首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hundred and sixteen weanling gilts (6.65+/-0.08 kg) were used to determine the effects of decreasing supplemental concentrations of Zn, Cu, Fe, and Mn, and trace mineral source (inorganic vs. chelated) on growth performance, mineral status, and fecal mineral concentrations from weaning through development. The study was conducted over three trials with 72 pigs in each trial. Gilts were blocked by weight and randomly assigned to either 1) control, 2) reduced inorganic, or 3) reduced chelated trace minerals. The control diet was supplemented with 25, 150, 180, and 60 mg/kg of Cu, Zn, Fe, and Mn (in sulfate forms), respectively, during the nursery phase and 15, 100, 100, and 40 mg/kg of supplemental Cu, Zn, Fe, and Mn, respectively, during the growing and gilt-developer phases. Reduced inorganic and reduced chelated treatments were supplemented during all phases with 5, 25, 25, and 10 mg/kg of Cu, Zn, Fe, and Mn, respectively. The reduced chelated treatment supplied 50% of the supplemental Cu, Zn, Fe, and Mn in the form of metal proteinates, with the remainder from sulfate forms. Performance by control pigs did not differ from pigs fed the reduced trace mineral treatments during the nursery and grower-development periods. Gain:feed was lower (P < 0.05) for pigs fed the reduced inorganic compared with those fed the reduced chelated treatment during the nursery period. Trace mineral source did not affect performance during the growing or gilt-developer phase. Plasma Zn concentration and alkaline phosphatase activity were higher (P < 0.01) in control pigs than in those receiving reduced trace minerals during the nursery and growing phases. Plasma Cu concentration and ceruloplasmin activity were generally not affected by treatment. Hemoglobin concentrations were lower (P < 0.05) for the reduced inorganic compared with the reduced chelated treatment in the nursery phase. Fecal concentrations of Cu, Zn, and Mn were lower (P < 0.05) in pigs fed reduced trace minerals than in controls during all production phases. Fecal Zn concentration during the nursery and fecal Cu concentrations during the growing and gilt-developer phases were lower (P < 0.05) in pigs fed the reduced chelated compared with the reduced inorganic treatment. Results indicate that reducing the concentrations of Zn, Cu, Mn, and Fe typically supplemented to pig diets will greatly decrease fecal mineral excretion without negatively affecting pig performance from weaning through development.  相似文献   

2.
Magnesium supplementation has been shown to benefit feedlot cattle and is typically added at high concentrations to mineral supplements for calves grazing wheat pasture. Two experiments were conducted to determine the effects of Mg-mica supplementation on performance and serum mineral concentrations of stocker calves grazing wheat pasture. Supplemental Mg was provided at 6.1 g/d of supplemental Mg/ animal, Monday through Friday. In Exp. 1, 36 mixed-breed stocker calves (243 ± 3.9 kg BW) were stratified by BW and gender and allocated randomly to one of nine groups of four animals for a 112-d grazing study. Weight gain, shrink percentage, and serum Mg, Ca, K, Cu, and Zn concentrations did not differ (P>0.10) among calves fed either weathered Mg-mica (WMM), unweathered Mg-mica (UMM), or MgO. All serum mineral concentrations were within normal physiological ranges. In Exp. 2, 64 mixed-breed stocker steers (275 ± 1.7 kg BW) were stratified by BW and allocated randomly to one of 16 groups of four animals. Weight gain during a 50-d grazing study and subsequent feedlot period did not differ (P>0.10) among calves fed either no added Mg source or WMM, UMM, or MgO. Serum Cu was higher (P<0.05), and serum Mg was lower (P<0.05), from steers fed MgO, but all serum mineral concentrations were within normal physiological ranges. Although Mg-mica is relatively high in Fe (4%), using it as a supplemental Mg source appeared to have no negative impact on growth performance or serum mineral concentrations of calves grazing wheat pasture.  相似文献   

3.
Supplementation of trace minerals with a large safety margin in broiler chickens has resulted in a high level of mineral excretion that ends up in the environment. Organically complexed trace minerals (organic minerals) may be able to replace the inorganic trace minerals, because the former appear to have a greater bioavailability. Therefore, a 29-d cage study that included diets with supplemental trace minerals from organic and inorganic sources based on a trace mineral deficient control diet was conducted to examine the possible response of broiler chickens to organic mineral supplements. The results showed that supplementation with 4 mg of Cu and 40 mg each of Fe, Mn, and Zn from organic sources may be sufficient for normal broiler growth to 29 d of age. It is possible to use these lower levels of organic trace minerals in broiler diets to avoid high levels of trace mineral excretion.  相似文献   

4.
Two experiments were conducted to determine the effects of supplemental zinc (Zn) from an organic and an inorganic source on growth performance, serum Zn concentrations, and immune response of beef calves. Treatments consisted of: i) control (no supplemental Zn), ii) Zn sulfate, or iii) Zn–amino acid complex. Zinc sources were supplemented to provide 360 mg of Zn/d. Experiment 1 was a 28-d study using 84 steers (240 ± 1.5 kg) fed bermudagrass hay (21 mg Zn/kg DM) with 1.8 kg/d of the appropriate corn-based supplement. In Exp. 2, 75 heifers (176 ± 2.5 kg) were fed bermudagrass hay (38 mg Zn/kg DM) and the supplements for 140 d. In Exp. 1, ADG was greater (P<0.05) from d 15 to 28 in calves fed supplemental Zn-amino acid compared with those fed Zn sulfate, but ADG did not differ (P>0.10) among treatments for the entire 28-d study. In Exp. 2, there was no effect (P>0.10) on ADG as a result of Zn supplementation. In Exp. 2, Zn-supplemented heifers had a greater response (P=0.06) to phytohemagglutinin 24 h after an intradermal injection. In Exp. 2, calves supplemented with Zn–amino acid complex had a greater antibody response to a second vaccination for bovine respiratory syncytial virus than did control or Zn sulfate-supplemented calves (treatment by day interaction, P=0.06). There was not a consistent benefit of supplemental Zn on growth of calves, but there was a positive impact of supplemental Zn on some immune-response measurements.  相似文献   

5.
Eighteen weanling crossbred barrows (7.3 kg; 22 d of age) were used in a randomized complete block design to evaluate the effect of supplemental Zn from ZnO on fecal excretion of Zn and other minerals. Pigs were blocked by BW and penned (two pigs per crate) in stainless steel metabolism crates. Dietary treatments were 0, 2,000, or 3,000 ppm supplemental Zn from ZnO. Growth performance and feed intake were measured weekly for a total of 21 d. Excretion of minerals was measured by total fecal collection with indigo carmine marking the beginning and end of each weekly period. No differences (P > 0.05) occurred in ADG, ADFI, and feed/gain (F/G) among treatments. Increasing dietary Zn increased (linear, P < 0.01) Zn intake, absolute absorption of Zn, and absolute fecal excretion of Zn. Increasing dietary Zn also increased absolute excretion of Fe, Cu, and Mn and decreased apparent absorption of P, Fe, and Cu (linear, P < 0.05) for the entire period. Fecal N increased, and N digestibility decreased, with increasing dietary Zn (linear, P < 0.05). Increasing dietary Zn increased fecal DM (quadratic, P < 0.05) and decreased DM digestibility (quadratic, P < 0.05). Increasing dietary Zn also increased liver Zn (quadratic, P < 0.01) and decreased (linear, P < 0.05) liver Cu and Mn. Overall, pharmacological levels of Zn reduced Zn and other mineral apparent absorption and increased fecal mineral excretion.  相似文献   

6.
To examine the effects of cattle breed on the clearance rate of an injectable mineral product, 10 Angus and 10 Simmental steers were blocked by breed and initial BW (332 ± 33 kg) and injected with either Multimin 90 (MM) or sterilized saline (CON) at a dose of 1 mL/45 kg BW. Multimin 90 contains 15 mg Cu/mL (as Cu disodium EDTA), 60 mg Zn/mL (as Zn disodium EDTA), 10 mg Mn/mL (as Mn disodium EDTA), and 5 mg Se/mL (as sodium selenite). Steers received a corn-silage-based diet, and inorganic sources of Cu, Zn, Mn, and Se were supplemented at NRC recommended amounts. Jugular blood was collected immediately before injection and at 8 and 10 h post-injection and on days 1, 8, and 15 post-injection. Liver biopsies were collected 3 d before injection and on days 1, 8, and 15 post-injection. Liver and plasma mineral concentration and glutathione peroxidase (GSH-Px) activity data were analyzed as repeated measures. Plasma concentrations of Zn, Mn, and Se were greater (P = 0.01) and Cu tended to be greater (P = 0.12) post-injection in MM steers compared with the CON steers. Regardless of treatment, Simmental cattle had lower plasma concentrations of Cu, Zn, and Se (P ≤ 0.05) when compared with Angus cattle. Erythrocyte GSH-Px activity was greater (P = 0.01) in MM steers compared with CON steers. Liver concentrations of Cu, Zn, and Se were greater (P = 0.05) in MM steers compared with CON steers post-injection. Liver Mn concentrations tended to be greater (P = 0.06) in MM steers compared with CON steers in the days post-injection. Interestingly, Simmental cattle exhibited greater (P = 0.01) liver Mn concentrations in the days after injection compared with Angus cattle (7.0 and 6.0 mg Mn/kg for Simmental and Angus cattle, respectively), regardless of treatment. It is unclear if this breed difference is biologically relevant; however, these data may suggest that differences in liver excretion of Mn exist between the two breeds. Overall, use of an injectable trace mineral increased liver concentrations of Cu and Se through the 15-d sampling period, suggesting that this injectable mineral is an adequate way to improve Cu and Se status of cattle through at least 15 d.  相似文献   

7.
Two experiments were conducted to determine the effects of pre-weaning vitamin E, Se, and Cu supplementation on performance and immune response in stressed calves. In Exp. 1, 71 Hereford x Angus calves were individually creep fed: 1) control supplement (CON), 2) control plus 500 IU vitamin E + 0.3 mg Se/kg DM (E), 3) control plus 10 mg Cu/kg DM (CU), or 4) a combination of E and CU treatments (ECU). In Exp. 2, 80 Hereford (Angus calves were individually creep fed: 1) control supplement (CON), 2) control plus 0.3 mg Se/kg DM (SE), 3) control plus 500 IU vitamin E + 0.3 mg Se/kg DM (LOWE), 4) control plus 1000 IU vitamin E + 0.3 mg Se/kg DM (MEDE), or 5) control plus 1500 IU vitamin E + 0.3 mg Se/kg DM (HIE). Treatments continued for 49 (Exp. 1) or 53 d (Exp. 2) prior to weaning. At weaning all calves were transported to feedlot facilities. In Exp. 1, vitamin E tended (P<0.09) to improve post-weaning ADG and reduce (P<0.06) plasma haptoglobin (Hp), but had no effect on plasma α-tocopherol. Dietary Cu tended to increase (P<0.01) liver Cu stores, and antibody titers to bovine viral diarrhea (BVD) were greater (P<0.04) at weaning in CU and E calves. In Exp. 2, vitamin E tended to increase serum α-tocopherol (P<0.06) and cortisol (P<0.08). Vitamin E and Se supplementation may improve post-weaning performance and decrease plasma Hp concentrations in stressed calves.  相似文献   

8.
In vitro glucose uptake and protein synthesis were measured using serum from feedlot steers fed diets supplemented with organic Cr (OCr); glucose clearance was studied using sheep as a model. Treatments investigated for glucose uptake and protein synthesis were 1) control (0 ppm supplemental Cr), 2) 0.2 ppm supplemental OCr from high Cr yeast, and 3) 0.4 ppm supplemental OCr from high Cr yeast that contained 2,000 ppm Cr (2 mg Cr/g Saccharomyces cerevisiae yeast) added to a 90% concentrate feedlot diet. The form of OCr supplied by high Cr yeast is presumably a glucose tolerance factor (GTF), which potentiates the action of insulin, and consists of Cr3+ centrally bound to or associated with cysteine, glutamate, glycine, and nicotinic acid residues. Serum harvested from steers fed 0.2- and 0.4-ppm OCr diets increased (P<0.05) protein synthesis in primary bovine muscle cultures. Glucose uptake rate by muscle cell cultures was increased (P<0.09) by serum from OCr-supplemented steers. Treatments investigated for glucose clearance by lambs were 1) control (0 ppm supplemental Cr), 2) 0.2 ppm, 3) 0.4 ppm, and 4) 0.8 ppm supplemental OCr from high Cr yeast added to a 85% concentrate finishing diet. Glucose clearance in lambs was improved (P<0.05) by addition of 0.2 and 0.8 ppm OCr to the diet. These results are interpreted to suggest that increased carcass muscling in ruminants fed OCr-supplemented diets is a result of improvements in amino acid uptake and glucose metabolism within muscle cells.  相似文献   

9.
Angus bull calves (n = 42; 7 mo of age; 254 kg initial BW) were used to investigate the effects of dietary Cu and Mo on immune function of stressed cattle. Randomly selected calves (n = 22) were injected with 90 mg of Cu as Cu glycinate 28 d before weaning and castrated at weaning. These calves received 7.5 and 5 mg of supplemental Cu/kg of DM during a 41-d receiving phase and a 196-d growing phase, respectively. The remainder of the steers received no supplemental Cu during the experiment. Copper-supplemented steers had adequate Cu status at weaning, whereas unsupplemented calves were marginally Cu-deficient. Cell-mediated response to intradermal injection of phytohemagglutinin was not affected by dietary treatment during the receiving phase. During the growing phase, half of the steers in each Cu treatment were given 5 mg of supplemental Mo/kg of DM. Copper supplementation increased (P<.05) humoral response to ovalbumin injected on d 133 of the growing phase. On d 168 of the growing phase, calves receiving only supplemental Mo were severely Cu-deficient based on plasma and liver Cu concentrations. The other treatment groups had adequate Cu status. Before feeding on d 168 of the growing phase, half of the steers were loaded onto trailers and transported 2.5 h, and they remained on the trailers an additional 9.5 h. Humoral response to porcine erythrocytes (PRBC) and delayed-type hypersensitivity (DTH) to dinitrochlorobenzene was tested at the end of the stress period. There was a Cu x stress interaction for humoral response to PRBC, with Cu decreasing antibody titers in unstressed calves and increasing titers in stressed steers. Stressed steers had lower (P = .03) ADG during the 28 d following stress. The results of this study indicate that Cu deficiency and 5 mg of supplemental Mo/kg of DM do not dramatically alter the specific immunity of stressed cattle.  相似文献   

10.
Feedlot and carcass traits were evaluated for steers (n = 231) sired by Angus (A), Brangus (BA), Gelbvieh (G), and Gelbray (GB) bulls (n = 29) out of first cross (F1) Brahman-Hereford cows. Steers were produced over 4 y and were born during spring and fall calving seasons. Brahman inheritance was 25% in A- and G-sired steers, and 44% in BA- and GB-sired steers. After weaning, steers were stockered before entering the feedlot. Steers produced in 1993 and 1994 were fed in Louisiana and individually harvested at a targeted backfat thickness of 10 mm. Steers born in 1995 and 1996 were fed in Oklahoma and group harvested at an average backfat thickness of 10 mm. Data were analyzed separately by feedlot location because of significant location and sire breed x location effects. Angus-sired steers had smaller (P<0.05) longissimus areas (LMA) and higher (P<0.01) marbling scores(MS) and quality grades than G-sired steers across both locations. Tenderness was more desirable (P<0.05) for A-sired steers compared with G-sired steers when fed in Louisiana. Angus- and G-sired steers had larger (P<0.01) LMA than BA- and GB-sired steers across both locations. Tenderness was similar (P>0.10) between steers with 25% and 44% Brahman inheritance. These data suggest that more desirable carcass quality and tenderness can be achieved with the use of A sires, relative to the other sire breeds, when mated to F1 Brahman-Hereford dams. Improved carcass cutability resulted with the use of G sires, and in steers with 25% Brahman inheritance.  相似文献   

11.
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at −4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.  相似文献   

12.
Three experiments were conducted to determine the influence of both the concentration of endophytic fungus infestation in tall fescue pastures and calf genotype on the subsequent health and performance of steers in the feedlot. In Exp. 1 and 2, Angus steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte infestations for 182 d (Exp. 1) or 78 d (Exp. 2) with 12 steers per treatment. Steers were transported 1,600 km to Texas in October (Exp. 1) and July (Exp. 2), were fed a 93% concentrate diet during the finishing period, and were harvested at an estimated backfat thickness of 12 mm. In both trials, DMI over the entire feeding period and carcass characteristics were not affected (P>0.05) by endophyte infestation. In both trials, pasture ADG decreased, and feedlot ADG and gain to feed ratio increased as the previous pasture endophyte infestation increased (P<0.05). Serum cholesterol concentrations tended (P<0.10) to decrease with increasing endophyte infestation during the first 14 d in the feedlot. In Exp. 3, Angus and Brahman × British crossbred steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte in each of 2 yr. Six steers of each breed group were on each treatment each year. Steers were transported to Texas in late August of each year, were fed a 93% concentrate finishing diet, and were harvested at an estimated individual backfat thickness of 12 mm. As endophyte infestation increased, serum urea N concentrations and gain to feed ratios increased (P<0.05), whereas pasture ADG, initial BW, transit shrink, serum cholesterol concentrations, final BW, and carcass weights decreased (P<0.05) in Angus steers, but not in Brahman-cross steers. In these studies, the adverse effects of high endophyte infestations in fescue pastures appeared to carry over to the feedlot for ca. 14 d. However, steers from highly infested pastures can compensate for poor pasture performance with improved performance in the feedlot when no adverse health effects occur. Any impact of the endophyte seems to be similar in Brahman-cross and Angus steers.  相似文献   

13.
In an experiment with 2,040 Ross 308 broiler chickens, the effect of substituting inorganic with organic minerals in broiler feed on performance was determined. The experiment comprised 2 dietary treatments, with 6 replicates of 170 mixed-sex broiler chickens per pen replicate. Experimental diets consisted of a control treatment, formulated with inorganic Mn, Zn, Fe, and Cu sulfates at levels of 70, 37, 45, and 12 ppm, respectively, and an organic mineral diet supplemented with lower levels of Mn, Zn, Fe (all 10 ppm), and Cu (2.5 ppm) supplied as peptide chelates (Bioplex). Production performance was measured during the 39-d trial period, and mineral excretion was evaluated at 26 d of age. In the starter period (0 to 14 d), FCR tended to improve (P = 0.06) in broilers fed the organic mineral diet. However, no significant differences were observed in any of the productive performance parameters measured during the trial. Significantly lower (P < 0.05) excretion rates were recorded for all minerals in fecal samples taken from broilers receiving the organic mineral diet. Fecal levels of Mn, Zn, Fe, and Cu were 46, 63, 73, and 55%, respectively, compared to the controls.  相似文献   

14.
The objective of this study was to determine whether a combination of Cu, Co, Mn, and Zn in an organic or inorganic form fed at higher than nutrient recommendations for 2-yr-old cows from calving to breeding would affect pregnancy rate, calving date, calf performance, and cow liver and serum mineral concentrations. Crossbred 2-yr-old cows were used after calving in 1994 (n = 127) and 1995 (n = 109). Cows were blocked by calving date to one of three treatments: 1) no supplemental minerals (CTL), 2) organic minerals (ORG), or 3) inorganic minerals (ING). Minerals were fed for the same daily intake for both organic and inorganic treatments: Cu (125 mg), Co (25 mg), Mn (200 mg), and Zn (360 mg). Cows were individually fed a mineral-protein supplement with grass hay from calving (February-March) to before breeding (May 15). Hay intakes were calculated using chromium oxide boluses to determine fecal output. Fecal excretion of minerals was calculated following trace element analysis of feces. Liver biopsies were obtained before calving, after calving (start of supplementation), at the end of supplementation, and in midsummer. Over 2 yr, more cows did not become pregnant (P < .01) in ORG (11/78) and ING (11/78) treatments than in CTL (0/80) treatments. A treatment x year interaction was found for day of conception. Cows in the ORG group conceived later (P < .01) than cows in the ING or CTL groups in 1994. In 1995, there was no difference (P > .10) in day of conception among groups. Liver Zn and Mn concentrations were not different (P > .10) and Cu concentrations increased (P < .01) for the ORG and ING groups. Cows in the ORG and ING groups had higher (P < .01) concentrations of Cu, Mn, and Zn in the feces than the CTL cows. Trace elements in the feces did not differ for ORG and ING groups. Results indicate that combinations of Cu, Co, Mn, and Zn fed at higher levels than are required reduced reproductive performance.  相似文献   

15.
Two experiments were conducted (Exp. 1, n = 63; Exp. 2, n = 72) using Angus x Hereford cows grazing Oklahoma dormant tallgrass prairie to determine the effects of increasing supplemental undegradable intake protein (UIP) on performance. In each experiment following parturition (February and March), cows were blocked by body weight, body condition score (BCS), and calving date and randomly assigned to one of four dietary treatments. For Exp. 1, supplements provided 396 g/d of degradable intake protein (DIP) with increasing amounts of UIP (211, 274, 337, and 400 g/d, respectively). For Exp. 2, supplements provided 281 g/d of DIP with 142, 196, 248, and 301 g/d UIP, respectively. Cows were individually fed 1.59 kg supplement 6 d/wk. Body weight and BCS were determined biweekly until the end of supplementation (Exp. 1, 37 + 1.5 d; Exp. 2, 45 + 1.2 d). Milk production was estimated 30 and 45 d postpartum. Plasma progesterone concentrations were quantified weekly to determine interval to first normal luteal function (PPI). Weight loss, BCS, and PPI were not influenced by treatment. In Exp. 2, there was a linear (P<0.08) decrease in weight gain of calves post-treatment to weaning as supplemental UIP increased, and a quadratic effect (P<0.06) of additional UIP on milk production at 30 d postpartum. In these experiments, metabolizable protein requirements were met by microbial protein, forage UIP, and a minimum of 142 g of supplemental UIP.  相似文献   

16.
Sixty Angus and Angus x Hereford steers (246 kg initial BW) were used to determine the effects of Zn level and source on performance, immune response, and carcass characteristics of growing and finishing steers. Treatments consisted of 1) control (no supplemental Zn), 2) ZnO, 3) Zn proteinate-A (ZnProt-A, 10% Zn), and 4) ZnProt-B (15% Zn). Treatments 2, 3, and 4 supplied 25 mg of supplemental Zn/kg diet. Steers were individually fed a corn silage-based diet during the 84-d growing phase and a high corn diet during the finishing phase. Cell-mediated and humoral immune response measurements were obtained between d 67 and 74 of the growing phase. Equal number of steers per treatment were slaughtered after receiving the finishing diets for 84 or 112 d. Performance and carcass measurements were similar in steers fed the two ZnProt sources. Zinc supplementation, regardless of source, increased (P < 0.05) ADG during the growing phase. In the finishing phase, ADG (P = 0.10) and gain/feed (P = 0.07) tended to be higher for steers fed ZnProt compared with those supplemented with ZnO. Gain and feed efficiency were similar for control and ZnO-supplemented steers during the finishing phase. Steers fed ZnProt had heavier (P < 0.05) hot carcass weights and slightly higher (P < 0.05) dressing percentages than those in the control or ZnO treatments. Quality grade, yield grade, marbling, and backfat were increased by Zn supplementation, but were not affected by Zn source. In vitro response of lymphocytes to mitogen stimulation and in vivo swelling response following intradermal injection of phytohemagglutinin were not affected by Zn level or source. Humoral immune response following vaccination with infectious bovine rhinotracheitis also was not affected by treatment. Soluble concentrations of Zn in ruminal fluid were higher (P < 0.05) in steers fed ZnProt compared to ZnO steers. Results indicate that ZnProt may improve performance of finishing steers above that observed with inorganic Zn supplementation.  相似文献   

17.
Forty-four Angus (n = 24) and Simmental (n = 20) steers, averaging 301 kg initially, were used to determine the effects of breed and Cu and Zn source (SO4 or proteinate (Prot) form) on Cu and Zn status of steers fed high dietary iron (Fe). Steers were stratified by weight within breed and randomly assigned to treatments. Treatments consisted of: 1) CuSO4 + ZnSO4 ,2) CuSO4 + ZnProt, 3) CuProt + ZnSO4, and 4) CuProt + ZnProt. Copper and Zn sources were added to provide 5 mg Cu and 25 mg supplemental Zn/kg DM. All steers were individually fed a corn silage-based diet supplemented with 1,000 mg Fe (from FeSO4)/kg DM. Liver biopsy samples were obtained at the beginning and end of the 149-d study. Serum samples were collected initially and at 28-d intervals for determination of ceruloplasmin activity and Zn and Cu concentrations. Copper and Zn source did not affect performance, serum or liver Cu and Zn concentrations, or ceruloplasmin activity. Copper status decreased (P < 0.01) in all steers with time, and increasing the level of supplemental Cu from 5 to 10 mg/kg DM on d 84 did not prevent further drops in serum Cu and ceruloplasmin. Simmental steers had lower (P < 0.05) serum and liver Cu concentrations, and serum ceruloplasmin activity throughout the study. These results indicate that neither CuSO4 nor CuProt were effective at the supplemental concentrations evaluated in alleviating the adverse effect of high Fe on Cu status. Simmental steers had lower Cu status than Angus, suggesting a higher Cu requirement.  相似文献   

18.
为了比较肉用仔鸡日粮中添加不同有机微量元素后粪便中铜、锰、锌、排放的影响,试验选择1日龄AA肉仔鸡,分为7个处理,对照组添加无机硫酸盐(锌50mg/kg;铜10mg/kg;锰50 mg/kg),试验组分别用Mintrex-Cu替代5 mg/kg或全部替代硫酸铜;以Min-trex-Zn代替20 mg/kg硫酸锌,以Mintrex-Mn代替20 mg/kg硫酸锰,或在对照组基础上添加20mg/kg的Mintrex-Mn或Mintrex-Zn。42日龄时,采用全收粪法收集粪样72h,用原子吸收分光光度计测定粪样中铜、锰、锌的含量。结果表明:Mintrex-Cu代替50%或100%硫酸铜,对粪便中铜、锌和锰的排泄量没有显著影响(P〉0.05),Mintrex-Zn/Mn替代40%无机锌、锰对锌、锰排泄量没有显著影响(P〉0.05)。在基础日粮中额外添加20mg/kgMintrex-Zn/Mn显著提高了粪便中锌、锰的排泄量(P〈0.05),但添加20mg/kgMintrex-Mn降低铜排泄量20%以上(P〈0.05)。研究说明,在基础日粮微量元素水平低于需要量的情况下,采用有机微量元素替代无机微量元素对粪便中微量元素排泄量的影响很小,额外添加有机微量元素则提高粪便微量元素的排泄。  相似文献   

19.
Effects of supplementing the basal diets with Mn, Zn and Cu, as sulphate, glycine or methionine salts, on colostrum and milk performance, some blood immunity indices and blood minerals of pre- and post-partum Holstein cows were accessed. Forty cows in different groups received: 1) a diet without supplementary Mn, Zn and Cu (control), 2) a diet containing Mn, Zn and Cu sulphates, 3) a diet containing Mn, Zn and Cu glycine, or 4) a diet containing Mn, Zn and Cu methionine with 10 cows per group from d 60 before calving (dry period) to d 100 of lactation. Dry matter intake (DMI), dry matter digestibility (DMD), colostrum and milk performance, milk somatic cell count (SCC), blood and milk total antioxidant capacity (TAC), immunoglobulin M (IgM) and immunoglobulin A (IgA), and blood Mn, Zn and Cu were determined. Dietary supplementation with Mn, Zn and Cu as methionine, glycine or sulphate salts had positive effects on DMD, DMI, colostrum and milk performance, milk SCC, and blood Mn and Zn. Addition of Mn, Zn and Cu in diets could increase (P < 0.05) blood and milk TAC and blood IgA and IgM in the cows and their new-born calves. There were no differences in DMI, DMD, colostrum and milk yields, milk SCC, blood Mn (except d 50 postpartum), Zn and Cu and TAC (except d 50 postpartum) among the organic and inorganic minerals-supplemented groups (P > 0.05), however, the blood concentrations of IgA (except d 1 postpartum) and IgM in the cows supplemented with organic Mn, Zn and Cu were higher (P < 0.05) than those in the cows receiving the sulphate sources of minerals. Overall, dietary supplementation of Mn, Zn and Cu as methionine, glycine or sulphate salts can improve colostrum and milk performance, blood Zn and Mn and immunity indices in Holstein cows and their new-born calves. Moreover, the organic sources of Mn, Zn and Cu have advantage over the sulphate forms in terms of the blood immunoglobulins.  相似文献   

20.
Crossbred steer calves (n = 64) were used in a 2 × 2 factorial arrangement to evaluate two levels of organic trace minerals and two levels of inorganic trace minerals. Calves were fed 28 d on the ranch in two pens of eight head per treatment before a simulated transport stress. After being loaded, hauled 129 km, unloaded with an overnight stand without feed and water, and reloaded, they were shipped to the Colorado State University (CSU) research feedyard in Fort Collins and placed in 64 individual pens. Calves fed the organic low level and inorganic high level trace minerals gained better (P<0.05) the first 28 d than did calves fed the organic high level or inorganic low level trace minerals. Overall growth performance was not influenced by trace mineral types or levels. Longissimus area was greater (P<0.05) for calves fed the low level organic trace minerals compared with that for calves fed the low level inorganic trace minerals. Eosinophils (d 28) were higher (P<0.05) for calves fed the organic high level trace minerals compared with calves fed inorganic low level trace minerals. Infectious bovine rhinotracheitis (IBR) and parainfluenza (PI3) titers were not influenced by trace minerals. Red blood cells and packed cell volume were higher (P<0.05) for calves fed low level trace minerals regardless of trace mineral type. Liver Co was increased (P<0.05) at the 28-d sampling when inorganic trace minerals were fed. Liver Co was highest (P<0.05) at the 168- d sampling for calves fed low level inorganic trace minerals followed by calves fed organic high level trace minerals. Liver Fe was lower (P<0.05) in calves at the d-168 sampling when organic trace minerals were fed. Liver Zn was elevated (P<0.05) by d 28 by feeding the inorganic low level trace minerals, and by d-168, liver Zn was higher (P<0.05) for calves fed the low levels of trace minerals. Initial growth performance was maintained by either supplementing organic trace minerals or elevating dietary inorganic trace minerals when confronted with high dietary Fe, S, or Mo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号