here, we summarize the recent progress of our research.  相似文献   

9.
The present study describes the morphological characteristics of black howler monkey (Alouatta caraya) ovarian follicles. One ovary of an adult healthy black howler monkey was collected and processed for light and electron microscopy. Primordial, primary, secondary, tertiary and pre-ovulatory follicles were evaluated for their morphometrical aspects. The ovary of black howler monkey presented a distinct conformation with a uniform distribution of the follicles mostly in the peripheric cortex. This black howler monkey ovary presented a total of 59 921 ovarian follicles. From this amount, 71.1% were classified as primordial, 18.9% as primary, 8.1% as secondary, 1.4% as tertiary and 0.5% as pre-ovulatory follicles. From all these developmental stages, the mean diameters of follicles, oocytes, oocytes nuclei and the mean number of granulosa cells are described. Moreover, primordial, primary and secondary follicles have been observed by electron microscopy.  相似文献   

10.
11.
To address the role of follicular angiogenesis in the determination of ovulatory follicles and the effects of different vascular endothelial growth factor (VEGF) isoforms on follicular angiogenesis and development, mature female rats were treated with an angiogenic inhibitor (TNP-470), and also with VEGF 120 or 164 at different dosages (0.4, 0.8, 4.0 or 8.0 microg/kg body weight) for 3 days during the estrous cycle. Ovarian follicular angiogenesis, the population of large follicles and ovulation were examined. VEGF 120 (0.8 microg/kg) and 164 (8.0 microg/kg) treatments stimulated follicular angiogenesis in the theca interna layer, while TNP-470 treatment showed severe depression of follicular angiogenesis, and completely inhibited ovulation. After administration of VEGF 120 or 164, the number of healthy preovulatory follicles and ovulated oocytes increased significantly, concomitantly with a decrease in the number of atretic preovulatory follicles. The oocytes ovulated had normal fertilizability and developed to term with the same litter size as in the control rats. Our findings suggest that follicular angiogenesis may be a determinant of follicular development during the periovulatory phase, and that VEGF isoforms may play different important roles in regulating follicular angiogenesis.  相似文献   

12.
生长分化因子9(growth differentiation factor 9,GDF-9)属于TGF-β超家族,其在卵泡的发育过程中发挥着重要的作用。作者将对GDF-9基因的结构和功能,GDF-9的表达与调控及其对卵泡发育和颗粒细胞增殖的影响等方面进行详细的阐述,进而分析GDF-9基因与哺乳动物繁殖性能的关系。  相似文献   

13.
In this study, the expressions of VEGF in dog follicles were detected by immunohistochemistry and the effects of VEGF treatment on the primordial to primary follicle transition and on subsequent follicle progression were examined using a dog ovary organ culture system. The frozen‐thawed canine ovarian follicles within slices of ovarian cortical tissue were cultured for 7 and 14 days in presence or absence of VEGF. After culture, the ovaries were fixed, sectioned, stained and counted for morphologic analysis. The results showed that VEGF was expressed in the theca cells of antral follicles and in the granulosa cells nearest the oocyte in preantral follicle but not in granulosa cells of primordial and primary follicles; however, the VEGF protein was expressed in CL. After in vitro culture, VEGF caused a decrease in the number of primordial follicles and concomitant increase in the number of primary follicles that showed growth initiation and reached the secondary and preantral stages of development after 7 and 14 days. Follicular viability was also improved in the presence of VEGF after 7 and 14 days in culture. In conclusion, treatment with VEGF was found to promote the activation of primordial follicle development that could provide an alternative approach to stimulate early follicle development in dogs.  相似文献   

14.
15.
16.
研究休情期银黑狐卵巢形态和卵泡的显微结构,以揭示银黑狐卵巢发育的一般规律。本试验于2012年12月份采集5只健康一岁龄银黑狐卵巢10枚,用游标卡尺测量其长、宽、厚,用电子天平测量其重量,并对其表面可见卵泡数量进行统计,然后利用光学显微镜对各级卵泡分别观察1~3个,共计原始卵泡30个,初级卵泡20个,次级卵泡15个,三级卵泡12个,成熟卵泡10个,并进行拍照。结果表明:随银黑狐卵巢体积不断增大,其中80%的卵巢重量也随之增大;可见卵泡数量与卵巢体积及重量没有相关性;卵巢由被膜、皮质和髓质构成,髓质位于卵巢内层,分布着较多血管,皮质位于卵巢外层,内有不同发育阶段的卵泡;原始卵泡由卵母细胞和颗粒细胞构成,初级卵泡开始出现透明带物质,到次级卵泡阶段发育完整,三级卵泡出现卵泡腔,卵泡及卵母细胞直径在有腔卵泡阶段比腔前卵泡阶段增长速度快,成熟卵泡的直径及透明带厚度达到最大,各级卵泡均有闭锁现象。  相似文献   

17.
This study aimed to investigate leptin immuno‐staining of the porcine ovary in different reproductive stages. Ovaries from 21 gilts were collected from slaughterhouses. The ovarian tissue sections were incubated with a polyclonal anti‐leptin as a primary antibody. The immuno‐staining in ovarian tissue compartments was calculated using imaging software. Leptin immuno‐staining was found in primordial, primary, preantral and antral follicles. Leptin immuno‐staining was expressed in the oocyte and granulosa and theca interna layers in both preantral and antral follicles. In the corpora lutea, leptin immuno‐staining was found in the cytoplasm of the luteal cells. The leptin immuno‐staining in the granulosa cell layer of preantral follicles did not differ compared to antral follicles (90.7 and 91.3%, respectively, > 0.05). However, the leptin immuno‐staining in the theca interna layer of preantral follicles was lower than antral follicles (49.4 and 74.3%, respectively, < 0.001). There was no difference in leptin immuno‐staining in the granulosa cell layer between follicular and luteal phases (92.4 and 89.7%, respectively, > 0.05). However, the leptin immuno‐staining in the theca interna layer of follicular phase was greater than that in the luteal phase (72.7 and 51.0%, respectively, < 0.001). These findings indicated that leptin exists in different compartments of the porcine ovary, including the oocyte, granulosa cells, theca interna cells, corpus luteum, blood vessel and smooth muscles. Therefore, this morphological study confirmed a close relationship between leptin and ovarian function in the pig.  相似文献   

18.
Epidermal growth factor (EGF) is one of the important regulatory factors of EGF family. EGF has been indicated to effectively inhibit the apoptosis of follicular cells, to promote the proliferation of granulosa cells and the maturation of oocytes, and to induce ovulation process via binding to epidermal growth factor receptor (EGFR). However, little is known about the distribution and expression of EGF and EGFR in cattle ovary especially during oestrous cycle. In this study, the localization and expression rule of EGF and EGFR in cattle ovaries of follicular phase and luteal phase at different time points in oestrous cycle were investigated by using IHC and real-time qPCR. The results showed that EGF and EGFR in cattle ovary were mainly expressed in granulosa cells, cumulus cells, oocytes, zona pellucida, follicular fluid and theca folliculi externa of follicles. The protein and mRNA expression of EGF/EGFR in follicles changed regularly with the follicular growth wave both in follicular and in luteal phase ovaries. In follicular phase ovaries, the protein expression of EGF and EGFR was higher in antral follicles than that of those in other follicles during follicular growth stage, and the mRNA expression of EGFR was also increased in stage of dominant follicle selection. However, in luteal phase ovaries, the growth of follicles was impeded during corpus luteum development under the action of progesterone secreted by granular lutein cell. The mRNA and protein expressions of EGF and EGFR in ovarian follicles during oestrous cycle indicate that they play a role in promoting follicular development in follicular growth waves and mediating the selection process of dominant follicles.  相似文献   

19.
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF‐2) play a paramount role in the regulation of normal and pathologic angiogenesis in the ovary of mammals. Very little is known on the expression of these two growth factors in the avian ovary. The aim of this study was to determine for the first time the localization of VEGF and FGF‐2 in the ovary of the ostrich using immunohistochemical techniques to investigate the vascularization of the rapidly growing huge ostrich oocyte. At the oocyte periphery, distinct VEGF‐positive granules are visible. In our opinion, the expression of VEGF in the growing oocytes, which does not occur in mammals such as bovines, does not significantly contribute to angiogenesis in the theca interna and externa, where all the original and developing vessels are located, but may contribute to the mitoses and survival of granulosa cells during folliculogenesis. A different immunostaining can be demonstrated for FGF‐2: from late pre‐vitellogenic follicles, FGF‐2 immunopositivity can be observed at the inner perivitelline layer area. In the stroma, the smooth muscle cells of small arteries and the endothelial cells of venules and veins are positively stained for FGF‐2. Another interesting finding of this study is the occurrence of a significant number of VEGF‐ and FGF‐2 positive heterophilic granulocytes within the ovarian stroma, which migrate from the periphery of the ovary towards the growing follicles. We assume that the growth factors of the heterophilic granulocytes contribute significantly to the angiogenesis seen in both theca layers.  相似文献   

20.
The morphology of healthy and atretic follicles in the ovary of the sexually immature ostrich was described in the present study. In addition, the distribution of the intermediate filaments desmin, vimentin and smooth muscle actin, in these ovarian follicles, was demonstrated. Healthy and atretic primordial, pre-vitellogenic and vitellogenic follicles were present in the ovaries of the sexually immature ostrich. Atresia occurred during all stages of follicular development. Atretic primordial and pre-vitellogenic follicles were characterized by the presence of a shrunken oocyte surrounded by a multilayered granulosa cell layer. Two forms of atresia (types 1 and 2) were identified in vitellogenic follicles. In the advanced stages of type 1 atresia the follicle was dominated by a hyalinized mass. In contrast, in type 2 atresia the granulosa and theca interna cells differentiated into interstitial gland cells. Positive immunostaining for desmin was observed in the granulosa cells of only healthy primordial and pre-vitellogenic follicles. Atretic primordial and pre-vitellogenic follicles were immunonegative for desmin. Vimentin immunoreactivity was demonstrated in the granulosa cells of all follicles except the vitellogenic atretic follicles. The results of the present study indicate that ovarian follicles in the sexually immature ostrich undergo a cycle of growth and regression, which is similar to that reported in other avian species. Furthermore, based on the results of the immunohistochemical study, it would appear that the distribution and immunostaining of intermediate filaments changes during follicular development and atresia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号