首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weedy rice, specifically red rice (Oryza sativa L.), is a major weed in rice which causes up to 80% yield loss and reduction of grain quality. Red rice accessions from Arkansas, U.S.A., were characterized to classify red rice accessions into certain phenotypic groups relevant to weedy rice management. The red rice accessions were 70% strawhull, 22% blackhull, 7% brownhull and <1% goldhull. Generally, blackhull red rice was the tallest (139 cm) and strawhull the shortest (133 cm) among all accessions. Blackhull red rice had more tillers (102/plant), smaller flag leaves (13 cm wide, 34 cm long), and flowered later (1225 heat units) than strawhull red rice which had 85 tillers/plant, 15 cm-wide and 34 cm-long flag leaves, and flowered after accumulating 1195 heat units. Morphological differences between accessions within each hull type were highly significant, showing great diversity within a hull color group as indicated by large ranges in traits. For example, blackhulls were 75–190 cm tall with 18–69 cm long flag leaves, 21–188 tillers and produced 40–949 g seed. Strawhulls were 46–189 cm tall with 18–66 cm flag leaf length, 16–172 tillers and produced 100–608 g seed. Some traits, such as seed production, differed widely between accessions within each hull color group such that the average seed production/accession for blackhull did not differ from that of strawhull weedy rice (196 vs. 192 g/plant). The onset of flowering among all accessions ranged from 56 to 126 d after planting. Red rice accessions formed six phenotypic clusters generally segregated by plant size or flowering time. Each morphotype would have different competitive abilities; thus, weedy rice management could be geared toward plant types. Highly competitive plant types would require intensive control measures to minimize yield losses and reduce the soil seed bank. Flowering dates impact stewardship strategies for herbicide-resistant or any genetically modified rice.  相似文献   

2.
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (−9.44 ± 0.80 g and −23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.  相似文献   

3.
The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).  相似文献   

4.
A field experiment was conducted in 2007-2009 in coastal saline regions of Yancheng city in Jiangsu province of China (120°13′E, 33°38′N). The experiment was to investigate relationships among canopy spectral reflectance, canopy chlorophyll density (CCD), leaf area index (LAI), and yield of two Chinese castor varieties (Zi Bi var. and Yun Bi var.) across four N fertilizer rates of 0, 90, 180, and 360 kg N ha−1. These N rates were used to generate a wide range of difference in canopy structure and seed yield. Measurements of canopy reflectance were made throughout the growing season using a hand-held spectroradiometer. Samples for CCD and LAI were obtained on days that reflectance measurements were made. Fifteen hyperspectral reflectance indices were calculated. Canopy spectral characteristics were heavily influenced by saline soil background in the rapid growing period (RGP), thus hyperspectral data obtained in this period were not suited for reflecting castor growth condition or predicting final yield. CCD increased linearly with most reflectance indices in the full coverage period (FCP) and senescent period (SP) for the two castor varieties, whereas LAI did not. Most of reflectance indices were significantly correlated with yield of two varieties in different growing periods. The OSAVI model provided the best yield prediction for Zi Bi var. with predicted values very close to observed ones (R2 = 0.799), and the mSRVI705 model was well used for Yun Bi var. yield estimation (R2 = 0.759). These results indicate that the hyperspectral data measured at appropriate time could be well used for castor yield estimation.  相似文献   

5.
Castor plant (Ricinus communis L.) produces a very important oil for chemical and biofuel industries. However, doubts remain about what the best plant arrangement is to obtain the maximum yield of seeds and oil from short height castor genotypes cultivated in higher plant population. This study evaluated two castor genotypes (FCA-PB and IAC 2028) in 5 plant arrangements (row spacing × in-row spacing): 0.90 m × 0.44 m (traditional), 0.90 m × 0.20 m, 0.75 m × 0.24 m, 0.60 × 0.30 m, and 0.45 m × 0.40 m, in spring-summer and fall-winter cropping seasons in Botucatu, São Paulo State, southeastern Brazil. The traditional plant arrangement comprised an initial plant population of 25,000 plants ha−1, while the others comprised 55,000 plants ha−1. The IAC 2028 genotype presented the greatest plant height, first raceme insertion height, basal stem diameter, number of fruits per raceme and 100 seed weight; however, seed yield and seed oil content were equal between genotypes. Wider stems and higher number of racemes per plant and fruits per raceme were observed with a 0.90 m × 0.44 m plant arrangement, but due to the lowest plant population (25,000 plants ha−1) in this plant arrangement, the higher values of the yield components mentioned above did not result in higher yield. The higher plant population (55,000 plants ha−1) by narrower row spacings (0.45 or 0.60 m) combination produced a higher castor seed yield. The effect of plant arrangement was more intense in the spring-summer cropping season.  相似文献   

6.
Production of oil from castor (Ricinus communis) generates two main by-products: husks and meal. For each ton of castor oil, 1.31 ton of husks and 1.13 ton of meal are produced. Castor meal is the most important by-product due to its high nitrogen content, and presently it is predominantly used as an organic fertilizer. This greenhouse study aimed to find optimized blends of castor husks and meal as organic fertilizer for growth of castor plants. The by-products were mixed to sandy soil in the doses (v:v) of 0 + 10%, 2.5 + 7.5%, 5.0 + 5.0%, 7.5 + 2.5% and 10.0 + 0% of castor meal and castor husks, respectively. At 50 days after sowing, data was taken on plant growth and shoot nutrients content. Blends of castor meal and castor husks used as fertilizer promoted substantial plant growth up to the dose of 4.5% (in volume) of meal. Doses higher than 4.5% caused reduction in plant growth and even plant death. It seems that rapidly mineralizing nitrogen from the castor meal is the reason for both the intensive plant growth in low doses, and the reduction of plant growth in high doses due to excessive mineral N. Increments in castor meal dose resulted in increased N and Ca shoot contents. Other macronutrients were not influenced. Castor meal is a good organic fertilizer, due to its high N and P contents, but blending with castor husks is not necessary.  相似文献   

7.
Phosphorus (P) deficiency is a major constraint for maize production in many low-input agroecosystems. This study was conducted to evaluate genotypic variation in both root (root architecture and morphology, including root hairs) and plant growth traits associated with the adaptation of maize landraces to a P-deficient Andisol in two locations in the Central Mexican highlands. Two hundred and forty-two accessions from the Purhepecha Plateau, Michoacan were grown in Ponzomaran with low (23 kg P2O5 ha−1) and high (97 kg P2O5 ha−1) P fertilization under rain-fed field conditions, and subsequently a subset of 50 contrasting accessions were planted in the succeeding crop cycle in Bonilla. Accessions differed greatly in plant growth, root morphology and P efficiency defined as growth with suboptimal P availability. The accessions were divided into 3 categories of P efficiency using principal component and cluster analyses, and 4 categories according to the retained principal component and their relative weight for each genotype in combination with growth or yield potential. The distribution of accessions among three phosphorus efficiency classes was stable across locations. Phosphorus-efficient accessions had greater biomass, root to shoot ratio, nodal rooting, nodal root laterals, and nodal root hair density and length of nodal root main axis, and first-order laterals under P deficiency. Biomass allocation to roots, as quantified by the allometric partitioning coefficient (K) was not altered by P availability in the efficient accessions, but inefficient accessions had a lower K under low P conditions. Accessions with enhanced nodal rooting and laterals had greater growth under low P. Dense root hairs on nodal root main axes and first-order laterals conferred a marked benefit under low P, as evidenced by increased plant biomass. Late maturity improved growth and yield under low P. These results indicate that landraces of the Central Mexican highlands exhibit variation for several root traits that may be useful for genetic improvement of P efficiency in maize.  相似文献   

8.
Wild evening primrose species (Oenothera spp.) native to Argentina, have been suggested as a new crop for irrigated valleys of semi-arid Patagonia. This paper describes patterns of biomass allocation, morphological traits related to stress-tolerance and seed-yield in four species of Oenothera grown in a common garden at three plant densities. Wild and domesticated species are compared. The effect of resource availability on those traits during three phenological stages (vegetative, reproductive and maturity) is described. Native species were characterized by traits related to stress-tolerance (high root allocation and low specific leaf area) during the vegetative stage. This suite of traits resulted in low biomass accumulation and low seed-yield. The domesticated O. biennis was characterized by a combination of traits related to stress-tolerance (low specific leaf area) and high productivity (high leaf allocation and leaf area ratio and low root allocation). Domesticated species accumulated more biomass than natives. Total biomass and total non-structural carbohydrates present in roots were positively correlated to seed-yield.Oenothera biennis showed the highest seed-yield, although this species showed yield instability in response to changes in the environmental quality. No changes in seed-yield in response to plant density were recorded for either O. lamarckiana or native species. Oenothera biennis showed an optimum density of 20 plants m−2 and yielded 260 g m−2, a seed-yield similar to that reported in other countries. Low seed-yield of native species is major drawback that must be overcome. Improving seed-yield in these species could be possible by selection oriented to increase total biomass. Since no detrimental effect of density was found in O. lamarckiana and natives, a higher plant density might increase yield production per unit area.  相似文献   

9.
In order to investigate the effect of trifluralin, pronamide, haloxyfop-p methyl, propaquizafop and isoxaben on weed control and oilseed rape yield, a two year field experiment was conducted at Darab, Iran, during 2004–2005 and 2005–2006 growing seasons. Herbicides reduced weed biomass compared with the weedy check. In 2004–2005, at 16 WAP (weeks after planting), application of trifluralin plus propaquizafop plus isoxaben at 1200 + 200 + 250 g a.i./ha and trifluralin plus haloxyfop-p methyl plus isoxaben at 1200 + 100 + 500 g a.i./ha provided best control (80%) of wild mustard (Sinapis arvensis L.), compared to other treatments. At 8 and 16 WAP, wild mustard control decreased to 47 and 42%, respectively, when trifluralin was applied alone at 1400 g a.i./ha. In 2005–2006 at 16 WAP, maximum reduction in wild mustard biomass (82%) was achieved with trifluralin plus propaquizafop plus isoxaben at 1200 + 200 + 250 g a.i./ha. In both years, all herbicide treatments controlled fumitory (Fumaria officinalis L.) 64–96%. In 2004–2005, at 16 WAP, wild oat (Avena fatua L.) biomass reduction by trifluralin plus propaquizafop plus isoxaben at 1200 + 200 + 250 g a.i./ha was 95%. In 2005–2006, at 8 and 16 WAP, minimum biomass reduction of wild oat (37–53%) was observed with trifluralin at 1200 and 1400 g a.i./ha. In both years, at 8 and 16 WAP, the most effective herbicide treatments were trifluralin plus propaquizafop plus isoxaben and trifluralin plus haloxyfop-p methyl plus isoxaben regardless of the dose applied and provided maximum reduction in total weed biomass (77–89%) compared to other treatments. Results of both years showed that all herbicide treatments increased oilseed rape grain yield as compared with the weedy check but percentage of oil was not affected by various herbicide treatments. Maximum grain yield was obtained with trifluralin plus haloxyfop-p methyl plus isoxaben at 1200 + 100 + 500 g a.i./ha.  相似文献   

10.
This study presents the characteristics of four Salix viminalis × Populus tremula hybrids, produced for the first time in the world grown in a three-year field experiment. Shoot weight per plant and major biomass yield components, including plant height, number of shoots per rootstock and shoot diameter, were determined. The infection severity caused by leaf rust (Melampsora sp.) was also evaluated. The biomass of three-year-old hybrid plants was subjected to chemical analyses and calorimetric tests to determine the energy value of biomass as solid fuel. Among the studied genotypes the highest yield was achieved by one of the studied hybrids. Its biometric parameters did not differ significantly from the standard genotype, and they were superior to the parameters of the maternal form. All Salix × Populus hybrids were more susceptible to rust infections than their maternal form and one hybrid was more resistant to infections caused by fungi of the genus Melampsora. Two hybrids have optimal biomass parameters as regards both calorific value and amount of carbon, hydrogen, sulfur and nitrogen.  相似文献   

11.
The objective of this study was to develop a whole-process model for explaining genotypic and environmental variations in the growth and yield of irrigated rice by incorporating a newly developed sub-model for plant nitrogen (N) uptake into a previously reported model for simulating growth and yield based on measured plant N. The N-uptake process model was developed based on two hypotheses: (1) the rate of root system development in the horizontal direction is proportional to the rate of leaf area index (LAI) development, and (2) root N-absorption activity depends on the amount of carbohydrate allocated to roots. The model employed two empirical soil parameters characterizing indigenous N supply and N loss. Calibration of the N-uptake process sub-model and validation of the whole-process model were made using plant N accumulation, and growth and yield data obtained from a cross-locational experiment on nine rice genotypes at seven locations in Asia, respectively. Calibration of the N-uptake process sub-model indicated that a large genotypic difference exists in the proportionality constant between rate of root system development and that of LAI development during early growth stages. The whole-process model simultaneously explained the observed genotypic and environmental variation in the dynamics of plant N accumulation (R2 = 0.91 for the entire dataset), above-ground biomass growth (R2 = 0.94), LAI development (R2 = 0.78) and leaf N content (R2 = 0.79), and spikelet number per unit area (R2 = 0.78) and rough grain yield (R2 = 0.81). The estimated value of the site (field)-specific soil parameter representing the rate of N loss was negatively correlated with cation exchange capacity of the soil and was approximated by a logarithmic function of cation exchange capacity for seven sites (R2 = 0.95). Large yearly and locational variations were estimated in the soil parameter for representing the rate of indigenous N supply at 25 °C. With the use of these two soil parameters, the whole-system model explained the observed genotypic and environmental variations in plant N accumulation, growth and yield of rice in Asia.  相似文献   

12.
Evaluation of seed yield, morphological variability and nutritional quality of 27 germplasm lines of Chenopodium quinoa and 2 lines of C. berlandieri subsp. nuttalliae was carried out in subtropical North Indian conditions over a 2-year period. Seed yield ranged from 0.32 to 9.83 t/ha, higher yields being shown by four Chilean, two US, one Argentinian and one Bolivian line. Two lines of C. berlandieri subsp. nuttalliae exhibited high values for most of the morphological traits but were low yielding. Seed protein among various lines ranged from 12.55 to 21.02% with an average of 16.22 ± 0.47%. Seed carotenoid was in the range of 1.69–5.52 mg/kg, while leaf carotenoid was much higher and ranged from 230.23 to 669.57 mg/kg. Genetic gain as percent of mean was highest for dry weight/plant, followed by seed yield and inflorescence length. All morphological traits except days to flowering, days to maturity and inflorescence length exhibited significant positive association with seed yield. The association of leaf carotenoid with total chlorophyll and seed carotenoid was positive and highly significant. The path analysis revealed that 1000 seed weight had highest positive direct relationship with seed yield (1.057), followed by total chlorophyll (0.559) and branches/plant (0.520). Traits showing high negative direct effect on seed yield were leaf carotenoid (−0.749), seed size (−0.678) and days to flowering (−0.377). Total chlorophyll exerted strongest direct positive effect (0.722) on harvest index, followed by seed yield (0.505) and seed protein (0.245).  相似文献   

13.
《Field Crops Research》1998,59(1):43-52
Several Brachiaria species are the most widely grown forages in tropical America. A field study was conducted during two seasons (1994, wet and 1995, dry) in a medium-textured Oxisol at Carimagua, Colombia. The main objective of the study was to evaluate genotypic variation in plant attributes for tolerance to low fertility, acid soil stress conditions (pH 4.9) among germplasm accessions and genetic recombinants of Brachiaria. The entries included 43 genetic recombinants selected from a breeding population, four parental accessions and an additional eight germplasm accessions. Small amounts of fertilizer were applied at establishment (kg ha−1: 40 N, 20 P, 20 K, 14 Ca, 12 Mg and 12 S). A number of plant attributes including forage yield, leaf area, shoot nutrient composition and shoot nutrient uptake were measured during both seasons. Significant genetic variation was observed in several plant attributes such as leaf area, shoot nutrient content, nutrient partitioning to leaves, shoot nutrient uptake, and forage yield in both seasons. Forage yield ranged from 59 to 343 g plant−1 in the wet season and 5 to 174 g plant−1 in the dry season. Correlation between forage yield and shoot nutrient uptake indicated the importance of nutrient acquisition, particularly of phosphorus (r=0.90; P<0.0001), for adaptation to infertile acid soil stress. Two genetic recombinants (BRN093/3009, FM9201/1873) were productive when grown under infertile acid soil stress in both wet and dry seasons. But, neither of these two recombinants is highly resistant to xylem-feeding insects known as spittlebugs (Homoptera: Cercopidae). One spittlebug-resistant genetic recombinant (BRN093/1371) exhibited several desirable attributes such as superior leaf area and leaf biomass, greater N content in leaves, and greater partitioning of N and P to leaves that could contribute to adaptation and persistence in these soils. This recombinant is being utilized in a breeding program to develop superior Brachiaria lines.  相似文献   

14.
A collection of 191 durum wheat accessions representing Mediterranean Basin genetic diversity was grown in nine different environments in four countries, with productivities ranging from 0.99 to 6.78 t ha−1. The population breeding structure comprised eight genetic subpopulations (GSPs) using data derived from 97 evenly distributed SSR markers. The phenotypic structure was assessed: (i) from the mean values of six agronomic traits across environments (multivariate), and (ii) from data representing each trait in each environment (univariate). Mean daily maximum temperature from emergence to heading was significantly (P < 0.05) and negatively associated to yield, accounting for 59% of yield variations. Significant but weak relationships were obtained between the genetic similarities among accessions and their overall agronomic performance (r = 0.15, P < 0.001), plant height (r = 0.12, P < 0.001), spike–peduncle length (r = 0.06, P < 0.01) and thousand kernel weight (r = 0.03, P < 0.05), suggesting a very low possibility of prediction of the agronomic performance based on random SSR markers. The percentage of variability (measured by sum of squares) explained by the environment varied between 76.3 and 98.5% depending on the trait, while that explained by genotypes ranged between 0.4 and 12.6%, and that explained by the GE interaction ranged from 1.1 to 12.5%. The clustering of the accessions based on multivariate phenotypic data offered the best explanation of genotypic differences, accounting for 30.3% (for yield) to 75.1% (for kernel weight) of the observed variation. The genotype × environment interaction was best explained by the phenotypic univariate clustering procedure, which explained from 28.5% (for kernel weight) to 74.9% (for days to heading) of variation. The only accessions that clustered both in the genetic dissimilarities tree and the tree obtained using Euclidean distances based on standardized phenotypic data across environments were those closely related to the CIMMYT hallmark founder ‘Altar 84’, the ICARDA accessions adapted to continental-dryland areas, and the landraces, suggesting that genetic proximity corresponded to agronomic performance in only a few cases.  相似文献   

15.
Weed management is among the main factors limiting cultivation of castor (Ricinus communis) in extensive fields, particularly when labor is scarce or expensive. This experiment evaluated the efficiency of weed management programs using preemergence (clomazone, pendimethalin, and trifluralin) and a postemergence herbicide (chlorimuron-ethyl) applied at 20 days after emergence in castor plants cv. BRS Energia under rainfed conditions in Apodi, Brazil. No phytotoxicity was observed on the castor plants, and the postemergence herbicide significantly increased castor seed yield to 1466 kg ha−1 complementing the weed control of preemergence herbicides treatments in which seed yield was 1207 kg ha−1. Seed yield on weedy and weed-free treatments was 760 and 1971 kg ha−1, respectively. Weeds were kept under a satisfactory control up to 40 days after emergence. This program resulted in reasonable weed control because the preemergence herbicides controled monocotyledon weeds, while the postemergence herbicide controlled broad leafed species being selective to castor plants.  相似文献   

16.
Large scale cultivation of the cardoon Cynara cardunculus L. for biomass production was installed using common agricultural practices and machinery in a total of 77.4 ha in southern Portugal in a region characterized by very hot and dry summers. This species is a perennial with an annual growth cycle. Installation by sowing was successful in spite of the extreme drought that occurred during this first cycle (221 mm), and the plants developed well during the second cycle (with 556 mm rainfall) with a mean density of 27 thousand plants per ha. Aerial photographs showed that 45.8 ha of the field had over 50% of ground cover by cardoon plants. The observed differences in soil occupation could be explained by rock outcrops, soil heterogeneity and land topography. The field biomass yield was estimated at 7.5 t ha−1 and the plants at harvest had on average 2.1 m height and 2.2 cm stalk diameter, with 5.3 capitula per plant. Stalks represented 59.1% of total dry biomass. The capitula contain small oil seeds with an average of 126 seeds per capitulum and weighing 32 g per 1000 seeds. The mean seed yield was 603 kg ha−1. The results of this experiment confirm that Cynara crops are suitable for biomass production in Mediterranean regions and that large scale operation can be applied including whole plant harvest or field fractionation for seed recovery. Careful attention to cultural practices was deemed important for field homogeneity and production. The observed plant variation, namely in oil seed production, suggests potential improvements through breeding.  相似文献   

17.
A field investigation was carried out on red sandy soil in the semi-arid tropical climate of south India to investigate the response of industrially important, multi-harvest, aromatic crop palmarosa {Cymbopogon martinii (Roxb.) Wats. var. motia Burk., family: Poaceae} to foliar application (2.5 g/L single application for each harvest at 700 L nutrient solution per hectare) of magnesium (Mg), manganese (Mn), iron (Fe), zinc (Zn), boron (B) and their residual effect on the succeeding harvest. During the experimental period, palmarosa crop afforded four harvests, 49.5-70.6 t/ha total biomass yield (fresh weight), 211.4-384.2 kg/ha total essential oil yield and Rs. 232,540-422,620/ha (US$ 4844.6-8804.6/ha) gross returns. Fifth harvest (no nutrients were applied) performed to examine the residual effect of Mg and micronutrients applied to the previous four harvests revealed the absence of residual effect pointing to the need for application of nutrients to individual harvests. Foliar application of Mg and micronutrients significantly increased the yield attributes (plant height, tiller number/plant, leaf number/plant), biomass yield, essential oil yield and gross returns of palmarosa. Mg and micronutrients enhanced the total biomass yields by 37.0-42.6% and the total essential oil yields by 44.6-81.7% in comparison to the control (water spray).All the treatments produced good quality essential oils with 1.5-3.2% linalool, 79.7-85.8% geraniol and 4.5-10.3% geranyl acetate. Mg and B additions declined linalool (%) in the second and fourth harvests and increased geraniol (%) in the first harvest. Mg and micronutrients application improved geraniol (%) in the second harvest. Except Zn, all the other nutrients decreased geranyl acetate (%) in the second harvest, but in the third and fourth harvests Mn and B increased geranyl acetate (%).  相似文献   

18.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

19.
Differentiated tissue in Panax ginseng cultures was found to be very efficacious for saponin production. In order to increase the yield of saponins and preserve culture stability we were testing different plant growth regulators (PGR) and auxin/cytokinin combinations to regulate a level of tissue differentiation. For this purpose we used transverse thin cell layers (tTCLs) of adventitious roots of Panax ginseng. Adventitious roots were cultivated in Shenk and Hildebrand (SH) liquid medium supplemented with IBA (24.6 μM). Callus formation and root multiplication of adventitious root tTCLs was evaluated after 4 and following 12 weeks of cultivation, respectively, on SH basal medium containing various auxins (3 mg l−1) or cytokinins (0.2 or 0.02 mg l−1) or their combinations. We found that kinetin (Kin) in combination with auxin benzo[b]selenienyl acetic acid (BSAA), naphthalene acetic acid or indole-3-butric acidis the best for biomass production and following root multiplication. These combinations were tested in previously selected most suitable large-scale system—a temporary immersion system RITA. The best saponin production (15.94 ± 1.89 mg g−1 dry weight) and growth value (5.62 ± 0.34) was reached on medium containing BSAA and Kin combination.  相似文献   

20.
In the experiments done in 2008 and 2009, 23 selected caraway genotypes originating from European botanical gardens (18), cv. “Kończewicki” and our own breeding strains were tested. The obtained results showed that objects of the caraway collection varied in terms of all the tested morphological traits. The plant height ranged from 71.5 cm (Reykjawik) to 107.8 cm (cv. “Kończewicki”). The number of branches on the main stem was from 5.3 (Reykjawik) to 10.0 (Jena). The number of lateral shoots ranged from 9.8 (Reykjawik) to 21.5 (strain 9/10). The leaf length was from 11.9 cm (Lousanne) to 29.1 cm (cv. “Kończewicki”). The number of umbels per plant varied from 91.4 (Reykjawik) to 251.9 (strain 9/10). The fruit yield ranged from 14.2 g (Reykjawik) to 48.5 g (cv. “Kończewicki”). The weight of 1000 seeds was from 1.81 g (Salzburg) to 3.31 g (strain 9/1). The following morphological traits such as the number of umbels per plant, the number of lateral shoots per plant and weight of a thousand seeds had positive effect on fruit yield. The multidimensional analysis of the tested traits compared caraway objects in respect of eight morphological traits and yield simultaneously. These valuation of caraway genotypes will make it possible to choose the appropriate genotypes for further breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号