首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high molecular weight (HMW) glutenin subunit composition of 111 common landraces of bread wheat collected from Hubei province, China has been determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Ninety six of the accessions were homogeneous for HMW glutenin subunit composition and 15 were heterogeneous. For the Glu-1 loci, 16 alleles were detected, 3 at the Glu-A1locus, 9 at the Glu-B1and 4 at the Glu-D1. Three novel alleles were identified, two at the Glu-B1 and one at the Glu-D1locus. Combination of these 16 alleles resulted in 14 different HMW subunit patterns. The distribution of HMW glutenin subunit alleles in a subset of 105 of the 111 accessions representing six populations was assessed both at the individual population and whole population levels. The results demonstrated that the distribution of allelic patterns varied among populations. Taken together, 62.5% of the alleles detected were considered to be rare alleles while the Glu-A1c (null), Glu-B1b (1Bx7 + 1By8) and Glu-D1a (1Dx2 + 1Dy12) alleles were found most frequently in the six populations. The subset exhibited relatively high genetic diversity (A = 5.33, P = 1.00, Ae = 1.352 and He = 0.238) with 81.5% of the diversity being within populations and 18.5% between populations.  相似文献   

2.
The genetic variations of high-molecular-weight (HMW) glutenin subunits in 1051 accessions of 13 Triticum subspecies were investigated using sodium dodecyl sulfate polyacrylamide-gel electrophoresis. A total of 37 alleles were detected, resulting in 117 different allele combinations, among which 20, 68 and 29 combinations were observed in diploid, tetraploid and hexaploid wheats, respectively. Abundance and frequency of allele and combinations in tetraploid wheats were higher than these in hexaploid wheats. Allele Glu-A1c was the most frequent subunit at Glu-A1 locus in tetraploid and hexaploid wheats. Consequently, the results also suggested that the higher variations occurred at Glu-B1 locus compared to Glu-A1 and Glu-D1. Therefore, carthlicum wheat possessing the allele 1Ay could be presumed a special evolutional approach distinguished from other tetraploid species. Furthermore, this provides a convenient approach of induction of the 1Ay to common wheat through direct cross with carthlicum wheat. Alleles Glu-B1c and Glu-B1i generally absent in tetraploid wheats were also found in tetraploid wheats. Our results implied that tetraploid and hexaploid wheats were distinguished in dendrogram, whereas carthlicum and spelta wheats and however displayed the unique performance. In addition, founder effect, no-randomness of diploidization, mutation and artificial selection could cause allele distribution of HMW-GS in Triticum. All alleles of HMW-GS in Triticum could be further utilized through hybrid in the quality improvement of common wheat.  相似文献   

3.
Large areas of wheat (Triticum aestivum L. Fion et Paol.) are grown under above-optimal temperatures causing significant yield reductions. Adaptation of wheat to such areas through genetic improvement is a way of increasing production in those regions. To identify new and novel sources of heat tolerance, 2,255 Mexican wheat landraces, grown for seed regeneration under semi-controlled conditions in the screenhouse, were evaluated for leaf chlorophyll content (LCC). The landraces were collected from areas with seasonal high temperatures. Based on these initial results, two subgroups of 127 landraces each were selected, one with high LCC values and one with low LCC values. During 1997 the selected subgroups were grown in the screenhouse and in field trials in Cd. Obregon, Mexico. The landraces were evaluated for traits associated with heat tolerance: LCC, canopy temperature depression, and thousand-kernel weight (KWT). The objectives of the study were to identify new sources of heat tolerance and to assess the feasibility of combining basic seed regeneration with characterization for needed traits like heat tolerance. A highly significant correlation was found between LCC in the screenhouse and in field trials, indicating the promise of using a screenhouse for cost effective evaluation of heat tolerance traits. This strategy could be used to identify regions or groups of germplasm that merit more intense screening. Highly significant correlations were also found between LCC and KWT. Three landrace cultivars with superior and consistent LCC values were identified. These accessions are potentially useful sources for improving heat tolerance in cultivated wheat.  相似文献   

4.
A collection of 123 winter and 106 spring wheat (Triticum aestivum L.) cultivars and breeding lines commonly grown in Nordic and Middle European countries were characterised for the composition of high-molecular-weight (HMW) glutenin subunits on the ground of data from literature and experiments of author. HMW glutenin subunit composition was determined by one-dimensional sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE). The present database includes data for cultivars and breeding lines from Finland (FIN – 56), Estonia (EST – 27), Sweden (SW – 27), Germany (D – 24), Lithuania (LIT – 17), United Kingdom (UK – 6), France (F – 3), Poland (POL – 5), Italy (IT – 7), Netherlands (NL – 6), Norway (NOR – 12), Russian Federation (RUS – 14 items). The occurrence of individual alleles and corresponding HMW glutenin subunits in surveyed cultivars is demonstrated. Special attention has been paid to cultivars growing in neighbouring countries with the aim to apply them in Estonian plant breeding. The database consists of 4 tables with data of HMW glutenin subunits, encoding them Glu-1 alleles, quality score and sources of data. The database could be useful for varietal identification and for plant breeders to improve wheat quality and accelerate the breeding process.  相似文献   

5.
The diversity of HMW glutenin subunits in spelt wheat, Triticum aestivum ssp. spelta, was studied electrophoretically in 333 accessions grouped in 50 populations originally collected from Asturias, North of Spain, in 1939. The inter- and intra-population distribution of HMW glutenin alleles at the Glu-A1, Glu-B1 and Glu-D1 loci were investigated. The results show that the genetic variation in HMW glutenin subunits is mainly present within populations, being the variation between populations only 21%. The materials analysed showed a wide polymorphism for the HMW glutenin subunits, although some allelic variants were clearly dominant. This suggests the possibility of a loss of variability before the collection that could have increased with the subsequent reduction of the cultivation area of this species in this Spanish region.  相似文献   

6.
(英文)     
对来源于美、中、俄及埃塞阿比亚等22个国家的142份硬粒小麦材料的种子贮藏蛋白位点及遗传变异进行了研究。供试的硬粒小麦(Triticum durum Desf )材料共检测出37条醇溶蛋白条带,无1条带纹为所有材料共有,多态性达到100%,说明硬粒小麦具有丰富的醇溶蛋白等位变异。聚类分析将142份供试材料分为3个大类,材料间遗传差异大小在不同的国家有所不同,表明醇溶蛋白带型与地理来源有一定关系。高分子量谷蛋白电泳共分离出14种亚基和15种亚基组合,但是优质亚基所占比例不高,这可能是因为硬粒小麦加工用途的特殊性,使得多年的育种并未太多改变硬粒小麦高分子量谷蛋白亚基等位变异的频率,促成优质亚基的累计。  相似文献   

7.
Variation in bread wheat including pre and post green revolutions varieties of Pakistan along with landraces was investigated for high molecular weight Glutenin subunits (HMW Gs) encoded at three genes (Glu-A1, Glu-B1, Glu-D1) with SDS-PAGE. The germplasm was diverse and unique on the basis of HMW Gs compositions and out of 14 alleles detected at all the Glu-1 loci, three belonged to Glu-A1, nine to Glu-B1 and two to Glu-D1 locus. High variation was observed in the landraces and higher gene diversity was observed between the populations as compared to the gene diversity within populations, whereas a reverse pattern of gene diversity was observed when populations were pooled across the region (higher within the regions than between the regions). A lack of relationship between the HMW Gs diversity and the altitude of collection site was observed. A data base has been generated in this study which could be expanded/exploited for cultivar development or management of gene bank.  相似文献   

8.
The high molecular weight glutenin subunits (HMW-GS) composition at the Glu-1 complex loci, in 23 old original wheat genotypes cultivated in Slovakia several decades ago and 32 modern Slovak and Czech wheat cultivars growed in Slovakia at present were studied by SDS-PAGE. Some of the HMW-GS – subunit pairs 3+12, 17+18, and subunit 20, present in old historical wheats were missing in modern cultivars utilized in Slovakia nowadays. There were observed 15 different HMW-GS encoded by 11 alleles or allelic pairs in old genotypes. Lower number of different HMW-GS and competent alleles were observed in a set of modern wheat cultivars – 11 different HMW glutenin subunits encoded by 8 alleles or allelic pairs. The same number of different HMW-GS patterns was revealed in both sets of wheats. From the point of view of genetic variability, it could be concluded that long-term effort of breeders and decreasing of cultivation of landraces and old cultivars are associated with the loss of several HMW-GS alleles and decreasing of genetic variability of wheats. Molecular characterization can reveal broad allelic variability of old wheat genotypes and landraces. Their maintenance in genetic resource collections can prevent losses of these interesting genes.  相似文献   

9.
Summary A collection of 2,420 accessions derived from single-spike population samples of durum wheat landraces collected in 1984 from 172 sites in 28 provinces in Turkey was evaluated for nine adaptive traits at the ICARDA research station at Tel Hadya, near Aleppo, Syria. Differentiation of these accessions among provinces was found for number of days to heading, maturity, grain-filling days, as well as for plant height, peduncle length, number of spikelets per spike, spike length, awn length, and kernel weight. The first three canonical variables accounted for 90% of the total variance. Canonical analysis also revealed significant correlations to province mean temperatures, altitude, latitude, and length of the growing season, but not with total seasonal rainfall. Eight distinct groups of provinces were identified by cluster analysis. These clusters had both geographical orientation to eastern and western Turkey and to agroecological zonation for clusters having both eastern and western provinces. Accessions were found with high kernel weight, early heading and maturity, and awnless spikes which could be utilized in crop improvement programs targeted at either favorable or stressed environments.  相似文献   

10.
A collection of 136 accessions of Aegilops umbellulata (39), Ae. comosa (75) and Ae. markgrafii (22) was analysed for high-molecular-weight (HMW) glutenin subunits composition. The homogeneity of the accessions was studied and 55.1% of the collection was homogeneous for HMW glutenin subunits (29 Ae. umbellulata, 33 Ae. comosa and 14 Ae. markgrafii). The HMW glutenin subunits of Ae. umbellulata are encoded by the Glu-U1 locus; in Ae. comosa results showed that this proteins are encoded at the 1M chromosome, and the locus was named Glu-M1. In Ae. markgrafii it was assumed that HMW glutenin subunits were encoded by an homoeologous locus and it was named Glu-C1. All the accessions of Ae. umbellulata and Ae. markgrafii expressed both, x-type and y-type subunits. Among the Ae. comosa accessions, only one expressed an x-type subunit alone. All the accessions of Ae. umbellulata and some of Ae. comosa had x-type glutenins of higher molecular weights than those commonly present in bread wheat. A total of 8 alleles were detected at the Glu-U1 locus, 11 at the Glu-M1 and 4 at the Glu-C1. The new HMW glutenin variation found in this work suggests their possible utilisation in breeding for wheat quality.  相似文献   

11.
We used amplified-fragment-length polymorphism (AFLP) markers to evaluate genetic variation in a set of bread wheat (Triticum aestivum L.) landraces and improved materials. Landraces collected from different geographic and agro-ecological zones in Pakistan in 1987, 1989 and 1991 were separated into two groups based on their geographic origins: northern (Himalaya) and south-western (Balochistan) Pakistan. Six AFLP primer combinations detected 453 AFLP markers in the 43 landrace accessions and four high-yield varieties (HYVs). Of these, 225 (49.67%) were rare (shared with < 5% of all accessions). Among these rare alleles, 23 (10.22%) were common in the Himalaya (shared with > 10% of accessions collected there) but were not found in Balochistan. We conclude that there is a higher probability of collecting rare alleles at overall, but which are in contrast locally common ones in the Himalayan region. Gene diversity was 0.17 in the Himalayan group and 0.15 in the Balochistan group. Considerable genetic variability was found in both groups. Accessions from different agro-ecological zones were indistinguishable by cluster analysis, indicating intensive seed trading within the country. Cluster analysis indicated that the landraces and the HYVs are genetically distinct; suggesting that genetic erosion of wheat landraces has been unlikely taken in place. This study provides an example of how analysis of existing materials and data, can serve as a basis for future collection planning and conservation policies.  相似文献   

12.
Summary Esterase isozymes of tetraploid wheat landraces originating from four localities in the central highlands of Ethiopia were studied using the horizontal starch gel electrophoresis. The landraces studied consisted of 60 Triticum turgidum L., one T. dicoccon Schrank, one T. polonicum L. and an improved local cultivar. One introduced durum cultivar was also included for comparison.A total of 12 esterase zymograms were detected in the landraces. Among these, the types C, A and G were found to be the most prevalent. The esterase isozymes exhibited high variation in the landraces. The esterase zymograms of the introduced durum cultivar and T. dicoccon differed from those of the landraces while the patterns attained in T. polonicum and the improved local cultivar were identical to those of the other landraces.The total number of bands detected was 10, of which 2 were rare, being displayed by only 1 pattern each. The band content of zymograms was in the range of 3–6 and the average was 4. The unique bands were observed in zymograms with both high and low prevalences in the landraces. Two zymograms, including zymogram C which had the highest frequency, occurred in all the localities. The high yielding landraces displayed 4 of the zymograms, one of which belonged to two of the zymograms with widest distribution.  相似文献   

13.
Sixteen landraces of westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum Wittm.) collected in Northwest Spain were evaluated at three locations: Mabegondo (La Corun~a), Puebla de Brollo´n (Lugo) and Salcedo (Pontevedra). Populations showed a high variability for morphologic, agronomic and isoenzimatic traits. Principal component analysis was carried out to identify clusters of morphologic and agronomic homogeneous behaviour. A hierarchical clustering method on the first five components was used to separate the different groups. A partition into four clusters was chosen (71% of variance explained). Each cluster was described by the means of the different traits and compared with the other clusters. Landraces were screened for allozyme diversity at nine loci. Population genetic statistics were higher than those previously reported for other outbreeding species (mean number of alleles = 3.59 and mean expected heterozygosity = 0.510). Genetic diversity was mainly explained by the within population component. The between population differentiation only accounted for 8% of the whole diversity. The use of these genetic resources is discussed.  相似文献   

14.
Thirty‐four tetraploid (2n = 4x = 28) wheat (Triticum turgidum L.) landrace populations collected from four regions in Ethiopia, and consisting of 4099 entries were characterized for glume colour, glume pubescence, beak awn, seed colour and spike density. The main objective was to analyse the diversity and distribution of these traits on the basis of administrative regions and altitudinal gradients. The Shannon‐Weaver Diversity Index (H') was used to estimate the magnitude of diversity. With the exception of spike density, all characters were polymorphic in all regions and most altitude groups. However, clinal patterns were observed in only a few cases. At the population level, the mean H’ varied from completely monomorphic (H’ = 0.00) to highly polymorphic (H’ = 0.80 ± 0.07). The highest diversity was found in regions with relatively better climatic conditions and in optimal altitude ranges. On country basis, seed colour (H’ = 0.98) and spike density (H’ = 0.43) displayed the highest and the lowest diversity indices, respectively. Spike density was the only character that exhibited significant differences (P<0.01) both “between regions”; and “between altitude groups”;. Across characters, most of the variance was due to the lowest hierarchy, the “within‐population”; component. The “between region”; and “between altitude group”; variances were significant, but spike density alone was responsible for the differences. The overall mean H’ for Ethiopia was 0.77 + 0.09 and did not seem to have reduced appreciably within the past 25 years or so, when compared to previous estimates.  相似文献   

15.
Wheat endosperm storage proteins, namely gliadins and glutenins, are the major components of gluten. They play an important role in dough properties and in bread making quality in various wheat varieties. In the present study, the different alleles encoded at the 6 glutenin loci and at 3 -gliadin loci were identified from a set of 200 hexaploid wheat cultivars grown primarily in France using SDS PAGE. At Glu-A1, Glu-B1 and Glu-D1, encoding high molecular weight glutenin subunits (HMW-GS), 3, 8 and 5 alleles were observed respectively. Low molecular weight glutenin subunits (LMW-GS) displayed similar polymorphism, as 5 and 11 alleles were identified at loci Glu-A3 and Glu-B3 respectively. Four alleles were observed at Glu-D3 loci. Omega-gliadin diversity was also very high, as 7, 13 and 9 alleles were found at Gli-A1, Gli-B1 and Gli-D1, respectively. A total of 147 (or 149) patterns resulted from the genetic combination of the alleles encoding at the six glutenin loci (or Glu-1 and Gli-1 loci). Although Glu-1 and Glu-3 loci were located on different chromosome arms and were theoretically independent, some associations were revealed due to pedigree relatedness between some French wheat cultivars. The usefulness of allelic identification of LMW-GS together with HMW-GS and gliadins for future genetic and technological wheat improvement is discussed.  相似文献   

16.
The influence of farmer management on pearl millet landrace diversity was determined by evaluating variation in individual farmers' populations from two villages in north-eastern Nigeria. The variability within and between landrace samples was estimated using variation at 163 amplified fragment length polymorphism marker (AFLP) loci. The data indicated that individual farmers' husbandry practices result in the isolation of their own group of ideotypes each in their own unique genetic backgrounds, thereby rendering landrace names inappropriate as indicators of a generic genetic identity. The implications of these findings for sampling strategies for genebanks and regional genetic evaluations are discussed.  相似文献   

17.
Microsatellite (SSR) profiles from 65 wheats and 135 barleys have been generated, involving 14 and 22 loci, respectively. The wheat and barley varieties were chosen to represent the bulk of the area sown to these crops in the UK over the past 70 years. The profiling identified genotypic mixtures in some seed samples. Null alleles were common in wheat, but rare in barley. We describe attempts to increase the efficiency of data acquisition. High resolution agarose gel electrophoresis was unable to satisfactorily resolve 1–2 repeat unit differences in the common size range for SSR loci, and was therefore unsuitable for mass screening of allelic variants. Multiplex PCR was very dependent on the choice of primer combinations and seldom produced amplifications as consistently as when primer pairs were used individually. Background (non-specific) amplification was common to many primer pairs, and this hindered the use of both multiplex PCR and multiple sample loading. Sequential sample loading was the most effective strategy, although this was the least time-efficient of the measures used.  相似文献   

18.
Accurate and reliable means for identification are necessary to assess the discrimination between landraces of tetraploid wheat [T.␣turgidum L. subsp. durum (Desf.) Husn.] and hexaploid wheat (T. aestivum L. em. Thell.). In Afghanistan, farmers usually cultivate mixed landraces, and thus distinction between bread and durum is difficult. A set of 18 microsatellites derived from the DuPont EST-database were used to describe genetic diversity in a sample of 82 Afghan wheat landraces. A total of 101 alleles were detected, with allele number per locus ranging from 2 to 13, and a mean allele number of 6.31. The percentage of polymorphic loci was 89%. The EST-SSRs markers showed different level of gene diversity: the highest Polymorphism Information Content value (0.921) was observed with DuPw 221. Our results demonstrated that with a reasonable number of expressed sequences target microsatellites (EST-SSRs) it is possible to discriminate between T. durum and T. aestivum species of wheat germplasm. Our results showed that EST-databases could be a useful source for species-specific markers and have the potential for new genic microsatellites markers that could enhance screening germplasm in gene banks.  相似文献   

19.
Variation and geographic distribution of stem solidness and environmental stress tolerance were assessed under dryland conditions in a collection of 2420 durum wheat landrace morphotypes collected in 28 administrative provinces of Turkey. The former trait is known to confer resistance to wheat stem sawfly – a serious pest insect in West Asia and North Africa. Both characters were scored on a visual five-level scale. Score mean values and frequency distributions in the different provinces were significantly different for both traits according to analysis of variance and chi-square test, respectively. Two groups of provinces emerged with high frequency of solid-stemmed, and hollow-stemmed accessions, respectively. The former could be of interest in durum wheat breeding against the sawfly. The group of solid-stemmed province germplasms was collected at lower altitude than the other, being also different on average for higher temperatures and evapotranspiration, and shorter growing season at sites of origin. Overall frequency of morphotypes tolerant to stress conditions prevailing in the evaluation site was rather low (10%). This low frequency may be due to low adaptation of materials in this harsher environment than those of origin where rainfall is usually higher and temperatures markedly lower. Nonetheless, differences among provinces in frequency distribution of stress tolerant morphotypes were evidenced. The relatively more tolerant gene pools originated either along the western coast or in the southern part of the country, along the Fertile Crescent. The least tolerant province germplasms originated either in the North along the Black Sea or in the highlands of the eastern Anatolian Plateau. Germplasm from provinces Malatya and Izmir combined good levels of both stem solidness and stress tolerance.  相似文献   

20.
The genetic relationships were assessed for the first time in Turkish durum wheat cultivars using AFLP markers. In the analysis, 18 AFLP primer combinations resulted in a total of 189 polymorphic loci. All of the selective primers used are Eco and Mse primers with three nucleotide extentions on the 3 ends. The number of polymorphic markers per primer combination ranged from 4 to 24. The relationships, among nine winter and six spring type durum wheat cultivars, obtained with various algorithms are in accordance with the known pedigree information of the cultivars. Based on `Nei72' genetic distance analysis, the most distant two cultivars are `Berkmen-469' (winter type) and `Diyarbakìr-88' (spring type), and the closest two are `Selçuklu-97' and `Sofu', with the values of 0.793 and 0.115, respectively. The closest two winter type cultivars are `Akbasak-073-44' and `Kunduru-414-44' (0.128).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号