首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
杨波  田露  王兰兰 《安徽农业科学》2014,(25):8483-8485
脱落酸可诱导气孔关闭,降低植物体内水分损耗。关于脱落酸调控气孔运动的作用方式尚不明确。该研究介绍了脱落酸下游信号Ca2+、H2O2和NO对气孔运动的调节。这对于进一步研究脱落酸信号转导的具体作用机制具有重要的意义。  相似文献   

2.
植物根系不仅是植物吸收水分和矿质营养的重要器官,而且可以感知外界各种胁迫刺激从而调控植物的生长发育。植物激素脱落酸作为一种重要的根源逆境信号参与植物生长发育诸多生理过程调控,活性氧、活性氮以及钙离子等作为脱落酸的下游信号参与脱落酸诸多信号转导过程。就植物激素脱落酸和其下游信号活性氧、活性氮以及钙离子等在植物根系生长发育中调节方面的研究进展进行概述,以提出根源逆境信号脱落酸参与根系补偿生长的可能性,并构建脱落酸调节根系补偿生长的基本模式。  相似文献   

3.
ROP(Rho-related GT Pases from plants)蛋白作为高等植物体内广泛存在的一类GTP结合蛋白,是近些年植物信号转导方面研究的热点。它调控了肌动蛋白细胞骨架的形成、物质的膜泡运输、细胞极性的形成、胞内氧化态环境的形成、脱落酸的信号转导等诸多途径。为此,着重从分类、结构、转导途径及功能方面对其进行了阐述。  相似文献   

4.
首先介绍了茉莉酸生物合成途径及合成过程中各种酶在衰老过程中的表达情况,然后综述了茉莉酸与衰老激素乙烯和脱落酸在信号转导途径中的关系,以及茉莉酸抑制植物光合作用促进叶片衰老,茉莉酸激活衰老基因SAGs等方面的研究进展。  相似文献   

5.
植物生长和农业生产易受到病菌侵染和非生物胁迫(如干旱、盐渍)的危害。脱落酸(ABA)是一种重要的逆境植物激素,在应对这些逆境的代谢调控中占有非常重要的地位。随着当前生态环境的恶化,了解ABA信号转导机制对于改善植物生产具有重要意义。PYR/PYL/RCAR-PP2C-SnRK2蛋白复合体等脱落酸受体研究,以及ABA信号转导途径介导渗透胁迫下许多生理反应,如组蛋白的修饰、活性氧的形成、Ca2+的释放等研究均取得重要成果,并成为国内外的研究热点。本文对近年来与此相关的研究进展进行了综述,以期为了解ABA在植物耐逆性中的作用提供参考。  相似文献   

6.
【目的】脱落酸(ABA)作为一类逆境激素,在植物生长发育、生物胁迫和非生物胁迫中发挥着重要作用。脱落酸受体蛋白PYR/PYL/PCAR及SNF1相关的蛋白激酶(SnRK2)是介导脱落酸信号转导的重要调控因子。本研究通过预测脱落酸及其信号转导途径中关键基因在谷子白发病致病菌禾生指梗霉(Sclerospora graminicola)中的调控作用,为谷子内源脱落酸响应禾生指梗霉侵染的互作研究提供参考。【方法】通过对禾生指梗霉侵染的晋谷21号谷子进行转录组测序和脱落酸含量测定,基于谷子全基因组对脱落酸信号转导通路上的PYLSnRK2家族基因进行鉴定、分析,利用测定的转录组构建加权基因共表达网络(WGCNA),并与禾生指梗霉侵染引起的寄主内源脱落酸含量进行关联,预测脱落酸及其下游信号转导基因PYLSnRK2在谷子与禾生指梗霉互作调控中的关键核心基因;利用qRT-PCR技术对候选基因进行验证。【结果】谷子中存在禾本科中较为保守的PYLSnRK2家族基因各11个,且在PYLSnRK2家族基因的启动子上均预测到脱落酸响应元件。在禾生指梗霉侵染后,寄主内源脱落酸在第一、第二时期大量积累,含量显著高于对照组,分别为22.50和18.08 ng·mL-1,而在第三、第四和第五时期脱落酸含量下降,低于对照组。在基因共表达网络分析中,利用18 535个基因共构建了34个基因共表达模块。通过对脱落酸含量和PYLSnRK2家族基因的关联分析,预测到MEpaleturquoise和MEbrown模块为核心候选模块。利用GO功能富集和模块关键基因的挖掘共预测到1个PYL家族基因Seita.1G030500和2个SnRK2家族基因Seita.2G394500、Seita.3G03200,以及3个核心基因Seita.4G105600、Seita.6G218100和Seita.9G138400,共6个基因可能在脱落酸及其信号转导调控过程中参与谷子与禾生指梗霉的互作。对预测到的3个核心基因在水稻和拟南芥数据中进行比对,鉴定到Seita.4G105600为转导蛋白/WD40重复超家族蛋白、Seita.6G218100为WRKY57转录因子、Seita.9G138400为TIFY转录因子。qRT-PCR分析表明Seita.2G394500、Seita.4G105600和Seita.6G218100基因在谷子白发病早期表达均上调。【结论】谷子在受到禾生指梗霉侵染后脱落酸会在体内大量积累,预测到1个PYL家族基因、2个SnRK2家族基因、2个转录因子基因和1个WD40家族蛋白基因参与谷子内源脱落酸响应禾生指梗霉侵染过程。qRT-PCR结果表明1个SnRK2家族基因、1个WD40家族蛋白基因和1个WRKY57转录因子基因共3个基因可能在谷子脱落酸响应禾生指梗霉侵染过程中发挥重要作用。  相似文献   

7.
【目的】脱落酸(ABA)作为一类逆境激素,在植物生长发育、生物胁迫和非生物胁迫中发挥着重要作用。脱落酸受体蛋白PYR/PYL/PCAR及SNF1相关的蛋白激酶(SnRK2)是介导脱落酸信号转导的重要调控因子。本研究通过预测脱落酸及其信号转导途径中关键基因在谷子白发病致病菌禾生指梗霉(Sclerospora graminicola)中的调控作用,为谷子内源脱落酸响应禾生指梗霉侵染的互作研究提供参考。【方法】通过对禾生指梗霉侵染的晋谷21号谷子进行转录组测序和脱落酸含量测定,基于谷子全基因组对脱落酸信号转导通路上的PYL和SnRK2家族基因进行鉴定、分析,利用测定的转录组构建加权基因共表达网络(WGCNA),并与禾生指梗霉侵染引起的寄主内源脱落酸含量进行关联,预测脱落酸及其下游信号转导基因PYL和SnRK2在谷子与禾生指梗霉互作调控中的关键核心基因;利用qRT-PCR技术对候选基因进行验证。【结果】谷子中存在禾本科中较为保守的PYL和SnRK2家族基因各11个,且在PYL和SnRK2家族基因的启动子上均预测到脱落酸响应元件。在禾生指梗霉侵染后,寄主内源脱落酸在第一、第二时期大量积累,含量显著高于对照组,分别为22.50和18.08 ng·mL-1,而在第三、第四和第五时期脱落酸含量下降,低于对照组。在基因共表达网络分析中,利用18 535个基因共构建了34个基因共表达模块。通过对脱落酸含量和PYL、SnRK2家族基因的关联分析,预测到MEpaleturquoise和MEbrown模块为核心候选模块。利用GO功能富集和模块关键基因的挖掘共预测到1个PYL家族基因Seita.1G030500和2个SnRK2家族基因Seita.2G394500、Seita.3G03200,以及3个核心基因Seita.4G105600、Seita.6G218100和Seita.9G138400,共6个基因可能在脱落酸及其信号转导调控过程中参与谷子与禾生指梗霉的互作。对预测到的3个核心基因在水稻和拟南芥数据中进行比对,鉴定到Seita.4G105600为转导蛋白/WD40重复超家族蛋白、Seita.6G218100为WRKY57转录因子、Seita.9G138400为TIFY转录因子。qRT-PCR分析表明Seita.2G394500、Seita.4G105600和Seita.6G218100基因在谷子白发病早期表达均上调。【结论】谷子在受到禾生指梗霉侵染后脱落酸会在体内大量积累,预测到1个PYL家族基因、2个SnRK2家族基因、2个转录因子基因和1个WD40家族蛋白基因参与谷子内源脱落酸响应禾生指梗霉侵染过程。qRT-PCR结果表明1个SnRK2家族基因、1个WD40家族蛋白基因和1个WRKY57转录因子基因共3个基因可能在谷子脱落酸响应禾生指梗霉侵染过程中发挥重要作用。  相似文献   

8.
种子休眠和萌发过程受到内源激素分子和外界环境因子的精确调控,脱落酸、赤霉素、生长素等激素在这一过程发挥重要调控作用,其中脱落酸和赤霉素是核心激素,脱落酸负责诱导和维持种子休眠,赤霉素促进种子萌发。通过总结激素调控种子休眠和萌发的最新研究进展,阐述内源激素含量变化、其合成与代谢途径关键基因与信号转导组分在种子休眠和萌发中的重要作用和分子机制,为进一步利用调控机制为农作物的产量提高和品质改良提供参考。  相似文献   

9.
环境是影响植物生长发育的重要因素,干旱、低温、高盐等非生物胁迫严重影响植物的生长发育,近年来对植物非生物胁迫应答机理的相关研究逐步深入。本文概述了应答非生物胁迫的信号转导途径,重点介绍脱落酸(ABA)信号转导途径、钙离子(Ca2+)信号转导途径、促分裂素原活化蛋白激酶(MAPK)级联信号途径及其相互关系,并推测出一条调节气孔关闭的Ca2+和MAPK介导的ABA信号转导途径,以期理清其复杂的信号交叉关系,为植物抗逆性研究提供一定的参考。  相似文献   

10.
茉莉酸类物质在植物伤反应中的信号功能   总被引:1,自引:0,他引:1  
植物伤反应是1个复杂的网络系统,茉莉酸类物质是植物伤反应中重要的信号分子.文章介绍了茉莉酸类在伤反应中的信号功能、信号转导模式以及胞间、胞内可能的信号转导途径,同时介绍了茉莉酸与乙烯、水杨酸、脱落酸、活性氧、一氧化氮的关系及其在伤反应中可能的作用机制.  相似文献   

11.
高等植物脱落酸生物合成及其信号转导研究进展   总被引:6,自引:0,他引:6  
介绍了近年来高等植物体脱落酸(ABA)生物合成缺陷型及反应敏感性突变体、逆境胁迫下ABA的合成、ABA生物合成途径以及ABA信号的细胞识别与转导等几方面的研究进展。  相似文献   

12.
光肩星天牛咬食复叶槭后植物体内诱导的信号传导   总被引:3,自引:0,他引:3  
研究与分析表明光肩星天牛咬食复叶槭后,植物体内茉莉酸(JA)含量和脱落酸(ABA)含量在短时间内增加,而水杨酸含量则减少,JA和ABA是抵抗伤害反应的信号传递物质,因此JA和ABA的增加表明该植物存在防御信号传导.  相似文献   

13.
磷酸肌醇代谢在生物感受胞外刺激及信号转导中起着重要的作用。在此,介绍了植物体内的肌醇磷脂代谢途径,PI-PLC/IP3途径和磷酸肌醇激酶与渗透胁迫信号转导之间的联系,以及肌醇磷脂代谢参与的渗透胁迫信号转导与ABA之间的关系。  相似文献   

14.
非生物胁迫是一种广泛存在的环境胁迫形式,会严重降低作物产量。植物激素脱落酸(ABA)在应对重金属、干旱、热、高盐、低温和辐射等胁迫的耐受过程中起着重要作用。对ABA信号转导、ABA生物合成途径以及应激耐受转录因子相关的各种应激调节的研究进展进行了综述。  相似文献   

15.
脱落酸(ABA)在种子的发育、休眠、萌发以及植物的营养生长、环境胁迫响应等过程中具有重要作用,植物体具有控制ABA的合成、降解、信号感知及其信号转导的调节机制。目前对高等植物ABA的合成途径及其调节机制的研究已比较深入,合成途径中的所有关键酶基因都已鉴定出,但对ABA分解代谢的研究则相对滞后。概述了ABA的生物合成、分解代谢途径及其调节机制。  相似文献   

16.
主要阐述了WRKY转录因子在非生物胁迫应答中的作用,以及其参与ABA信号转导方向的研究进展。  相似文献   

17.
通过干旱与乙烯介导下的番茄幼苗三重反应、植株的生理变化、幼苗生长表现及NR基因表达的研究,探讨干旱对乙烯信号转导的影响。结果表明:干旱诱导ABA和乙烯的产生,因而表现番茄幼苗三重反应;ABA又强烈地诱导乙烯受体蛋白NR基因的表达,促进了乙烯信号的转导;继而发生一系列与乙烯处理相同的生理、生长反应———细胞膜透性、蒸腾作用、呼吸作用和气孔导度增强,植株叶片黄化、衰老和脱落。干旱造成的危害与ABA诱导的NR基因的表达有密切关系。  相似文献   

18.
AtERF4 (ethylene response factor) is a negative regulator in jasmonic acid mediated signal transduction pathway and ethylene mediated signal transduction pathway of Arabidopsis. It could respond to abscisic acid (ABA) and ethylene stimulus. ATSYR1 gene encodes a syntaxin localizing at the plasma membrane in Arabidopsis, which can be induced by abiotic stress. To identify mutation lines for gene functional analysis, real-time PCR was employed to detect the expression level of AtERF4 and ATSYR1 in homozygous ...  相似文献   

19.
高温是影响当前农业生产的主要的不利环境因子之一。根据高温胁迫下植物的生理机制研究进展,本文综述了植物在高温逆境下其生物膜的稳定性,氧化物和抗氧化系之间的平衡、胺的代谢、光合作用、热激蛋白的变化情况和其耐热性的机制,以及植物体内信号物质脱落酸(ABA),钙离子(Ca2 ),水杨酸(SA),茉莉酸(JA)对高温胁迫的响应。高温胁迫可以诱导内源脱落酸(ABA),钙离子(Ca2 ),水杨酸(SA),茉莉酸(JA)含量的增加,同时对应的几种外源的信号物质也可以提高植物的抗性。最后就今后这方面研究方向提出了思考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号