共查询到20条相似文献,搜索用时 0 毫秒
1.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot. 相似文献
2.
Arthikala Manoj Kumar Rohini Sreevathsa Kalpana Nanja Reddy Prasa Trichy Ganesh Makarla Udayakumar 《Journal of Crop Science and Biotechnology》2011,14(2):125-132
Agrobacterium tumefaciens mediated in planta transformation protocol was developed for castor, Ricinus communis. Two-day-old seedlings were infected with Agrobacterium strain EHA105/pBinBt8 harboring cry1AcF and established in the greenhouse. Screening the T1 generation seedlings on 300 mg L−1 kanamycin identified the putative transformants. Molecular and expression analysis confirmed the transgenic nature and identified
high-expressing plants. Western blot analysis confirmed the co-integration of the nptII gene in the selected transgenic plants. Bioassay against Spodoptera litura corroborated with high expression and identified five promising effective lines. Analysis of the T2 generation plants proved the stability of the transgene indicating the feasibility of the method. 相似文献
3.
Agrobacterium-mediated genetic transformation was performed using embryonic axes explants of pigeon pea. Both legume pod borer resistant
gene (cry1Ac) and plant selectable marker neomycine phosphor transferase (nptII) genes under the constitutive expression of the cauliflower mosaic virus 35S promoter (CaMV35S) assembled in pPZP211 binary
vector were used for the experiments. An optimum average of 44.61% successfully hardened dot blot Southern hybridization positive
plants were obtained on co-cultivation media supplemented with 200 μM acetosyringone without L-cysteine. The increased transformation
efficiency from a baseline of 11.53% without acetosyringone to 44.61% with acetosyringone was further declined with the addition
of different concentrations of L-cysteine to co-cultivation media. Transgenic shoots were selected on 50 and 75 mg L−1 kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 20 g L−1 sucrose and 0.5 mg L−1 indole butyric acid in the absence of kanamycin. Furthermore, 100% seed setting was found among all the transgenic events.
The plants obtained were subjected to multi- and nochoice tests to determine the behavioral responses and mortality through
Helicoverpa armigera bioassays on the leaf and relate their relationship with the expression of cry1Ac protein which was found to be less in leaf as compared to the floral buds, anther, pod, and seed. 相似文献
4.
J. F. Liu C. Y. Zhao J. Ma G. Y. Zhang M. G. Li G. J. Yan X. F. Wang Z. Y. Ma 《Euphytica》2011,181(1):31-40
A phytase gene (phyA), isolated from Aspergillus ficuum (AF537344), was introduced into cotton (Gossypium hirsutum L.) by Agrobacterium-mediated transformation to increase the phosphorus (P) acquisition efficiency of cotton. Southern and Northern blot analyses
showed that the phyA was successfully incorporated into the cotton genome and expressed in transgenic lines. After growing for 45 days with phytate
(Po) as the only P source, the shoot and root dry weights of the transgenic plants all increased by nearly 2.0-fold relative
to those of wild-type plants, but were similar to those of transgenic plants supplied with inorganic phosphorus. The phytase
activities of root extracts prepared from transgenic plants were 2.4- to 3.6-fold higher than those from wild-type plants,
and the extracellular phytase activities of transgenic plants were also 4.2- to 6.3-fold higher. Furthermore, the expressed
phytase was secreted into the rhizospheres as demonstrated by enzyme activity staining. The transgenic plants accumulated
much higher contents of total P (up to 2.1-fold after 30 days of growth) than the wild-type plants when supplied with Po.
These findings clearly showed that cotton plant transformed with a fungal phytase gene was able to secret the enzyme from
the root, which markedly improved the plant’s ability to utilize P from phytate. This may serve as a promising step toward
the development of new cotton cultivars with improved phosphorus acquisition. 相似文献
5.
Jiby Mary Varghese Alangar Ishwara Bhat 《Journal of Crop Science and Biotechnology》2011,14(4):247-254
A protocol was developed for an efficient Agrobactertium-mediated transformation of black pepper plants through somatic embryogenesis. Embryogenic mass derived from primary somatic
embryos that were obtained from the micropylar region of mature germinating seeds of black pepper was found to be the ideal
target tissue for transformation. Genetic fidelity test of embryogenic mass-derived plantlets by RAPD using 23 random primers
revealed no genetic variation among the progenies and the parent plant. Among the antibiotics used for selection of transformants,
cefotaxime at 100 μg mL−1 was found to be optimum to control Agrobacterium besides its ability to promote somatic embryo proliferation. In the case of kanamycin, a step-wise increase in concentration
from 25 to 50 and then to 100 μg mL−1 were found to be optimum. Embryogenic mass co-cultivated with Agrobacterium carrying the β-glucuronidase (GUS) reporter gene were cultured on plant growth regulator-free Schenk and Hildebrandt (SH)
medium and transformants were selected in selection medium containing cefotaxime and step-wise increase in kanamycin concentration.
The transient GUS gene expression was determined histochemically. Transformants that survived in the selection medium were
hardened in the greenhouse. An average of nine hardened putative plantlets was obtained per gram of embryogenic mass. The
presence of transgene in these plantlets was assayed by PCR, dot blot, and Southern blot hybridization. Results presented
demonstrated for the first time an efficient transformation and regeneration of black pepper without the use of growth regulators.
This simple efficient procedure would allow transformation of black pepper with genes of desirable characters. 相似文献
6.
The rice leaffolder (RLF), Cnaphalocrocis medinalis is an important pest of rice that causes severe damage in many areas of the world. The plants were transformed with fully
modified (plant codon optimized) synthetic Cry1C coding sequences as well as with the hpt and gus genes, coding for hygromycin phosphotransferase and β-glucuronidase, respectively. Cry1C sequences placed under the control of doubled 35S promoter plus the AMV leader sequence, and hpt and gus genes driven by cauliflower mosaic virus 35S promoter, were used in this study. Embryogenic calli after cocultivation with
Agrobacterium were selected on the medium containing hygromycin B. A total of 67 hygromycin-resistant plants were regenerated. PCR and
Southern blot analyses of primary transformants revealed the stable integration of Cry1C coding sequences into the rice genome with predominant single copy integration. R1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. These transgenic
lines were highly resistant to rice leaffolder (RLF), Cnaphalocrocis medinalis as revealed by insect bioassay. 相似文献
7.
Sathish Sundararajan Balaji Sivaraman Venkatesh Rajendran Sathishkumar Ramalingam 《Journal of Crop Science and Biotechnology》2017,20(3):175-183
This research was undertaken to find an efficient tissue culture system and Agrobacterium-mediated genetic transformation method for recalcitrant indica rice cultivars. For this, mature seeds of commercially important indica rice varieties, ASD16, ADT43, IR 64, and Pusa Basmati were cultured on MS and N6 medium supplemented with 2 mg l-1 2, 4-D + 30 g l-1 sucrose. The calli grown in N6 medium showed better friability and embryogenic response. Out of the four varieties tested, ASD16 and IR64 showed better callusing and embryogenic capacity as compared to ADT43 and Pusa Basmati. For genetic transformation studies, embryogenic calli of all the cultivars were co-cultivated with the Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pCambia 1305.1 with GUS gene. GUS assay was performed for the putative transformed calli and its activity was found to be qualitatively higher in ASD16 and IR64 than the other two varieties. The best responsive ASD16 transformed calli was regenerated and the putative transgenic lines were regenerated. ASD16 transformed calli were confirmed by GUS assay. PCR analysis confirmed the presence of both GUS and HPT genes in ASD16 transgenic lines. 相似文献
8.
Preliminary field observations in our maize breeding nurseries indicated that breeding for improved resistance to gibberella
ear rot (Fusarium graminearum) in maize may indirectly select for resistance to another ear disease, common smut (Ustilago zeae). To investigate this, we compared the disease severity ratings obtained on 189 maize inbreds, eight of which included our
inbreds developed with selection for gibberella ear rot resistance after field inoculation and breeding for 8–10 years. No
correlation was found between disease severities for the 189 inbreds but the eight gibberella-resistant lines were consistently
more resistant to smut. To further examine this relationship and to determine if these eight inbreds would be useful for developing
inbreds with either common smut or fusarium ear rot (F. verticilliodes) resistance, we conducted a Griffing’s diallel analysis on six inbreds of maize, four with high levels of gibberella ear
rot resistance representing all of the pedigree groups in our eight gibberella lines, and two with very low levels. Our most
gibberella ear rot resistant inbreds, CO433 and CO441, had the lowest disease ratings for all three diseases, the consistently
largest general combining ability effects and several significant specific combining ability effects. It was concluded that
some inbreds bred specifically for gibberella ear rot would also be useful in breeding for resistance to common smut and fusarium
ear rot. 相似文献
9.
Data presented herein provides a rapid and efficient method for Agrobacterium rhizogenes-mediated genetic transformation of Arnebia hispidissima for hairy root cultures as well as for enhancing Shikonin production. Etiolated explants viz. shoot tip, nodal, leaf and
internodal segments were co-cultivated with Agrobacterium rhizogenes for induction of hairy root. Among the various explants employed, leaf explant showed maximum 70.7% response followed by
shoot tip 48.3%, nodal segment 38.7% and internodal segment 9.3%. Integration of Ri plasmid rolB gene in the transformed hairy root cultures was confirmed by PCR analysis using forward (FrolB) and reverse (RrolB) primers of rolB gene resulting in the amplification of 0 ∼ 0.8 kb fragments. Medium compositions have been optimized for in vitro induction
of Shikonin in hairy root cultures of Arnebia hispidissima. Hairy roots on hormonefree MS medium showed red spots in the older part of the tissues which turned white after a second
subculture. Whereas hairy roots cultured on RC medium showed faster growth and produced large amount of Shikonin. The Shikonin
content in transformed hairy root culture was estimated by recording absorbance at 620 nm and quantified against authentic
sample of Shikonin. Shikonin content was estimated to be 0.85 mg g−1 fresh weight of tissue at the end of the 50 days of culture. The results presented herein will help to design strategies
for bridging the gap between ever increasing demand and supply of raw products necessary for obtaining Shikonin for cosmetic,
dyeing, food, medicinal, and pharmaceutical industries. 相似文献
10.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza
ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time
PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including
RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed
that transgenic plants contained more K+, Ca2+, and NO3
−, and less NH4
+, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background. 相似文献
11.
Franceli R. Kulcheski Felipe A. S. Graichen José A. Martinelli Ana B. Locatelli Luiz C. Federizzi Carla A. Delatorre 《Euphytica》2010,175(3):423-432
Crown rust, which is caused by Puccinia
coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena
sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely
great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify
amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in
12 linkage groups. The map covered 409.4 cM of the Avena
sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located
in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes. 相似文献
12.
Angustias Márquez-Lema José M. Fernández-Martínez Begoña Pérez-Vich Leonardo Velasco 《Euphytica》2008,164(2):365-375
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian
mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate
content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate
contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from
43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of
2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over
the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata. 相似文献
13.
14.
Coffee varieties with resistance for the plant-parasitic nematodes Pratylenchus coffeae and Radopholus arabocoffeae are limited in Vietnam. A selection of imported varieties and high yield varieties of Arabica coffee in Vietnam were evaluated
for resistance to both plant-parasitic nematode species in Northern Vietnam. The same experiments were carried out with hybrid
arabica coffee, three selected clones of Coffea
canephora and one clone of Coffea excelsa in the Western Highland of Vietnam. The screened coffee accessions from Ethiopia (KH1, KH13, KH20, KH21, KH29, and KH31)
were susceptible and good host for P. coffeae. Also accessions 90P4 (Portugal) and Oro azteca (Mexico) had a reproduction factor Rf > 1. Pluma Hidalgo (Mexico), 90/6 (Vietnam), 90P3 (Portugal), 90P2 (Vietnam), Variedad (Mexico), 90T (Portugal), and Garnica
(Mexico) were poor hosts (Rf < 1) but not tolerant to P. coffeae, expressed by a reduction of root weight compared to untreated control plants. Most of the coffee accessions tested in Northern
Vietnam were intolerant to R. arabocoffeae, except 90T which showed no reduction of root weight, even at high initial nematode densities (4,000/pot). Good hosts for
R. arabocoffeae were Variedad, KH1, KH21, KH29, KH20, KH31, and KH13 with Rf > 1. Pluma Hidalgo, 90/6, 90P3, 90P2, 90T, Oro azteca, and Garnica were poor hosts (Rf < 1). In the Western Highland experiment, all arabica coffee accessions were susceptible for P. coffeae with Rf ranging from 1.41 to 1.59. Tolerance to P. coffeae was found in C. liberica var. Dewevrei, Hong34 and Nhuantren. Coffea excelsa, Hong34, Nhuantren, and H1C19 were tolerant to R. arabocoffeae at the highest inoculation density (4,000 nematodes/pot). The most susceptible accessions were Nhuantren and K55. Resistance
(Rf < 1) to R. arabocoffeae was found in C. liberica var. Dewevrei and Hong34. This article reports on the first screening for resistance and tolerance to P. coffeae and R. arabocoffeae in coffee accessions in Vietnam and shows promising results for enhanced coffee-breeding. 相似文献
15.
Thierry Pascal Romain Aberlenc Carole Confolent Mathilde Hoerter Elodie Lecerf Christophe Tuéro Patrick Lambert 《Euphytica》2017,213(6):132
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study. 相似文献
16.
Noelle Giacomini Lemos Alessandro de Lucca e Braccini Ricardo Vilela Abdelnoor Maria Cristina Neves de Oliveira Kazuhiro Suenaga Naoki Yamanaka 《Euphytica》2011,182(1):53-64
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top
priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced
into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having
uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation
period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes
carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with
their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters
in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors.
Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance
allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that
these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role
in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype
indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance. 相似文献
17.
Josefine Nymark Hegelund Uffe Bjerre Lauridsen Sabá Victoria Wallström Renate Müller Henrik Lütken 《Euphytica》2017,213(2):51
Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula. 相似文献
18.
The expression of a microbial phytase in transgenic plants may create a new biochemical pathway that mobilizes its endogenous
phytate and release inorganic phosphate from it, so that more phosphorus is available for plant growth. In this study, transgenic
soybean plants were generated via both Agrobacterium transformation and pollen tube pathway with the PhyA gene of Aspergillus ficuum. The optimal concentrations of plant hormones including N6-benzylaminopurine (BAP), gibberellin (GA3) and indole-3-butyric acid (IBA) were tested based on their effectiveness on promoting the growth of transgenic explants.
Genomic PCR results and Southern blot hybridization analysis showed that transgenic soybean plants selected for resistance
to kanamycin contained the phyA transgene. The transgenic soybean plants with phyA gene integrated in their genome exhibited lower amount of phytate in different soybean tissues including leaf, stem and root,
which indicated that engineering crop plants with a higher expression level of heterologous phytase could improve the degradation
of phytate and potentially in turn mobilize more inorganic phosphate from phytate and thus reduce phosphate load on agricultural
ecosystems. 相似文献
19.
The Lr56/Yr38 translocation consists primarily of alien-derived chromatin with only the 6AL telomeric region being of wheat origin. To
improve its utility in wheat breeding, an attempt was made to exchange excess Ae. sharonensis chromatin for wheat chromatin through homoeologous crossover in the absence of Ph1. Translocation heterozygotes that lacked Ph1 were test-crossed with Chinese Spring nullisomic 6A tetrasomic 6B and nullisomic 6A-tetrasomic 6D plants and the resistant
(hemizygous 6A) progeny were analyzed with four microsatellite markers. Genetic mapping suggested general homoeology between
wheat chromosome 6A and the translocation chromosomes, and showed that Lr56 was located near the long arm telomere. Thirty of the 53 recombinants had breakpoints between Lr56 and the most distal marker Xgwm427. These were characterized with additional markers. The data suggested that recombinants #39, 157 and 175 were wheat chromosomes
6A with small intercalary inserts of foreign chromatin containing Lr56 and Yr38, located distally on the long arms. These three recombinants are being incorporated into adapted germplasm. Attempts to identify
the single shortest translocation and to develop appropriate markers are being continued. 相似文献
20.
J. Mei L. Qian J. O. Disi X. Yang Q. Li J. Li M. Frauen D. Cai W. Qian 《Euphytica》2011,177(3):393-399
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed.
In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed. 相似文献