首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Field trials have been carried out to determine the variability of residue levels of fenitrothion and its main metabolites fenitrothion-oxon and 3-methyl-4-nitrophenol in individual kaki fruits versus composite samples, in peel versus flesh, and in whole uncooked versus whole cooked fruits. Residue levels have been determined by gas chromatography with thermionic specific detection after extraction with ethyl acetate and without further cleanup. At harvest, residue levels of fenitrothion were below maximum residue levels (MRLs) and the two metabolites 3-methyl-4-nitrophenol and fenitrothion-oxon could be quantified with average amounts of 0.080 and 0.012 mg/kg, respectively. Levels of fenitrothion decreased 88% after peeling, whereas temperature did not result in a high variation. The ratios of the highest residue level in the individual fruits to the corresponding mean of residue levels in the composite samples for fenitrothion were <3. This value is lower than that recommended by the World Health Organization as default value for consumer risk assessment.  相似文献   

2.
The metabolism of (14)C-labeled fenitrothion (Sumithion, [O,O-dimethyl-O-(3-methyl-4-nitrophenyl)phosphorothioate]) in tomato plant (Lycopersicon esculentum Mill., cv. Ponderosa) grown in the greenhouse equipped with quartz glass was conducted to investigate the effect of sunlight on the behavior of fenitrothion and to elucidate the detailed structure of conjugated metabolites. Tomato plants (BBCH 85) were topically treated with (14)C-labeled fenitrothion twice with a 2 week interval between applications. At 15 days after the second application, more than half of the recovered (14)C was detected as unaltered fenitrothion, glucose, and cellobiose esters of 3-methyl-4-nitrophenol (NMC) in extracts from tomato fruit. The photoinduced formation of the S-methyl isomer of fenitrothion via thiono-thiolo rearrangement was detected only in the surface rinse but at trace amounts. In the whole tomato fruit, fenitrothion, the S isomer, NMC-beta-glucoside, and NMC cellobioside were detected at 34.16, 1.28, 7.47, and 15.07% of the recovered (14)C, respectively. Trace amounts of the oxon analogue of fenitrothion were detected only on tomato leaves. The chemical structure of the cellobiose conjugate of NMC, 1-O-beta-d-glucopyranosyl-(1-->4)-beta-d-glucopyranosyl-3-methyl-4-nitrophenol, was determined by spectroscopic analyses (liquid chromatography-mass spectrometry, NMR), using the metabolite obtained from leaves and stems of tomato plant hydroponically grown with (14)C-labeled NMC.  相似文献   

3.
A screening method has been developed for determining organophosphorus pesticides at ng/L levels in drinking water. Sixteen organophosphorus pesticides, diazinon, diazinon-oxon, dimethoate, ronnel, beta-phosphamidon, methyl parathion, ethyl parathion, malathion, chlorpyrifos, fenitrothion, ruelene, methidathion, ethion, EPN, phosalone, and phosmet, were extracted by Amberlite XAD-2 resin from 100 and 200 L drinking water previously spiked with these pesticides. The pesticides were eluted from the XAD-2 resin with acetone-hexane (15+85). The concentrated extract was analyzed by gas chromatography using a nitrogen-phosphorus selective detector and by gas chromatography-mass spectrometry using selected ion monitoring. Recoveries at the 10 and 100 ng/L spiking levels were greater than 90%, except recoveries for dimethoate and phosphamidon were 37 and 42%, respectively. The analysis of 300 L Ottawa tap water showed no detectable amounts (less than 1 ng/L) of any of the 16 organophosphorus pesticides.  相似文献   

4.
For development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for the organophosphorus insecticide fenitrothion, the specificity of the antiserum R-3 generated with the bifunctional hapten, LysMNPA (2-[[[(3-methyl-4-nitrophenyl)oxy]methylcarbonyl]amino]-6-(2,4-dinitrophenyl)aminohexanoic acid) and the application to the residual analysis of some water samples were evaluated. At optimized ELISA conditions, the quantitative working range was from 1 to 39 ng/mL with a limit of detection of 0.3 ng/mL and an IC(50) value of 6 ng/mL. Cross-reactivity to structurally similar organophosphorus compounds and related chemicals was determined. The antiserum R-3 showed significant cross-reactivity with fenitrooxon and 3-methyl-4-nitrophenol, which have a 3-methyl-4-nitrophenoxy group as common structures, but showed relatively low cross-reactivity with other compounds. Each water sample (river water, tap water, purified water, and bottled water) had a matrix effect and was investigated by adding Tween 20 in the assay buffer. These four kinds of water samples were fortified with fenitrothion at several concentration levels and were directly analyzed with only dilution with an equal volume of antiserum solution. The mean recovery was 105.9%, and the mean coefficient of variation was 10.9%. The results suggested that the developed ELISA would be very suitable for a preliminary screening for fenitrothion in water samples at such low levels.  相似文献   

5.
Biotransformation of the environmental pollutant 3-methyl-4-nitrophenol (MNP), a newly characterized estrogenic chemical, and the primary breakdown product of the heavily used insecticide fenitrothion was investigated using a common soil fungus. In 96 h, daily culture sacrifice, extraction, and analysis showed that the filamentous fungus, Aspergillus niger VKM F-1119, removed more than 85% of the MNP present in solution (original concentration = 25 mg/L), mostly through biodegradation. Additionally, in 16-day time-course studies, A. niger was capable of biotransformation of MNP at concentrations as high as 70 mg/L. Gas chromatography mass spectroscopy (MS) analyses of culture fluid extracts indicated the formation of four metabolites: 2-methyl-1,4-benzenediol, 4-amino-3-methylphenol, and two singly hydroxylated derivatives of MNP. Culture scale up and metabolite analysis by liquid chromatography MS resulted in the confirmation of the original metabolites plus the detection of an azo derivative metabolite that has not been previously reported before during MNP biodegradation by any micro-organisms.  相似文献   

6.
Stir bar sorptive extraction (SBSE) in combination with GC-ECD/FPD analysis is here applied to the determination of the residues of 11 pesticides (hexachlorobenzene, lindane, chlorothalonil, parathion methyl, parathion ethyl, fenitrothion, malathion, dieldrin, alpha- and beta-endosulfan, and tetradifon) in herbal teas prepared with Passiflora alata Dryander spiked leaves. The method was optimized using spiked herbal teas in a range from 0.05 to 1 pg/microL for organochlorine pesticides and from 0.15 to 3 pg/microL for organophosphorus pesticides. The method is reproducible and repeatable with recoveries calculated from herbal teas prepared with spiked plant material versus spiked herbal teas, varying from about 30% for tetradifon to about 90% for parathion methyl and malathion. The limits of quantitation (LOQs) ranged from 0.017 pg/microL for lindane to 0.117 pg/microL for malathion.  相似文献   

7.
Analysis of two commercial extracts of Andrographis paniculata using high-performance liquid chromatography (HPLC) with photodiode array absorbance detection showed the presence of several unexpected compounds, which were isolated and identified as methyl, ethyl, and propyl esters of p-hydroxybenzoic acid by using high-resolution mass spectrometry and nuclear magnetic resonance. Quantitative analysis using HPLC revealed the presence of 0.22% p-hydroxybenzoic acid methyl ester (methlyparaben) in one commercial extract, and both 0.11% p-hydroxybenzoic acid ethyl ester (ethylparaben) and 0.20% p-hydroxybenzoic acid propyl ester (propylparaben) in a second commercial extract of A. paniculata. Analyses of additional commercial products of A. paniculata in tablet form purchased from Chicago pharmacies also showed the presence of methyl- and ethylparabens. To determine whether these compounds were natural chemical constituents of the plant, pharmacopoeial reference A. paniculata plant powder as well as samples of authenticated A. paniculata plant materials collected from Indonesia, Hong Kong, and mainland China were obtained and analyzed by HPLC-tandem mass spectrometry (LC-MS-MS). LC-MS-MS analyses confirmed the presence of trace concentrations (<0.0008% w/w) of p-hydroxybenzoic acid methyl ester but no p-hydroxybenzoic acid ethyl or propyl esters in these plant samples. The limits of detection of the LC-MS-MS assay for these compounds were 5 pg on-column and 5 ppb in the plant material. The levels of these p-hydroxybenzoic acid esters measured in the commercial products of A. paniculata suggest that they were introduced inadvertently during processing or as artificial additives.  相似文献   

8.
A microbial biosensor for rapid, sensitive, selective, and cost-effective determination of the total content of organophosphorus nerve agents with p-nitrophenyl substituent is reported. The biosensor consisted of genetically engineered PNP-degrader Pseudomonas putida JS444 expressing organophosphorus hydrolase (OPH) on its cell surface immobilized on a dissolved oxygen electrode. Surface-expressed OPH catalyzed the hydrolysis of organophosphorus pesticides with p-nitrophenyl substituent such as paraoxon, methyl parathion, and parathion to release p-nitrophenol that was oxidized by the enzymatic machinery of Pseudomonas putida JS444 to carbon dioxide while consuming oxygen. The oxygen consumption was measured and correlated to the concentration of organophosphates. The sensor signal and response time were optimized with 0.086 mg dry weight of cell and operating in 50 mM pH 7.5 citrate-phosphate buffer with 50 microM CoCl(2) at room temperature. When operated at optimized conditions, the biosensor measured as low as 55 ppb of paraoxon, 53 ppb of methyl parathion, and 58 ppb of parathion without interference from most phenolic compounds and other commonly used pesticides, such as atrazine, coumaphos, sutan, sevin, and diazinon. The operational life of the microbial biosensor was approximately 5 days when stored in the operating buffer at 4 degrees C.  相似文献   

9.
The formation of non-extractable residues of [14C]fenitrothion and their degradation in a black earth and a red yellow podzolic soil was studied. After a 65-day incubation, non-extractable radioactivity represented 73.7 and 59.35% of the applied radioactivity in the black earth and podzolic soil respectively, while evolved 14CO2 accounted for only 9.4 and 12.7%. The effects of various amendments and treatments on the degradation of the non-extractable residues to 14CO2 was studied. All of the amendments produced a priming effect and significantly increased the formation of 14CO2 in both soils. The addition of unlabelled fenitrothion and 3-methyl-4-nitrophenol to the black earth and 3-methyl-4-nitrophenol to the podzolic soil produced the greatest increases in 14CO2 evolution. The evidence presented suggests that a part of the unextractable residue is either fenitrothion or 3-methyl-4-nitrophenol.  相似文献   

10.
A method developed for the determination of ethylene dibromide in table-ready foods has been modified and expanded to include 7 other volatile halocarbons and carbon disulfide. Samples are stirred with water and purged with nitrogen for 0.5 h in a water bath at 100 degrees C. The analytes collected on a duplex trap composed of Tenax TA and XAD-4 resin are eluted with hexane and determined by gas chromatography with electron capture detection or Hall electrolytic conductivity detection. Flame photometric detection in the sulfur mode is used to determine carbon disulfide. Thick-film, wide-bore capillary columns are used exclusively in both the determination and confirmation of the halogenated analytes. The higher levels of analytes are also confirmed by full scan gas chromatography mass spectrometry (GC/MS). Samples are analyzed for carbon disulfide, methylene chloride, chloroform, 1,2-dichloroethane, methyl chloroform, carbon tetrachloride, trichloroethylene, 1,2-dibromoethane, and tetrachloroethylene. Initially, 19 table-ready foods from the Food and Drug Administration's Total Diet Study were analyzed by this method. A limited survey of those food items exhibiting high levels of analytes was conducted. Samples exhibited levels up to 3300 ppb (methyl chloroform in Parmesan cheese). Recoveries of all 9 analytes from fortified samples ranged from 83 to 104%. Chromatograms from this purge and trap method are clean, enabling quantitation levels of low parts per billion and sub-parts per billion to be achieved for the halogenated analytes. The quantitation limit for carbon disulfide is 12 ppb. Two compounds found in drinking water were identified by GC/MS as bromodichloromethane and chlorodibromomethane. Drinking water from several cities was analyzed for these trihalomethanes as well as for bromoform. Levels of up to 17 ppb bromodichloromethane were found. Recoveries ranged from 96 to 103%.  相似文献   

11.
有机磷农药是目前环境中残留量最多的农药之一,对其残留量的检测及降解机制的研究对于环境污染及生态修复具有重要意义。微生物传感器由生物学元件与换能器构成,因具有成本低廉、易于微型化及选择性高等特点而被广泛应用于各种生化物质的分析和检测。本文从长期受农药污染的土壤中分离出4株能以甲基对硫磷为碳源生长的菌株,根据形态特征和16S r RNA基因序列同源性分析,对4株降解菌进行鉴定,利用高效液相色谱测定降解率,选取降解率最高的1株菌进行降解机制研究,以期将其应用于测定环境中甲基对硫磷残留的电位型微生物传感器的构建。结果表明,在甲基对硫磷初始浓度50 mg·L-1、30℃、p H 7.0的培养条件下培养7 d,4株菌对甲基对硫磷的降解率均在78%以上,其中1株菌的降解效率可达100%。16S r RNA基因序列测定表明,该菌株属于克雷伯氏菌属,命名为Klebsiella sp.MP-6。利用液相色谱-质谱联用对其降解产物的研究表明,菌株MP-6水解甲基对硫磷主要产生二甲基硫代磷酸(dimethyl thiophosphoric acid,DMTP)和对硝基苯酚(p-nitrophenol,PNP),极少部分PNP通过产生4-硝基邻苯二酚(4-nitrocatechol,4-NC)和1,2,4-苯三酚(1,2,4-BT)进一步代谢。结果表明,基于测定中间产物对硝基苯酚(p-nitrophenol,PNP)的电位响应信号,该菌株适用于构建测定海水及土壤等环境中有机磷农药的微生物传感器。  相似文献   

12.
Summary The persistence of parathion, methyl parathion and fenitrothion in five tropical soils of varying physicochemical characteristics was compared under flooded and non-flooded conditions. The degradation of all the three insecticides was more rapid under flooded conditions than under non-flooded conditions in four out of five soils. Degradation of these insecticides proceeded by hydrolysis under non-flooded conditions and essentially by nitro group reduction and to a minor extent by hydrolysis under flooded conditions. Kinetic analysis indicated that degradation of the three insecticides followed a first-order reaction irrespective of the soil and water regime. The degradation of these organophosphorus insecticides was accelerated after repeated applications to flooded alluvial soil. Nitro group reduction was the major pathway of degradation for all the three insecticides after the first addition while the rate of hydrolysis increased after each successive addition.  相似文献   

13.
A cELISA was developed for the coccidiostat nicarbazin. On the basis of previous computer-assisted molecular modeling studies, p-nitrosuccinanilic acid (PNA-S) was selected as a hapten to produce antibodies to 4,4'-dinitrocarbanilide (DNC), the active component of the coccidiostat nicarbazin. Synthesis is described for the hapten [p-nitro-cis-1,2-cyclohexanedicarboxanilic acid (PNA-C)] used in a BSA conjugate as a plate coating antigen. Monoclonal antibodies (Mabs) were isolated that compete with nicarbazin, having IgM(kappa) isotype. Because of the lack of water solubility of nicarbazin, N,N-dimethylformamide (DMF) (3%, v/v) and acetonitrile (ACN) (10%, v/v) were added to the assay buffer to achieve solubility of nicarbazin and related compounds. The Nic 6 Mabs had an IC(35) value for nicarbazin of 0.92 nmol/mL, with a limit of detection of 0.33 nmol/mL. Nic 6 exhibited high cross-reactivity for PNA-S and PNA-C, and 3-nitrophenol, 4-nitrophenol, and 1-(4-chlorophenyl)-3-(4-nitrophenyl) urea. However, Nic 6 had little or no cross-reactivity with 15 other related compounds.  相似文献   

14.
Photodegradation of (14)C-labeled fenitrothion ([O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate]) and parathion ([O,O-diethyl O-(4-nitrophenyl) phosphorothioate]) was conducted on a series of solid surfaces including isolated tomato fruit and leaf cuticle waxes. The wax-coated glass plate gave the comparative degradation of fenitrothion observed for the intact plant but both surfaces of octadecyl-capped silica gel and poly(tetrafluoroethylene) enhanced its volatilization. Photoinduced desulfuration and ester cleavage were common to both pesticides in waxes, but formation of the azo derivative was found to be a major degradation pathway characteristic of parathion. The modified electronic states of the nitro group by introduction of m-methyl group accounted for this different photoreactivity based on molecular orbital calculations.  相似文献   

15.
A multiresidue procedure was developed for analysis of cotton pesticide and harvest-aid chemicals in water using solid-phase extraction and analysis by GC-NPD, GC-MS, and HPLC-DAD. Target compounds included the defoliants tribufos, dimethipin, thidiazuron; the herbicide diuron; and the insecticide methyl parathion. Three solid-phase extraction (SPE) media, octadecylsilyl (ODS), graphitized carbon black (GCB), and a divinylbenzene-N-vinyl pyrollidine copolymer (DVBVP), were evaluated. On GCB and ODS, recoveries varied depending on compound type. Recoveries were quantitative for all compounds on DVBVP, ranging from 87 to 115% in spiked deionized water and surface runoff. The method detection limit was less than 0.1 microg L(-)(1). SPE with DVBVP was applied to post-defoliation samples of surface runoff and tile drainage from a cotton research plot and surface runoff from a commercial field. The research plot was defoliated with a tank mixture of dimethipin and thidiazuron, and the commercial field, with tribufos. Dimethipin was detected (1.9-9.6 microg L(-)(1)) in all research plot samples. In the commercial field samples, tribufos concentration ranged from 0.1 to 135 microg L(-)(1). An exponentially decreasing concentration trend was observed with each successive storm event.  相似文献   

16.
The objective of this research was to study the residual levels of benomyl, methyl parathion, diuron, and vamidothion in pineapple bagasse and pulp. Benomyl (benlate), methyl parathion (Folidol 600), diuron (Krovar), and Vamidothion (Kilval 300) were applied pre-harvest to pineapples (smooth cayenne). After harvesting, the fruits were washed (100 ppm sodium hypochlorite) and the pulp was separated from the sub-products (peel, core, tops, and tails). The pulp was not submitted to any heat treatment. The sub-products and the juice expressed from them, were submitted to a blanching process (95 degrees C for 1 min). After separating the juice, the bagasse and pulp were analyzed for residues of diuron and benomyl by high performance liquid chromatography, and for residues of vamidothion and methyl parathion by gas chromatography using a TSD detector. No residues of benomyl, diuron, vamidothion, or methyl parathion were detected in the pulp within the quantification limits of the methods (0.1 mg/kg, 0.1 mg/kg, 0.005 mg/kg, and 0.005 mg/kg, respectively). Only methyl parathion (0.052 mg/kg) and vamidothion (0.021 mg/kg) were detected in the bagasse. The presence of these residues in the bagasse was probably due to the action of the wax found in the peel, which prevented the methyl parathion and vamidothion from dissolving in the juice. According to these results, the pulp was fit for human consumption, as far as pesticide residues were concerned, and the bagasse was fit for animal feed and similar applications, because the residual levels found were below the limits established for these compounds.  相似文献   

17.
A method has been developed for the extraction, cleanup, derivatization, detection, and quantitation of hexachlorophene (HCP) residues from 2 types of plant storage tissue high in lipid content. Wet soybean or peanut tissue was homogenized and extracted with ethyl ether and chromatographed on silica gel to remove the neutral lipids. The cleaned up sample was methylated with diazomethane and the dimethoxyhexachlorophene was eluted from a second silical gel column and chromatographed on a 6' glass column packed with 3% OV-1 or 3% SE-30 on Gas-Chrom Q. The instrument detection limit for the 63Ni electron capture detector was less than 0.1 ng for dimethoxyhexachlorophene and about 1 ppb HCP residue in plant issue. Recovery of 10-420 ppb HCP added to tissue averaged 90.9 +/- 5.7%. Interfering substances were removed, column life was increased, peak sharpness was increased, and tailing of the parent compound was decreased by using appropriate column chromatography.  相似文献   

18.
A modified multiresidue capillary gas chromatographic (GC) procedure has been developed using automated headspace sampling and a wide-bore fused silica open-tubular (FSOT) capillary column for the determination of volatiles in water and milk. Compounds are quantitated by the method of standard additions. An IBM System 9000 computer with the CAPMC3 chromatographic applications package and a BASIC linear regression program are used for data reduction. Data are presented for solutions prepared by fortifying water and milk with volatile solvents such as acetone, methyl ethyl ketone, benzene, methylene chloride, and chloroform, which are commonly used in the manufacture of packaging materials and adhesives. The wide-bore FSOT capillary columns showed dramatically improved detection for certain compounds, compared with normal-bore capillary GC columns. Data presented for various chemicals demonstrate the improved limits of detection from the use of automated headspace gas chromatography with wide-bore capillary columns and flame ionization detection.  相似文献   

19.
Fifty bacterial isolates from a parathion-treated soil (Gilat, Israel) were tested for their ability to hydrolyze the organophosphorus insecticide, parathion in peptone-yeast extract medium. After 5 days 33 isolates had hydrolyzed at least a portion of the added parathion. Eight of these isolates hydrolyzed 75% of the added parathion in 5 days and appeared to be Bacillus strains. Ten of these 33 isolates had hydrolyzed all of the parathion after 5 days and appeared to be Arthrohacter strains. One isolate from each group was tested further. During the logarithmic phase of growth, Bacillus sp., isolate 10, hydrolyzed less than 10% of the parathion added to peptone-yeast extract medium and was not active in parathion hydrolysis when inoculated into sterilized, parathion-treated soil. Arthrobacter sp., isolate 6, hydrolyzed parathion rapidly in peptone-yeast extract medium and in sterilized, parathion-treated soil. It used parathion or its hydrolysis product, p-nitrophenol, as sole carbon source. The parathion hydrolyzing enzyme appeared to be constitutive in isolate 6. Single applications of p-nitrophenol at concentrations greater than 1 mM inhibited growth but successive additions of smaller amounts permitted growth to continue.  相似文献   

20.
A method developed for the determination of 1,2-dibromoethane in whole grains and grain-based products has been modified and expanded to include 8 other fumigants. Samples are stirred with water and purged with nitrogen for 0.5 h in a water bath at 100 degrees C. The fumigants are collected on a trap composed of Tenax TA and XAD-4 resin, eluted with hexane, and determined by gas chromatography (GC) using electron capture detection or Hall electrolytic conductivity detection. Flame photometric detection in the sulfur mode is used to determine carbon disulfide. Thick-film, wide-bore capillary columns were used exclusively in both the determination and confirmation of the halogenated fumigants. The higher levels of fumigants are also confirmed by full scan GC/mass spectrometry. Samples are analyzed for carbon disulfide, methylene chloride, chloroform, 1,2-dichloroethane, methyl chloroform, carbon tetrachloride, trichloroethylene, 1,2-dibromoethane, and tetrachloroethylene. A total of 25 whole grains, milled grain products, and intermediate grain-based foods analyzed by this method contained fumigant levels up to 51 ppm (carbon tetrachloride in wheat). Recoveries from fortified samples ranged from 82 to 104%. Chromatograms from this purge and trap method are clean, so that low parts per billion and sub-parts per billion levels can be quantitated for the halogenated analytes. The quantitation level for carbon disulfide is 12 ppb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号