首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decay rates of woody debris were estimated and used to model the decay of various diameters of branches and stems in a beech stand in Central Germany. In addition, use of wood density, volume and mass loss to quantitatively describe the degree of decay was tested. The mass loss during decay could be described by a simple exponential function. Under the presented climatic conditions, beech coarse woody debris (CWD) with a diameter >10 cm decays completely in about 35 years. In the first 8 years of decay the mass loss is determined by the decrease in wood density, and subsequently by the loss in volume. Estimation of wood density allows the first three of the four classes of decay to be distinguished, while trees in the last two decay classes could be distinguished using wood volume. Beech fine woody debris with a diameter between 1 and 10 cm decays within about 18 years. The litter fraction of <1 cm is part of the humus layer after 4 years. If there are goals for the amounts, types and dimensions of woody debris to be provided for conservation of biological biodiversity and other ecological functions in managed beech forests, this study offer indications for how long existing woody debris can meet its functions and how frequent new input of CWD is required.  相似文献   

2.
Requirements for emission reporting under the Kyoto protocol demand an estimate of the dead wood carbon pool in forests. The volume of dead wood consists of coarse woody debris, smaller woody debris and dead roots. The measurement of dead wood volume was included in the most recent National Forest Inventory in Switzerland. To convert dead wood volume into carbon two conversion factors are required: (a) carbon (C) concentration and (b) wood density. So far internationally accepted default values for C concentration (50%) and for wood density (density of alive trees) were used as default values to estimate dead wood carbon, since local measurements were lacking. However, in a field study at 34 sites in Switzerland, the C concentration and density of CWD from Picea abies and Fagus sylvatica of four decay classes were measured recently. The results showed that C concentration in CWD differed significantly between species but did not change due to decay class. The density of CWD decreased significantly with an increase in decay class and it also differed between species. The decrease in CWD density was more pronounced for F. sylvatica than for P. abies. We assessed correlations between climate attributes and CWD density using regression analysis. The modeled densities and measured C concentrations were then expanded with the help of CWD volume data from the NFI3. Spruce CWD and thus spruce CWD carbon is much more abundant in Swiss forests than beech CWD carbon. The majority of spruce CWD is located in the Alps and Pre-Alps. The CWD volume from P. abies was 10 times higher than that from F. sylvatica. Thus, changes in conversion factors for P. abies CWD affected the overall estimate of dead wood carbon in Swiss forests much more than changes in conversion factors for F. sylvatica CWD. Current improvements in CWD conversion factors decreased the estimated amount of spruce CWD carbon by 23.1% and that of beech by 47.6%. The estimated amount of CWD carbon in Swiss forests is decreased by 31%. Since improved estimation methods are currently not applied to smaller woody debris and dead root material, the estimated amount of dead wood carbon is only reduced by 15%. Improving conversion factors for all dead wood fractions would presumably decrease the amount of dead wood carbon by additional 16%.  相似文献   

3.
Abstract

Coarse woody debris (CWD) is critical for forest ecosystem carbon (C) storage in many ecosystems. Since the turnover of CWD is mostly driven by mineralization, changes in temperature and precipitation may influence its pools and functions. Therefore, we analysed, under controlled conditions, the effect of wood temperature and moisture on carbon respiration from CWD for the important European tree species Fagus sylvatica L., Picea abies (L.) Karst. and Pinus sylvestris L. in different stages of decay, represented by different wood densities. Additionally, we measured CWD respiration of individual F. sylvatica and P. abies logs over one year to analyse the effects of micro-climatic variables in the field. CWD respiration rates under controlled lab conditions were about two times higher for beech than for spruce and pine and similar for the latter two species. In addition, wood moisture exerted a stronger influence on respiration than wood temperature. In contrast, respiration in the field was most strongly controlled by temperature. Average Q 10 values under controlled conditions were 2.62 for F. sylvatica and 2.32 for P. abies across all temperature and moisture levels, while no significant relationship between temperature and CO2 flux was observed for P. sylvestris. About 80% of the variation in respiration under controlled conditions could be explained by species, wood density, moisture and temperature and their interactive effects. Temperature alone explained 96% (beech) and 94% (spruce) of the variation in respiration in the field. Furthermore, we predicted average monthly temperatures of CWD in the field very accurately from air temperature (r 2=0.96), which is relevant for modelling CWD carbon dynamics under climate change scenarios. Our results indicate that species identity, decay stage and micro-climatic conditions should be considered when predicting CWD decay rates.  相似文献   

4.
The pattern of changes in the physicochemical properties of wood, and its relationship with fungal succession during decomposition of coarse woody debris (CWD) of beech (Fagus crenata Blume) were investigated. In total, 47 snags and 66 logs were assigned to a system of five decay classes, and were used for analysis of the decomposition process. The decomposition process consists of two phases characterized by their dominant organic chemical constituents. In the first phase (decay class 1–3), acid-unhydrolyzable residue (AUR) and holocellulose decreased simultaneously. In the second phase (decay class 3–5), holocellulose decayed selectively. Fruiting bodies of ten fungal taxa occurred frequently on decomposing logs and/or snags. These fungi were divided into early and late colonizers according to their occurrence during CWD decomposition. The relationship between fungal community composition and the physicochemical properties of CWD was analyzed by canonical correspondence analysis (CCA). According to the Monte Carlo permutation test, decay class, water content, and type of CWD (log or snag) significantly affected the fungal community structure. Our results suggested that white-rot basidiomycetes, especially Omphalotus guepiniformis, play a central role in the simultaneous decomposition of AUR and holocellulose in the first phase of decomposition. On the other hand, fungal taxa occurring in the second phase of decomposition may not be responsible for the decomposition of holocellulose. Three possible mechanisms of holocellulose decomposition and AUR accumulation in the second phase of decomposition are proposed and discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
To study the decay of coarse woody debris (CWD) in forest ecosystems, it is necessary to determine the time elapsed since tree death, which is difficult at advanced decay stages. Here, we compare two methods for age determination of CWD logs, dendrochronological cross-dating and radiocarbon analysis of the outermost tree ring. The methods were compared using samples from logs of European beech, Norway spruce and Sessile oak decomposing in situ at three different forest sites. For dendrochronological cross-dating, we prepared wood discs with diameters of 10–80 cm. For radiocarbon analysis, cellulose was isolated from shavings of the outermost tree rings. There was an overall good agreement between time of death determined by the two methods with median difference of 1 year. The uncertainty of age determination by the radiocarbon approach did not increase with decreasing carbon density, despite incomplete separation of chitin from the extracted cellulose. Fungal chitin has the potential to alter the radiocarbon signature of tree rings as the carbon for chitin synthesis originates from different sources. Significant correlations between year of tree death and carbon density of wood were found for beech and spruce, but not for oak due to relatively small decreases in carbon density within 50–60 years. Total residence times of CWD were calculated from these correlations and revealed 24 years for beech and 62 years for spruce. The uncertainty of total residence times results mainly from huge natural variability in carbon density of CWD rather than uncertainty in the age determination. The results suggest that both methods are suitable for age determination of CWD.  相似文献   

6.
The decomposition rate of stem and branch coarse woody debris (CWD, >10 cm in diameter) was assessed in natural forests located in the central North Island of New Zealand. CWD samples had originated from windfalls associated with cyclone Bernie, and had been decaying for approximately 20 years on the forest floor. Species-specific decay rates were estimated from the density of CWD samples relative to the density of live tree samples from the same stands. Decay rates were determined for rimu (Dacrydium cupressinum), matai (Prumnopitys taxifolia), tawa (Beilschmiedia tawa), miro (Prumnopitys ferruginea) and kahikatea (Dacrycarpus dacrydioides) in podocarp forest at Whirinaki, and red (Nothofagus fusca) and silver beech (Nothofagus menziesii) in beech forest at Kaimanawa. The average decay rate for these seven species, expressed as the time taken to lose 50% mass (t1/2), was 30 years. Larger trees (90 cm diameter at breast height, dbh) decayed more slowly (t1/2 = 38 years) than smaller trees (30 cm dbh; t1/2 = 21 years). After adjustment for dbh, P. taxifolia (t1/2 = 39 years), N. fusca (t1/2 = 38 years), N. menziesii (t1/2 = 31 years) and B. tawa (t1/2 = 26 years) decayed significantly more slowly than D. cupressinum (t1/2 = 18 years). D. cupressinum decayed more slowly than P. ferruginea (t1/2 = 16 years) and D. dacrydioides (t1/2 = 14 years), although these differences were not statistically significant because the CWD sample size was small for the latter two species. An attempt to expand the range of species studied using data from in-ground durability tests was not successful as species decay rankings from these tests were inconsistent with natural forest CWD rankings. Stems heavily colonized by the common decay fungus Ganoderma cf. applanatum decayed more rapidly (t1/2 = 20 years) than those which were occupied only by other decay fungi (t1/2 = 40 years). A tree species and dbh-dependent decay constant, λ, was derived for estimating carbon loss from CWD due to fungal decay and insect activity in indigenous forests. Future research will aim to improve these decay equations by investigating the decomposition processes associated with tree species and basidiomycete populations present at other sites in New Zealand.  相似文献   

7.
Jack pine (Pinus banksiana) forests in parts of northern Lower Michigan have been managed with 30 years of extensive clearcut harvesting followed by planted stand establishment in order to maintain habitat for the endangered Kirtland's warbler (Dendroica kirtlandii). We used two, parallel chronosequences to study how this management has affected the structural development of jack pine stands relative to the historically dominant disturbance regime of stand-replacing wildfire. Each chronosequence consisted of three young stands (age range 3–6 years), three intermediate-aged stands (age range of 12–17 years) and three mature stands (age range of 39–69 years). Average stem density in young plantations (2300 stems/ha) was lower than the average for young, fire-origin stands (11,000) and varied over a much narrower range among stands (1403–2667 for plantations and 1552–24,192 in fire stands). In addition, within-stand patchiness of stem density was also much higher in the wildfire sites for young and intermediate ages. Plantation sites possessed very little dead wood at young ages (averaging 3 snags/ha and 12 m3/ha CWD) compared to young fire-origin stands (averaging 252 snags/ha and 49 m3/ha CWD). In contrast, mature plantations had similar levels of dead wood (averaging 269 snags/ha and 22 m3/ha CWD) as mature fire-origin stands (averaging 557 snags/ha and 12 m3/ha CWD). Differences between the plantation and fire-origin chronosequences were driven mainly by young- and intermediate-aged stands, whereas mature stands were typically quite similar in all structural features. Our results show clearly that forest management aimed at preserving and enhancing the population of a single endangered species results in greatly simplified habitat structure at the stand level, and suggest that this simplification is perpetuated across the landscape as well. Of particular concern are the effects of extensive harvesting and planting on the availability of snags and CWD.  相似文献   

8.
木材阻力仪检测技术的应用   总被引:6,自引:0,他引:6  
介绍木材阻力仪检测技术与原理、检测结果判断及国外研究人员应用木材阻力仪在判断木材内部腐朽状况、判断立木或人造板材密度和不同树种的阻力曲线与X射线密度曲线的比较等方面的现状;以及介绍我国研究人员利用木材阻力仪对古建筑木构件进行勘测和分析等情况.  相似文献   

9.
Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed “structural complexity enhancement” (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses.  相似文献   

10.
Coarse woody debris (CWD) has been recognized as one of the strongest indicators of forest biodiversity and its assessment has been emphasized in the development of new inventory methods. In this study, the most commonly referenced probability sampling methods were tested in a field area of 305.8 ha to gain comparative information on their performance and efficiency. Simple random sampling (SRS), systematic sampling and cluster sampling with fixed sized circular sample plots were tested, as well as strip sampling, transect relascope sampling and adaptive cluster sampling (ACS). Point relascope sampling and line intersect sampling were also tested for inventories of downed dead wood volumes. In addition, the amount of standing dead wood was assessed by means of traditional small angle relascope sampling. In general, the use of additional information in the inventory process has shown promising results. A new method for using data derived from airborne laser scanning (ALS) as a source of auxiliary information in the assessment of CWD volumes is presented, using probability proportional to size (PPS) sampling for the selection of the first-stage sample units in ACS (ACSPPS) and for the placement of fixed sized plots (PLOTPPS). The sampling methods were compared in terms of the cost-effectiveness. Point relascope sampling proved the most efficient sampling method for inventorying CWD volumes. PLOTPPS and ACSPPS were more efficient than the inventory of fixed sized plots (PLOTSRS) and ACS (ACSSRS) where sample units were selected with SRS. However, these methods could not achieve the same efficiency as relascope samplings. Nevertheless, the use of probability layers derived from ALS data gave promising results and offers new possibilities for inventorying CWD volumes more efficiently.  相似文献   

11.
The biomass and decomposition of coarse woody debris (CWD, ≥10 cm in diameter) were studied in a monsoon evergreen broad-leaved old-growth forest in Dinghushan Nature Reserve, Southern China. The study examined the biomass of CWD from 1992 to 2008 and decomposition of three dominant tree species CWD (Castanopsis chinensis, Cryptocarya concinna, Schima superba) from 1999 to 2008. Changes in the wood density of three tree species’ CWD were used to estimate the decay rates with a single exponential model. The results showed that the biomass of CWD in the old-growth forest was increasing from 17.41 tonnes ha−1 (t ha−1) in 1992 to 38.54 t ha−1 in 2008, and a higher decay constant was observed for C. concinna (0.1570 – 19 years for 95% mass loss); the decay rates of S. superba and C. chinensis were 0.1486 (20 years for 95% mass loss) and 0.1095 (27 years for 95% mass loss), respectively. The difference in decay constant rates may be due to their substrate quality and decomposers. The content of carbon (C) in three species declined after 9 years of decay. Nitrogen (N) content increased in all species with decay. The C/N ratio in the three species declined during the decay process.  相似文献   

12.
A new wood preservative containing low molecular weight and low-toxicity silicic acid (LWSA) was investigated. To prevent environmental pollution with the wood preservative, a silicic acid monomer aqueous solution (SAMS) or colloidal silicic acid solution (CSAS) was combined with various metal compounds or boric acid. Agents where SAMS or CSAS was combined with boric acid gave good protection against decay caused by the brown-rot fungus Fomitopsis palustris, the treated wood (Cryptomera japonica D. Don) specimens after the leaching test maintained a high resistance to decay. The leaching and decay tests revealed high quantities of chemicals leaching from wood treated with SAMS-metal agents. However, when wood was treated with SAMS-boric acid, there was little leaching of agent in either test. The mechanism of resistance of wood, which was treated with boric acid mixed with CSAS or SAMS, to the brown-rot fungus F. palustris were investigated. When the concentration of boric acid was high, mycelial growth was inhibited completely and no protein production was detected. When the amount of boric acid was low, the xylanase, mannase and cellulase activities were lower than with control wood powder. When powdery boric acid was combined with CSAS, it was considered that the treated woods have higher anti-weather properties than when boric acid-methanol solution was mixed with CSAS. The agent-preparation method adopted should be considered carefully after taking the treatment process and the intended use of the preservative-treated wood into account. Received 26 September 2000 This study was supported by a Grant-in-Aid (09460079) for Scientific Research from the Ministry of Education, Science, and Culture of Japan.  相似文献   

13.
Coarse woody debris (CWD) has become an important component in the study of forest ecosystems, being a key factor in the nutrient cycle as well as a habitat for many species. CWD dynamics varies greatly from primeval to managed forests. To assess the CWD dynamics, a chronosequence trial was established in two Scots pine forests in the Central mountain range in Spain. Although, the shelterwood system has been applied in both forests, one has received more intensive silviculture, whereas in the other, regeneration has been much more gradual and the thinning regime has not been so intensive. In order to inventory CWD, five decay classes and four categories according to size and CWD type (stumps and fallen logs or branches) were defined. The volume of branches and logs (estimated from length and mean diameter) and the number of stumps by size class and decay class are used to characterise the CWD. The most notable differences between the two silvicultural systems can be appreciated in the graph as peaks for temporary distribution of larger logs and stumps when intensive silviculture is applied. The CWD observed in the forests studied is mainly produced by logging. The maximum volume of logs and branches above 5 cm in diameter is 43.25 m3/ha after regeneration felling in the first forest, whereas in the other, a maximum of 16.30 m3/ha is reached at 60 years, just after thinning. Large stumps (diameter equal or greater than 30 cm) make up an important part of CWD biomass in these forests just after the regeneration felling. A model was developed to predict the changes in CWD quantity and quality distribution over time as well as predicting the effect of different silviculture options on CWD dynamics. The model integrates two different processes: the CWD inputs (which may be continuous or instant), and the decay process, modelled through a Richards–Chapman function. The average lifetime of CWD obtained ranges from 30 years for stumps over 30 cm in diameter to 8 years for logs with a diameter less than 10 cm.  相似文献   

14.
To preserve biodiversity in managed forest landscapes dead and living trees are retained at final cuttings. In the present study we evaluated the effect of these practices for saproxylic (wood-dependent) beetles inhabiting dead aspen trees (Populus tremulae). For saproxylic beetles, tree retention at final cuttings can be expected to be especially valuable for species adapted to sun-exposed dead wood, a substrate that only rarely occurs in well managed forest stands. Therefore, the current evaluation was conducted as a comparison of species richness, species density (number of species per sample), assemblage composition and occurrence of individual species between clear-cuts, where aspen trees were retained, and closed forest stands with aspen trees. The study was conducted in central Sweden and the beetles were sampled by sieving of bark from CWD (coarse woody debris) of aspen. There was no significant difference in rarefied species richness between forest and clear-cut sites. Species composition differed significantly between the two stand types. Generalized linear mixed-effects models predicted the species density to be 34% lower in CWD objects in forest sites than on clear-cuts. This pattern could partly be explained by differences in CWD diameter, decay class and bark types between the two stand types (clear-cut/forest). Stand type was a significant predictor of occurrence in individual CWD objects for 30% of analysed individual beetle species. For all species except one, the variable stand type predicted higher occurrence on clear-cuts than in forest stands. To conclude, our results demonstrate that retention of aspen on clear-cuts contributes to population recruitment of a different assemblage of species than CWD within stands.  相似文献   

15.
INTRODUCTION The main body of ancient architecture is wood construction in China, and the main bearing components of the buildings usually use timber, such as pillar, beam, purlin, crossbeam and rafter. Timber is a kind of biomaterial and will be damaged by fungal attack or insects after long time use, which will cause wood frames destroyed ultimately. Timber decay not only exists in its surface, but also usually begins with the inner of wood. It is therefore imperative to consider using …  相似文献   

16.
Density estimators for k-tree distance sampling are sensitive to the amount of extra Poisson variance in distances to the kth tree. To lessen this sensitivity, we propose an adaptive composite estimator (COM). In simulated sampling from 16 test populations, a three-component composite density estimator (COM)–with weights determined by a multinomial logistic function of four readily available ancillary variables–was identified as superior in terms of average relative absolute bias. Results from a different set of nine validation populations–with widely different stem densities and spatial patterns of tree locations—confirmed that relative root mean squared errors (RRMSE) of COM were, on average, considerably lower than those obtained with the three-component k-tree density estimators. The RRMSE performance of COM improved with increasing values of k. With k = 6 and sample sizes of 10, 20, and 30, the average relative bias of COM was between −5 and 5% in seven validation populations but in an open low-density savanna-like population bias reached −12% (1979 data) and 7% (1996 data). For k = 6 and n = 10, the RRMSE of COM was, in six of the nine validation populations, within 3.3 percentage points of the RRMSE for sampling with fixed-area plots. Jackknife estimates of the precision of COM estimates of density were negatively biased, leading to under-coverage (7%) of computed 95% confidence intervals.  相似文献   

17.
Coarse woody debris (CWD) has become recognised as an important component of the carbon (C) pool in forest ecosystems. In Ireland, managed Sitka spruce (Picea sitchensis (Bong) Carr.) forests account for 52.3% of the total forest estate. To determine the stock and decay dynamics of above and belowground CWD, field surveys using fixed area sample plots, were conducted in six even-aged Sitka spruce stands, representing the young, intermediate and mature stages of a typical commercial rotation. The volume, mass, density loss and C:N ratio of all CWD types (logs, stumps, and coarse roots) were determined using a five-decay class (DC) system. The decay rates and half life of CWD was also determined. To estimate CWD coarse root mass; roots associated with stumps classified in different decay classes were excavated. The coarse roots were categorised into small (2-10 mm), medium (10-50 mm) and large (>50 mm) diameter classes.CWD C-mass ranged from 6.98 to 18.62 Mg ha−1 and was highest in an intermediate forest (D35), while the aboveground volume varied from 6.31 to 42.27 m3 ha−1. Coarse roots accounted for 21% to 85% of the total CWD C-pool in the surveyed stands. The total CWD C-mass was poorly correlated with the number of thinning events (R2 = 0.29), when data from D35 was excluded. The density loss was significant in logs (45%), stumps (58%), and small- (38%), medium- (50%) and large roots (38%) as decay progress from DC 0 to 4. There was a 46%, 41%, 51%, 72% and 57% decline in C:N ratio of logs, stumps, small-, medium- and large roots, respectively, as decay progressed from DC 0 to 4. The density decay rates were 0.059, 0.048 and 0.036 kg m−3 year−1 for logs, stumps and coarse roots, respectively. The size classification of roots did not significantly affect their decay rate. The half life (50% decomposition) of CWD was estimated has 12-, 14- and 19 years for logs, stumps and roots of Sitka spruce. Regression curves showed a strong correlation between the density and C:N ratio (R2 = 0.69, 0.74 and 0.93 for logs, stumps and coarse roots, respectively). The long term storage of C and its slow rate of decomposition make CWD a vital structural and functional component of the CWD C-pool and a major controller of forest ecosystem C-retention.  相似文献   

18.
Tree pruning creates wounds that are amenable for wood decay fungi colonization. To characterize the dynamic host–fungus interactions at this location in Senegal mahogany (Khaya senegalensis), in vitro and in vivo pathogenicity tests were conducted with wood decay fungi associated with this tropical tree species. Fomitiporella caryophylii, Hymenochaete murina and Phellinus noxius isolates were included in this experiment following their frequent isolation from Senegal mahogany pruning wounds. The evaluated isolates demonstrated unique host interactions in laboratory tests that suggest equally divergent prognoses for living Senegal mahoganies affected by these fungi. Although all evaluated fungal isolates successfully breached naturally induced reaction zones, P. noxius alone caused significant mass loss to incubated wood blocks. In addition, P. noxius caused extensive wood decay after inoculation in living hosts, successfully illustrating Koch's postulates for this host–fungus relationship. The wood decay ability, invasiveness and facultative parasitism demonstrated by P. noxius suggest its dominant role in wood decay columns below pruning wounds on living Senegal mahoganies. These results highlight the importance of characterizing specific host–fungus interactions and their implications for wood decay severity below pruning wounds in living trees.  相似文献   

19.
Coarse woody debris (CWD) is an important substrate in forests, provides habitat for a multitude of organisms and is also a sink and a source for nutrients and carbon. To assess the dynamics of this substrate equations to describe the course of decomposition have been developed. They can also be used to describe the release of carbon from dead wood into the atmosphere. Unfortunately few equations have been parameterised for European conditions, although there is a need to estimate the dynamics of CWD in this region. Therefore, a method (termed the LB-method) was invented to estimate suitable decomposition rate constants (DRC) from sources published in the CWD Global Database by systematically comparing features and conditions of the area and species of interest with the information given with the published equations. The DRC were weighed according to these comparisons and then sorted by the weight assigned to them. From the resulting distribution a plausible DRC for the region and species of interest was estimated. The LB-method was compared to results from a study on Norway spruce (Picea abies L.) decomposition in Thuringia, Germany, and to results from an expert elicitation on DRC for Scots pine (Pinus sylvestris L.) in the Federal State of Brandenburg, Germany. In both cases the method gave results within the confidence interval of the respective study used for comparison. Both methods are suitable for the estimation of preliminary DRC until more accurate constants can be derived by research. While the focus in this study was on density loss the method can be applied to other dead wood features (e.g. volume), and should be applicable to other regions of the world where information is also scarce.  相似文献   

20.
–  • Coarse woody debris (CWD) plays a substantial role in several ecological processes in forest ecosystems, providing a habitat for many organisms and participating in biogeochemical fluxes. Understanding CWD dynamics is important to classify adequate density, size and amount into different decay classes and to make decisions that include biodiversity and the carbon budget in practical forestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号