首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
In this study, extraction of hemicelluloses from the carbohydrate-enriched residues was successfully carried out with organic solvent and the residue was used for bio-based energy production. The chemical composition and physico-chemical properties of six hemicelluloses released were elucidated by a combination of sugar analysis, molecular determination, Fourier transform infrared, and 1H, 13C and 2D-HSQC NMR spectroscopy. The results showed that the successful treatments resulted in a fractionation of the native hemicelluloses. The sugar analysis indicated that xylose (47.14-56.91%) was found to be the major sugar components and small amounts of glucose (14.1-19.06%) and mannose (12.41-18.09%) were also observed in these hemicellulosic fractions. Further studies by NMR spectroscopy exhibited that the acetylated hemicellulosic fraction had a main structure of (1 → 4)-linked β-d-xylopyranosyl backbone with 4-O-methyl-α-d-glucuronic acid as a side chain and a minor structure of linear β-(1 → 4)-linked glucomannans. Furthermore, these hemicelluloses possessed a low substituted degree which was beneficial for enzymatic saccharification.  相似文献   

2.
The chemical composition of oleo-gum-resin from Ferula gummosa collected in the northern part of Iran has been studied. The fraction of oleo-gum-resin soluble in ethanol (ca 67 wt.%) is composed by three major fractions: (i) monoterpenes and monoterpenoids (ca 15 wt.% fraction), (ii) sesquiterpenes and sesquiterpenoids (ca 30 wt.%) and (iii) triterpenes and triterpenoids (ca 55 wt.%). The major families of terpenes and terpenoids were identified employing gas chromatography coupled with mass spectrometry detector (GC-MS). Almost 25 wt.% of oleo-gum-resin was insoluble in ethanol and, according to wet chemistry analyses, assigned to arabinogalactane structurally associated with protein complex (AGP). This arabinogalactan possessed the molecular weight of ca 30 kDa, as revealed by size exclusion chromatography, and the main backbone was constituted by β-(1 → 3)/β-(1 → 3,6)-linked d-galactopyranosyl residues ramified predominantly by terminal α-l-arabinofuranosyl and β-d-glucuronopyranosyl residues, as assessed by 1D/2D 1H NMR.  相似文献   

3.
Dehydrodiferulates are likely the most important arabinoxylan cross-links in cereals and grasses in general. However, association of dehydrodiferulates and arabinoxylans has only been authenticated for 5-5- and 8-O-4-dehydrodiferulates to date. In the present study, a saccharide ester of 8-8(cyclic)-dehydrodiferulate was isolated from maize bran insoluble fibre following mild acidic hydrolysis by using Sephadex LH-20 chromatography, gel chromatography on Bio-Gel P-2, and RP-HPLC. Mass spectrometry, one- and two-dimensional NMR and analysis of the carbohydrate and phenolic constituents following further hydrolysis identified the isolated compound as the di-5-O-l-arabinosyl ester of 8-8(cyclic)-dehydrodiferulic acid. From this finding it is apparent that 8-8(cyclic)-dehydrodiferulate exists as such in the plant cell wall and acts as an arabinoxylan cross-link. In addition, a fraction was isolated that contained two saccharide esters of 8-O-4-dehydrodiferulates. This fraction was comprised of two compounds, both built from 8-O-4-dehydrodiferulate, a 5-linked arabinofuranose and a 5-linked xylopyranosyl-(1→2)-arabinofuranose unit. These compounds show that, in addition to the 5-O-(trans-feruloyl)-l-arabinofuranosyl sidechain, the more complex β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranosyl sidechains are involved in the formation of 8-O-4-dehydrodiferulates.  相似文献   

4.
Structural characterization and isolation of lignin and hemicelluloses from crops are very important for industrial utilization. In this paper, the sequential treatments of barley straw using 90% dioxane, 80% acidic dioxane, 100% dimethyl sulfoxide, and 8% NaOH released total 93% of original lignin and 87% of original hemicelluloses. The extractions with acidic dioxane and dimethyl sulfoxide produced the original hemicelluloses and high-condensed lignin mainly from the middle lamella. FT-IR and NMR analyses show that the hemicelluloses of barley straw contain acidic arabinxylans as the major polysaccharides, which are substituted by α-l-arabinofuranose, 4-O-methyl-glucuronic acid, acetyl group (DS = 0.13), and xylose at O-3 and/or O-2 of xylan, and lignin contains β-O-4′ as a predominant interunit linkage with high amounts of β-5′ and β-1′. The guaiacyl and syringyl units are more etherified, and the proportion of erythro-β-O-4′ is slightly higher than that of threo-β-O-4′ in the lignin of barley straw.  相似文献   

5.
The accumulation of mixed linkage barley (1 → 3) (1 → 4)-β-d-glucan (BG) during grain filling at eight stages was studied using standard reference methods and infrared spectroscopy. Two mutant barley genotypes having higher (starch mutant lys5f) and lower (high lysine mutant lys3a) BG content than the normal control Cork were studied. The Cork and lys3a genotypes showed a linear BG accumulation throughout the grain filling to reach a maximum of approximately 6 and 4% BG (w/w) dry matter, respectively. However, lys5f mutant exhibited an exponential increase in BG synthesis to a maximum of approximately 18% BG (w/w) dry matter 30 days after flowering (DAF), seemingly compensating for a decreased synthesis of starch.  相似文献   

6.
The morphological and chemical characteristics of the woods from several eucalypt hybrids from the Brazilian Genolyptus program were studied. The hybrids selected for this study were Eucalyptus grandis × E. urophylla (IP), E. urophylla × E. urophylla (U1 × U2), E. grandis × [E. urophylla × E. globulus] (G1 × UGL), and [E. dunnii × E. grandis] × E. urophylla (DG × U2). The analyses of the lipophilic extractives indicated a similar composition in all eucalypt hybrids, which were dominated by sitosterol, sitosterol esters and sitosteryl 3β-d-glucopyranoside. These compounds are responsible for pitch deposition during kraft pulping of eucalypt wood. Some quantitative differences were found in the abundances of different lipid classes, the wood from U1 × U2 having the lowest amounts of these pitch-forming compounds. The chemical composition and structure of lignins were characterized by Py-GC/MS and 2D-NMR that confirmed the predominance of syringyl over guaiacyl units and only showed traces of p-hydroxyphenyl units in all the woods, with the highest S/G ratio for G1 × UGL. The 2D-NMR spectra gave additional information about the inter-unit linkages in the lignin polymer. All the lignins showed a predominance of β-O-4′ ether linkages (75-79% of total side-chains), followed by β-β′ resinol-type linkages (9-11%) and lower amounts of β-5′ phenylcoumaran-type, β-1′ spirodienone-type linkages or β-1′ open substructures. The lignin from the hybrid G1 × UGL presented also the highest proportion of β-O-4′ linkages, and therefore, it is foreseen that the wood from this hybrid will be more easily delignifiable than the other selected Brazilian eucalypt hybrids. In complement to these chemical analyses, the morphological characterization of fibers, vessels and fines revealed that hybrid eucalypt clone DG × U2 presented the most interesting properties for the manufacture of paper pulps and biofuels.  相似文献   

7.
The effects of extracts of different parts of the perennial tropical plant Balanites aegyptiaca (L) Del., including various solvent extracts of roots, methanol extracts from leaves, fruits, flowers and roots, partially purified saponins obtained from its roots and a standard saponin were studied on the life cycle (adult longevity, number of eggs, crawlers, adults, weight of adults and % wax content) of a laboratory-reared parthenogenic line of the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Extracts derived from various parts of B. aegyptiaca (leaves, fruits, flowers, and roots in methanol) affected the life cycle of M. hirsutus with a methanol root extract being the most effective at a concentration of 500 μg ml−1. Partially purified saponin of B. aegyptiaca and the commercial bark saponin extract (Sigma) from Quillaja saponaria at a concentration of 500 μg ml−1 were effective in reducing the longevity of M. hirsutus. Significant reductions in oviposition by M. hirsutus were found for all the extracts at a concentration of 500 μg ml−1. Extracts also affected the number of emerging crawlers, number of adults as well as the weight and wax content of emerging adults. These studies suggest that B. aegyptiaca plant extracts and saponins can be useful botanical insecticides for the protection of crops from mealy bugs.  相似文献   

8.
Pinus yunnanensis was subjected to water-bath and microwave treatments in 1% NaOH aqueous solutions at 100 °C with various ratios of bath heating time to microwave heating time (0/120, 20/100, 40/80, 60/60, 80/40, 100/20 and 120/0 min). The lignins dissolved in the alkali liquors were separated and purified, and their physicochemical features were comparatively characterized by sugar analysis, GPC, FT-IR, 13C and HSQC NMR, as well as thermogravimetric analysis (TGA). The results showed that the lignin fractions extracted with microwave heating (20-120 min) had high molecular weights and polydispersities (Mw 3150-5710 g/mol, Mn 2130-3020 g/mol, Mw/Mn 1.48-2.00) as compared to those prepared without microwave heating (Mw 3080 g/mol, Mn 2080 g/mol, Mw/Mn 1.48). The most striking characteristic of all lignin fractions was the almost absence of associated sugars (0.16-3.25%). The TGA results indicated that the thermal stability of the lignin fraction increased with the increment of the molecular weight. FT-IR and NMR spectra suggested that the lignin fractions showed similar structures which were mainly composed of guaiacyl (G) and minor amounts of p-hydroxyphenyl (H) units. Moreover, HSQC NMR spectrum of a typical lignin fraction (prepared with microwave heating for 120 min) revealed that it contained dominant amounts of β-O-4′ linkages (64.6%) and phenylcoumaran (β-5′) substructures (25.8%) together with small amounts of resinol (β-β′) substructures (6.7%) and coniferyl alcohol end groups (2.9%).  相似文献   

9.
Harder kernels in barley are thought to be a factor affecting the modification of the endosperm during malting by restricting water and enzyme movement within the endosperm. The objective of this study was to investigate the relationship between kernel hardness, water uptake and the endosperm composition in barley. A range of barley samples from 2003 and 2004 crops were analyzed for kernel hardness by the Single Kernel Characterization System, water uptake during steeping and chemical composition of the endosperm including (1→3; 1→4)-β-glucan, arabinoxylan and total protein. Both (1→3; 1→4)-β-glucan and arabinoxylan content of the endosperm were correlated significantly with kernel hardness in barley samples from both 2003 (r=0.873 and 0.601, respectively, p<0.01) and 2004 seasons (r=0.764 and 0.501, respectively, p<0.01). Hardness of the kernel was highly correlated with its water uptake in both 2003 and 2004 samples (r=−0.853 and −0.752, respectively, p<0.01). β-Glucan content of the endosperm was also correlated significantly with the kernel water uptake for both years (2003: r=−0.752, p<0.01; 2004: r=−0.551, p<0.01). Arabinoxylan content of the endosperm was correlated significantly with the kernel water uptake for the 2003 barley but not for 2004 barley (2003: r=−0.523, p<0.01; 2004: r=−0.151, p>0.01). Protein content of the endosperm was not correlated with the kernel hardness in either year. These results demonstrate that endosperm cell wall components may have significant impact on kernel hardness as well as water uptake of barley.  相似文献   

10.
As a novel renewable resource, Sapindus mukorossi seed oil (SMSO) with an iodine value of 84.86 g/100 g, and containing 51.0 ± 0.9% oleic acid (18:1), 6.6 ± 0.6% linoleic acid (18:2), 1.1 ± 0.3% linolenic acid (18:3), and 23.1 ± 0.9% eicosanoic acid (20:1), was epoxidized using hydrogen peroxide as oxygen donor and stearic acid as active oxygen carrier in the presence of immobilized Candida antarctica lipase B. The effect of the amount of stearic acid on the enzymatic epoxidation was investigated. Response surface methodology (RSM) was used to study and optimize the effects of variables (reaction temperature, enzyme load, mole ratio of H2O2/CC-bonds, and reaction time) on the epoxy oxygen group content (EOC) of epoxidized SMSO. Results showed that stearic acid as active oxygen carrier could enhance the enzymatic epoxidation of SMSO. The variables of reaction temperature and enzyme load were the most significant in the process. A two second-order model was satisfactorily fitted the data (R2 = 0.9723) with non-significant lack of fit. The optimum EOC of epoxidized SMSO was 4.6 ± 0.3% under the conditions of 50.0 °C, 7.0 h, 2.00% (relative to the weight of SMSO) enzyme load, and 4:1 mole ratio of H2O2/CC-bonds.  相似文献   

11.
Three new ganglioside molecular species, termed PNG-1, PNG-2A, and PNG-2B were isolated from pyloric caeca of the starfish Protoreaster nodosus. Their structures were elucidated using a combination of spectroscopic and chemical methods, and characterized as 1-O-[8-O-methyl-N-acetyl-α-neuraminosyl-(2→3)-β-galactopyranosyl]-ceramide for PNG-1, 1-O-[β-galactofuranosyl-(1→3)-α-galactopyranosyl-(1→4)-8-O-methyl-N-acetyl-α-neuraminosyl-(2→3)-β-galactopyranosyl]-ceramide for PNG-2A, and 1-O-[β-galactofuranosyl-(1→3)-α-galactopyranosyl-(1→9)-N-acetyl-α-neuraminosyl-(2→3)-β-galactopyranosyl]-ceramide for PNG-2B. PNG-2A and PNG-2B represent the first GM4 elongation products in nature.  相似文献   

12.
Isolated and purified endosperm cell walls (CW), used in this study, were derived from a Canadian malting barley variety, AC Metcalfe, grown in three different environments in Canada in 2003, and varying in grain protein and β-glucan contents, as well as in grain hardness. The CW were initially extracted with water at 45 °C and subsequently digested with barley malt crude enzyme extract resulting in two fractions designated CW-WE45 and CW-MD, respectively. The remaining non-digested cell wall material (CWND) was further fractionated by sequential extraction with water at 95 °C (CWND-WE95), saturated barium hydroxide (CWND-BaE), and 1 N sodium hydroxide (CWND-NaE) at 25 °C. Composition and molecular structure analyses were carried out for all fractions including the remaining cell wall residue (CWRES). Extraction of CW with water followed by digestion with malt crude enzyme extract solubilized the majority of β-glucans (∼55–70%) and glucomannans (∼60–80%) but only a small portion of arabinoxylans (∼20–30%) present in the intact CW. The CW-WE45 and CWND-WE95 fractions consisted mostly of β-glucans exhibiting high average molecular weights (Mw) (2–3 × 106), whereas the CWND-BaE consisted mainly of arabinoxylans with Mw about 1–1.5 × 106. The CWND-NaE contained almost equal amounts of β-glucans and arabinoxylans and a small amount of glucomannans, whereas the CWRES contained approximately equal proportions of β-glucans, arabinoxylans and glucomannans. β-Glucans in CWND-WE95, CWND-NaE, and CWRES exhibited a higher ratio of 3-O-β-d-cellobiosyl-d-glucose to 3-O-β-d-cellotriosyl-d-glucose (DP3/DP4) compared to β-glucans in CW-WE45 and CW-MD. β-Glucans in CWND-NaE showed the highest level of long cellulosic oligosaccharides with DP ≥ 5, whereas those in the CWRES had the highest DP3/DP4 ratio. The CW-MD was fractionated by ultrafiltration into high (CW-MDHMW) and low-molecular weight (CW-MDLMW) sub-fractions, with weight-average Mw of ∼150–350 × 103 and <10 × 103, respectively, as confirmed by size-exclusion chromatography. The monosaccharide composition of the sub-fractions indicated a more extended enzymic degradation of β-glucans and glucomannans than arabinoxylans. Some differences in composition and molecular structure of the cell wall constituents among the three barley samples were related to their solubility and enzymic digestibility.  相似文献   

13.
Factors influencing in vitro regeneration through direct shoot bud induction from hypocotyl explants of Jatropha curcas were studied in the present investigation. Regeneration in J. curcas was found to be genotype dependent and out of four toxic and one non-toxic genotype studied, non-toxic was least responsive. The best results irrespective of genotype were obtained on the medium containing 0.5 mg L−1 TDZ (Thidiazuron) and in vitro hypocotyl explants were observed to have higher regeneration efficiency as compared to ex vitro explant in both toxic and non-toxic genotypes. Adventitious shoot buds could be induced from the distal end of explants in all the genotypes. The number of shoot buds formed and not the number of explants responding to TDZ treatment were significantly affected by the position of the explant on the seedling axis. Explants from younger seedlings (≤15 days) were still juvenile and formed callus easily, whereas the regeneration response declined with increase in age of seedlings after 30 days. Transient reduction of Ca2+ concentrations to 0.22 g L−1 in the germination medium increased the number of responding explants.Induced shoot buds, upon transfer to MS medium containing 2 mg L−1 Kn (Kinetin) and 1 mg L−1 BAP (6-benzylamino purine) elongated. These elongated shoots were further proliferated on MS medium supplemented with 1.5 mg L−1 IAA (indole-3-acetic acid) and 0.5 mg L−1 BAP and 3.01-3.91 cm elongation was achieved after 6 weeks. No genotype specific variance in shoot elongation was observed among the toxic genotypes except the CSMCRI-JC2, which showed reduced response. And for proliferation among the toxic genotypes, CSMCRI-JC4 showed highest number of shoots formed. Among the rest, no significant differences were observed. The elongated shoot could be rooted by pulse treatment on half-strength MS medium supplemented with 2% sucrose, 3 mg L−1 IBA (indole-3-butyric acid), 1 mg L−1 IAA, 1 mg L−1 NAA (α-naphthalene acetic acid) and subsequent transfer on 0.25 mg L−1 activated charcoal medium. The rooted plants could be established in soil with more than 90% success. No significant differences were observed in rooting of shoots in the different toxic genotypes. However, rooting response was reduced in non-toxic genotype as compared to toxic genotypes.  相似文献   

14.
A sequential process with the combination of ethanol and alkali aqueous solutions was utilized to extract lignin from bamboo (Neosinocalamus affinis), a potential lignocellulosic material. In this case, the successive treatments of dewaxed bamboo with 70% ethanol at 80 °C, 0.2 and 0.5 M NaOH, 70% ethanol containing 0.6 M NaOH, and 1.0, 2.0, and 3.0 M NaOH at 50 °C, resulted in a total yield of acid-insoluble lignin fractions of 10.06%, corresponding to release of 62.25% original lignin from the cell walls. The lignin fractions obtained were then characterized by GPC, FT-IR, NMR spectroscopy, and sugar analysis. As compared to the alkali lignin fractions, the ethanol-soluble lignin fraction had a relatively higher molecular weight (2670 g/mol) and the content of carbohydrates primarily consisted of glucose 2.01% and xylose 1.90%. This suggested that the carbohydrate chains linked to lignin may increase the hydrodynamic volume of lignin and therefore increase the apparent molecular weight of the ethanol-soluble lignin. HSQC spectra analysis revealed that the alkali lignin fractions consisted mainly of β-O-4′ linkages combined with small amounts of β-β′, β-5′, β-1′ linkages, and p-hydroxycinnamyl alcohol end groups. Furthermore, minor amounts of esterified p-coumaric and ferulic acids were also detected in the lignins isolated.  相似文献   

15.
Cereals β-glucans are linear homopolysaccharides of consecutively linked (1→4)-β-d-glucosyl residues (i.e. oligomeric cellulose segments) that are separated by single (1→3)-linkages. β-Glucans display all the functional properties of viscous and gel forming food hydrocolloids combined with all the physiological properties of dietary fibres. This review focuses on the relationships between the molecular–structural characteristics of β-glucans and their physicochemical properties in aqueous dispersions and in food systems as well as their physiological functions in the gastro-intestinal tract. The physical properties of β-glucans, such as solubility and rheological behaviour in the solution and gel states, are controlled by their molecular features, such as their distribution of cellulosic oligomers, their linkage pattern and their molecular weight as well as by temperature and concentration. The technological and nutritional functionality of β-glucans is often related to their rheological behaviour. Incorporation of β-glucans into various products (bread, muffins, pasta, noodles, salad dressings, beverages, soups, reduced-fat dairy and meat products) showed that attributes, such as breadmaking performance, water binding and emulsion stabilising capacity, thickening ability, texture, and appearance appear to be related to the concentration, molecular weight and structure of the polysaccharide. The health benefits of β-glucans, such as reducing blood serum cholesterol and regulating blood glucose levels, are also correlated with the amount and molecular weight of the solubilised β-glucans in the gastro-intestinal tract.  相似文献   

16.
Secondary plant compounds are recognised as important components of plant defence system against herbivores and pathogens. Five monoterpenoids, (R)-linalool, 1,8-cineole, (S)-2-heptyl acetate, (S)-2-heptanol and citral, which are natural components of the essential oils of Aframomum melegueta (K. Schum) and Zingiber officinale (Roscoe), were tested at the ratios in which they occur naturally for repellent activity against Tribolium castaneum (Herbst.) and Rhyzopertha dominica (F.) in a 4-way olfactometer. The results showed the repellent properties of the compounds as both beetles spent less time in the olfactometer arm containing the test stimuli. (R)-linalool and (S)-2-heptanol were stronger repellent compounds than the others. Linalool showed good repellent activity against T. castaneum (P = 0.001) as the insect spent 1.22 min in the test arm compared to the control arms (2.78 min), and R. dominica (P = 0.001) with 0.89 min in the test arm compared to 2.87 min in the control arms. With (S)-2-heptanol, T. castaneum spent 1.23 min in the test arm compared to 2.83 min in the control arms. R. dominica spent 1.61 min in the test arm and 2.69 min in the control arms. For the number of entries or visits made, while both insects were significantly repelled (P < 0.05) by the linalool-treated arm than the control, only R. dominica was repelled by the (S)-2-heptanol-treated arm (P = 0.038) compared to the control arms. The results indicate that A. melegueta and Z. officinale essential oils and their components could be suitable as safer repellents or fumigants against T. castaneum and R. dominica.  相似文献   

17.
Sets of triticale (X Triticosecale Wittmack) lines derived from the cv. Presto with HMW glutenin allele Glu-D1d (subunits 5+10) translocated from bread wheat (Triticum aestivum L.) chromosome 1D to chromosome 1R were evaluated for agronomic and grain quality characteristics in 2002–2005. Two different translocation types were used: (a) single translocation 1R.1D5+10-2 where the long arm of 1R carries the wheat segment from 1DL with the Glu-D1d replacing a secalin locus Sec-3, (b) double translocation Valdy where the long arm of 1R has the translocation 1R.1D5+10-2 and the short arm has a segment from 1DS carrying wheat loci Gli-D1 and Glu-D3. The presence of Glu-D1d was determined by polyacrylamide gel electrophoresis (PAGE-ISTA) and DNA markers. The tested lines of triticale were compared with the check triticale cv. Presto and with wheat cultivars of different bread making quality (E-C quality classes). Single translocation 1R.1D5+10-2 reduced grain yield by 16% and Valdy translocation by 24% as compared with cv. Presto. The Valdy translocation had substantially shortened spike length and reduced specific weight in comparison with check cv. Presto. Wet gluten content (according to the Perten method) was 12% in both translocation types, 8% in check Presto and on average 24% in wheat. Translocations increased the Zeleny sedimentation value (Valdy — 27 ml, 1R.1D5+10-2 – 25 ml, cv. Presto — 23 ml). Triticale had a very low Hagberg falling number (FN) of 62–70 s without significant differences, while wheat had on average 301 s. The translocations did not significantly increase loaf volume; however, they improved loaf shape (height/width ratio): Valdy — 0.61, 1R.1D5+10-2 – 0.56, cv. Presto 0.44, wheat on average 0.70. The dough was non-sticky in Valdy, slightly sticky in 1R.1D5+10-2 and sticky in cv. Presto. Problems with a low FN for improving bread making quality of triticale are discussed. Higher bread making quality can be influenced by appropriate combination with donors of low α-amylase activity.  相似文献   

18.
The present investigation was conducted at Vittal, Karnataka, India during 2004-2007 to study the feasibility of intercropping of medicinal and aromatic plants (MAPs) in arecanut plantation. The results revealed that MAPs can be successfully grown as intercrops in arecanut plantation with increased productivity and net income per unit area. Kernel equivalent yield of MAPs varied between 272 kg ha−1 in case of Piper longum to 1218 kg ha−1 in Cymbopogon flexuosus. Pooled data indicated that Asparagus racemosus produced fresh root yield of 10,666 kg ha−1 of arecanut plantation and contributed to maximum kernel equivalent yield of 1524 kg ha−1 among all medicinal and aromatic plants. Intercropping of MAPs in arecanut was found economical. The net return per rupee investment was highest in C. flexuosus (4.25) followed by Bacopa monnieri (3.64), Ocimum basilicum (3.46) and Artemisia pallens (3.12). The total system productivity of arecanut + MAPs intercropping system varied from 2990 to 4144 kg ha−1. Arecanut + O. basilicum intercropping system registered significantly higher production efficiency 8.2 kg ha−1 day−1 than other systems. Intercropping of MAPs had more positive effect on soil pH in arecanut based cropping system. The soil pH was 5.6 in 2004 and it was 0.3-0.9 units higher in 2007. Soil organic carbon (SOC) content varied significantly due to intercropping of MAPs at the end of experiment. The SOC content increased in Aloe vera, A. pallens, P. longum and B. monnieri, while it depleted in grasses and rhizomatic MAPs. Based on demand and marketing opportunities for MAPs, farmers are advised to grow aromatic plants in large areas on a community basis to meet huge industrial demand and variety of medicinal crops in small areas to meet the requirement of traditional systems of medicine.  相似文献   

19.
Malting is the ideal stage to deal with β-glucans. Their hydrolysis is very important as the diffusion of both hormones and hydrolytic enzymes in the endosperm of germinated grain depend on it. A high malt β-glucanase activity is not a guarantee of an extensive hydrolysis of β-glucans. When Bacillus subtilis is used to control mould growth, red sorghum malt β-glucanase activity (measured using carboxymethylcellulose as the substrate) was improved without significantly affecting the hydrolysis of malt β-glucans. Thus, in order to reduce the residual β-glucans content, soaking in 0.2% NaOH was combined with a biocontrol. Soaking in 0.2% NaOH is recognized as capable of improving grain hydration by opening-up the endosperm cell walls. The combined use of 0.2% NaOH with B. subtilis-based biocontrol treatments during red sorghum malting, leads to malt with increased β-glucanase activity and a significant reduction of residual β-glucans when compared with the 16 h biocontrol steeping without prior steeping in 0.2% NaOH. β-glucanase activity increases with increased germination temperature and time while, conversely, the residual β-glucans content of the malts decreases. Indeed, while the level of β-glucanase was not vastly different between the malts obtained after steeping in distilled water and those obtained after 8 h steeping in 0.2% NaOH followed by 8 h resteeping in distilled water (NaOH + H2O treatment), their residual β-glucans levels differ significantly. B. subtilis-based treatment leads to malt with improved β-(1-3)- and β-(1-4)-glucanase activities without significantly improved malt β-(1-3),(1-4)-glucanase activity. While malts obtained after 84 h germination weren't significantly different in terms of malt β-(1-3),(1-4)-glucanase activities for all steeping treatments, the use of 0.2% NaOH steeping prior to resteeping led to malts with improved β-glucans content. Combining the steeping in dilute alkaline and biocontrol enables taking advantage of the dilute alkaline effect on residual β-glucans content, due probably to the opening-up of the cell walls and the improvement of water uptake, and that of the biocontrol (improvement of β-glucanase synthesis).  相似文献   

20.
Knowledge of the changes in agronomic and photosynthetic traits associated with genetic gains in grain yield potential is essential for an improved understanding of yield-limiting factors and for determining future breeding strategies. The objectives of this study were to identify agronomic and photosynthetic traits associated with genetic gains in grain yield of facultative wheat (Triticum aestivum L.) between 1981 and 2008 in Henan Province, the most important wheat producing area in China. During the 2006-2007 and 2007-2008 crop seasons, a yield potential trial comprising 18 leading and new cultivars released between 1981 and 2008 was conducted at two locations, using a completely randomised block design of three replicates. Results showed that average annual genetic gain in grain yield was 0.60% or 51.30 kg ha−1 yr−1, and the significant genetic improvement in grain yield was directly attributed to increased thousand grain weight which also contributed to the significant increase in harvest index. The genetic gains in rates of net photosynthesis at 10, 20 and 30 days after anthesis were 1.10% (R2 = 0.46, P < 0.01), 0.68% (R2 = 0.31, P < 0.05) and 6.77% (R2 = 0.34, P < 0.05), respectively. The rates of net photosynthesis at 10 (r = 0.58, P < 0.05), 20 (r = 0.59, P < 0.05) and 30 (r = 0.65, P < 0.01) days after anthesis were closely and positively correlated with grain yield. A slight decrease in leaf temperature and an increase in stomatal conductance after anthesis were also observed. Grain yield was closely and positively associated with stomatal conductance (r = 0.69, P < 0.01) and transpiration rate (r = 0.63, P < 0.01) at 30 days after anthesis. Therefore, improvement of those traits was the likely basis of increasing grain yield in Henan Province between 1981 and 2008. The genetic improvement in yield was primarily attributed to the utilization of two elite parents Yumai 2 and Zhou 8425B. The future challenge of wheat breeding in this region is to maintain the genetic gain in grain yield and to improve grain quality, without increasing inputs for the wheat-maize double cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号