首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人们从墨西哥玉蜀黍中驯化玉米时就已经开始对多育性(主茎发育穗枝的潜力)进行选择。因为单穗玉米有利于手工收获,所以直到20世纪早期的机械化前,人类的选择都偏爱单穗玉米。然而,多育性具有增强集约管理条件下胁迫耐性的潜能。本试验的研究目的是:(1)评价194个F3家系群体的多育性和15个相关形态性状的变异。这些F3家系来源于自交系A679和一个多育性强的S1植株的杂交后代,而该S1植株又来源于Golden Glow品种的23轮多育性混合选择;(2)弄清这些性状间的相关关系,并推断哪一些性状是由相似遗传因子控制。  相似文献   

2.
水稻孕穗期耐热性QTLs分析   总被引:15,自引:1,他引:15  
水稻籼粳亚种间杂种优势利用是提高水稻产量的重要途径。然而,异常高温或低温导致籼粳亚种间杂种育性下降是影响其优势利用的主要因素之一。本研究以USSR5(粳稻)/广解9号(籼稻)//USSR5回交群体为供试材料,构建了相应的分子连锁图谱,分别以高温处理下直接小穗育性及小穗育性热敏感指数为指标,对水稻孕穗期高温耐热性及其相对耐热性进行数量性状位点(QTLs)分析。结果表明,在第2、4和5染色体上检测到孕穗期耐热性相关的QTL各一个,对表型变异的解释率为6.4%~15.8%;在第4、8染色体上分别检测到与孕穗期相对耐热性相关的QTL,qhts-4和qhts-8,LOD值分别为3.81和2.86,对表型变异的解释率分别为16.8%和9.9%。对其进一步的上位性分析表明,有8条染色体的4对位点存在基因间互作,小穗育性耐热性除受主效QTL控制外,还受基因间互作及修饰基因的影响。  相似文献   

3.
染色体片段替换系(CSSL)是基因组水平快速初步定位数量性状基因位点(QTL)的良好材料,而水稻的品质性状是多基因控制的数量性状,因此可用替换系鉴定控制水稻品质性状的QTL。郝伟等利用分子标记辅助选择技术(MAS)构建了由133个株系组成的以“特青”(籼稻品种)为轮回亲本,以海南的一种普通野生稻(外观品质较好)为供体亲本,覆盖绝大部分野生稻基因组的染色体片段替换系。利用这套替换系,初步定位了控制稻米外观和理化品质性状的15个QTL,为今后水稻品质性状QTL的克隆以及稻米品质相关性状的改良提供了依据。  相似文献   

4.
玉米籽粒相关性状作为重要的产量构成因素,也是产量遗传改良的重要指标,对提高玉米产量以及研究产量相关性状遗传基础具有重要意义。本研究以玉米骨干自交系ZNC 442和SCML 0849为亲本构建的131份F2∶3家系为材料,基于简化基因组测序方法对该群体进行基因型鉴定,同时在两个环境下对该群体的粒长、粒宽和百粒重进行评价,并利用ICIM软件的完备区间作图法对目标性状进行QTL定位。结果表明,共定位到72个籽粒相关性状QTL,其中粒长相关QTL 23个,粒宽相关QTL 29个和百粒重相关QTL 20个。在此基础上,利用基因功能注释共筛选出控制籽粒相关性状的候选基因3个,分别是Zm00001d018839、Zm00001d018863、Zm00001d050868,通过参与苯丙烷生物合成和生长素、油菜素内酯信息传导,影响籽粒生长发育。  相似文献   

5.
大豆幼苗根系性状的QTL分析   总被引:7,自引:0,他引:7  
为研究大豆幼苗期根系性状的遗传规律,以中豆29和中豆32构建的RIL群体为材料,在V2期测定水培幼苗根系性状(主根长、侧根数、根重、根体积和根冠比等)及相关性状(株重、茎叶重和下胚轴重等),以方差分析方法估算遗传参数,并采用复合区间作图法对大豆幼苗期根系等性状进行QTL定位。结果表明,在8个染色体上检测到20个根系及相关性状QTL,其中9个主效QTL位于第11和第14染色体,表型贡献率在10.5%~26.1%之间。在第11和第14染色体上,部分根系性状QTL与地上部性状QTL处于同一位置,其QTL的共位性与形态性状表型相关分析结果一致,反映了根系性状与地上部性状存在一定的关联。  相似文献   

6.
两个水稻DH群体发芽期和幼苗前期耐碱性状QTL定位比较   总被引:6,自引:0,他引:6  
利用两个不同的加倍单倍体群体,在0.15%Na2CO3胁迫下,以发芽期和幼苗前期的发芽势(GE)等10个性状碱害相对值作为耐碱指标,进行耐碱性状QTL定位比较。碱害相对值相关分析表明,多个性状的碱害相对值存在显著或极显著相关。采用QTLMapper1.6统计软件对碱害相对值进行QTL分析。DH-1群体定位到10个主效QTL和15个上位性QTL,DH-2群体定位到14个主效QTL和15个上位性QTL。两群体定位列线比对发现:1个控制相对根长的QTL,qRRL3-1,两群体定位在第3染色体对应的区域(CT339-G62和RM7-RM3280)。其他性状两群体没有定位在相同的区域,但存在多个重要的数量基因座位,如CT158-CT550、RM3755-RM418和RM1349-RM1061等区域。在这些相同基因座位上两群体都检测到控制不同性状的主效QTL或上位性QTL,耐碱性QTL可能存在多效性、连锁性,在不同遗传背景下加性效应和上位性效应可以相互转化。多个QTL不仅与水稻耐碱性有关,还与多种抗逆性有关。这些结果将有利于耐碱性分子机制的剖析和强耐碱性水稻品种的选育。  相似文献   

7.
不同密度下玉米穗部性状的QTL分析   总被引:2,自引:0,他引:2  
为研究玉米穗部性状对不同种植密度的遗传响应,以郑58和HD568为亲本构建的220个重组自交系群体为材料,于2014年春、2014年冬及2015年春分别在北京和海南进行3个种植密度的田间试验,调查玉米穗长、穗粗、穗行数和行粒数等表型性状。利用SAS软件计算穗部性状的最优线性无偏估计值(BLUP),并采用完备区间作图法进行QTL定位。结果表明,在3个种植密度下共检测到42个QTL,单个QTL可解释4.20%~14.07%的表型变异。3个种植密度下同时检测到位于第2染色体上控制穗行数的QTL。2个种植密度下同时检测到4个与穗粗、穗行数和行粒数有关的QTL,其中第4染色体上1个与穗行数有关的主效QTL,在低、中种植密度下可分别解释表型变异的10.88%和14.07%。此外,在第2、4和9染色体上检测到3个同时调控不同穗部性状的QTL。研究结果表明玉米穗部性状在不同种植密度下的遗传调控发生变化,在不同密度下共同检测到的稳定QTL可应用于精细定位或开发玉米耐密性分子标记用于辅助育种。  相似文献   

8.
为了阐明新疆"矮密早"栽培技术下的高密度、矮化陆地棉形态性状QTL的遗传规律,本研究利用新疆不同陆地棉主栽品种(Gossypium hirsutum L.)构建了3个种内作图群体,进行陆地棉形态性状QTL的分子标记筛选.三个遗传图谱的连锁群长度分别为593.6 cM、830.2 cM和743.1 cM.3个遗传图谱的连锁群覆盖了除棉花Chr.22外的所有染色体.在此基础上鉴定、筛选出果枝始节、株高、叶主脉、叶次脉等15个稳定的QTLs:其中2个果枝始节QTL位于Chr.5和Chr.7上;3个株高QTL分别位于Chr.13、Chr.25和Chr.17上;筛选出叶主脉及叶次脉的QTL共10个,位于Chr.7、Chr.15、Chr.17、Chr.19、Chr.21和Chr.23连锁群17、6上,解释表型变异在6.8%~24.4%之间.对没有分配到连锁群上的标记位点的单标记分析,在LOD值大于2的水平下,共检测出9个与棉株形态性状相关的标记,其中与株高相关标记3个,另外6个标记与叶主脉及叶次脉相关.本研究定位在Chr.15、Chr.21、Chr.23和Chr.25上的棉株形态性状QTL,在染色体水平上的定位与前人报道相同,其它QTL在染色体水平上定位与前人研究不同,可能是新检测出的QTL.  相似文献   

9.
基于多个相关群体的玉米雄穗相关性状QTL分析   总被引:5,自引:0,他引:5  
雄穗相关性状对玉米生产至关重要。为了解析玉米雄穗相关性状的遗传机制,利用以黄早四为共同亲本组配的11个重组自交系群体,对玉米雄穗一级分枝数、雄穗主轴长和雄穗干重3个性状进行QTL分析。经过对11个群体及亲本两年三点的田间鉴定,单环境和联合环境下的玉米雄穗相关性状QTL定位,及基因型与环境互作和上位性互作分析,检测到15个在多环境下稳定表达(5个环境以上)的“环境钝感”主效QTL,其中,在染色体bin3.04区域,齐319群体和旅28群体中都定位到1个主效雄穗一级分枝数相关QTL,其平均贡献率分别为17.4%和14.4%,并且2个群体的QTL标记区间高度重叠,在IBM2008 Neighbors图谱上的重叠区间为226.0~230.1。对比不同群体结果发现,在2个群体以上都能检测到的一致性区间21个,其中在第2、第3、第6、第8染色体上的5个一致性区间在3个群体中可稳定表达。这些多环境和多个遗传背景下稳定表达的位点可作为玉米雄穗性状分子标记辅助选择、精细定位及基因克隆的候选位点。  相似文献   

10.
棉花的产量及产量构成因子性状是以复杂的方式遗传,遗传力较低并易受环境条件影响。经典数量遗传学指出,上位性是复杂性状的遗传基础。本研究以湘杂棉2号F8和F9世代重组自交系为材料,调查了3个环境下的产量及产量构成因子性状,并构建了遗传连锁图。旨在定位产量及产量构成因子性状的上位性QTL并分析QTL与环境的互作效应。所有产量及产量构成因子性状均检测到上位性QTL,共检测到16对加性互作QTL(AA),涉及的位点中仅4个有单位点效应,这反映了上位性的复杂性及其对产量和产量构成因子性状的重要贡献。共检测到17对QTL加性和环境互作(AE),以及14对上位性QTL与环境的互作,表明环境因素对产量和产量构成因子性状起重要影响作用。研究结果还表明上位性效应作为湘杂棉2号的遗传基础起着重要作用。对各性状在不同环境的优良基因型进行了预测。综合优良家系(GSL)和特定环境下的优良家系(SL)的性状表现高于两亲本,表明湘杂棉2号重组自交系各性状都有提高的潜力。由于QTL加性和环境互作以及上位性QTL与环境互作的影响,预测的优良家系基因型会随着环境的改变而不同,表明应针对特定环境开展棉花育种。  相似文献   

11.
以IR36(indica)和热研2号(japonica,广亲和品种)为亲本,构建了包含180个单株的F2群体及包括110个标记的分子连锁图谱。利用该F2群体,进行了水稻花粉不育数量性状基因座(quantitative trait locus, QTL)的检测和遗传效应分析,共检测到3个花粉不育QTL,分别位于第3、5、7染色体上,此外,共检测到9个由雄配子引起的偏分离QTL,其中7个与ga-14和ga-11位点的配子败育类型相同。与花粉形态鉴定相比,偏分离的数据对检测F1杂种花粉败育基因更为敏感。在第5、6染色体上控制偏分离的2个QTL位点,其杂合基因型出现的频率偏高。在qHPS-5位点,粳型纯合子表现出比杂合子和籼型纯合子更低的育性水平。本研究获得的分子标记将有助于聚合尽可能多的中性亲和基因以解决亚种间F1杂种的花粉不育性问题。  相似文献   

12.
大豆倒伏性及其相关性状的QTL分析   总被引:17,自引:3,他引:17  
利用来自中豆29×中豆32的165个重组自交系F10进行2年田间试验, 以复合区间作图法检测与大豆倒伏及形态性状有关的QTL。结果表明, 2年分别检测到25个和19个与大豆倒伏及茎杆性状和根系性状有关的QTL, 分布于A2、C1、C2、D1a、F、G、I和L连锁群, 可解释4.4%~50.1%的表型变异。在F连锁群上, 2年均检测到倒伏主效QTL(qLD-15-1)和株高主效QTL(qPH-15-2);G连锁群和L连锁群上分别有1个主茎节数QTL和2个根重QTL在2个年份重复出现。在倒伏QTL的附近检测出株高、根重、茎叶重、茎粗、主茎节数和分枝数QTL, 表明植株地上部和地下部性状与抗倒性普遍关联;QTL定位结果与表型相关分析一致, 反映了这些形态性状表型相关的遗传特性。部分性状QTL存在共位性, 但是未在2个年份稳定表达。  相似文献   

13.
本研究以珍汕97与明恢63杂交构建的F11重组自交系群体为材料,结合其构建的全基因组饱和分子标记连锁遗传图谱,分析了7个与水稻精米、米饭和米饭延伸指数等相关性状并定位了与水稻米饭品质相关性状QTL。结果表明,共检测到22个与水稻米粒、米饭和米饭延伸指数性状等相关QTL分别位于水稻的2、3、4、5、6、7、11染色体上,发现决定米粒性状的主效QTL同时在饭粒性状中检测到,另外饭粒性状还由一些特别的QTL所决定,一些与米粒和米饭相关性状的QTL在米饭延伸指数性状中同时发现。Wx基因对米饭性状以及米饭的延伸指数均具有重要影响。  相似文献   

14.
越冬栽培稻是一类能越过自然冷冬季节并在第2年春季萌芽、正常开花结实、收获稻谷的水稻品种。本文通过对越冬栽培稻产量性状QTL分析,明确产量相关性状的遗传规律,旨在进一步解析越冬栽培稻产量性状的遗传机制,为育种创新利用提供理论依据。以3份越冬栽培稻构建的3个半同胞F2群体为材料。各考察15个产量相关性状,利用Excel 2003、GraphPad Prism 5.0和QTL IciMapping 4.10软件分析数据、绘制遗传图谱、定位QTL和联合分析。结果表明,产量性状表型值在3群体中呈连续正态分布,表现为数量性状遗传。共检测到37个QTL和26对上位性QTL,贡献率分别介于2.32%~36.31%和1.04%~2.05%;检测到9个同时影响2个及以上产量性状(一因多效)QTL标记区间;以联合分析检测到13个产量性状相关QTL,其中4个QTL区间与单群体检测QTL区间重叠;越冬栽培稻产量相关性状QTL以加–显性效应遗传为主、上位性遗传效应为辅。本研究将为越冬栽培稻产量相关基因挖掘及育种创新利用奠定基础。  相似文献   

15.
玉米产量及产量相关性状QTL的图谱整合   总被引:10,自引:1,他引:9  
王帮太  吴建宇  丁俊强  席章营 《作物学报》2009,35(10):1836-1843
利用生物信息学方法,借助高密度分子标记遗传图谱IBM2 2008 neighbors,利用图谱映射和元分析的方法,对不同试验中定位的400个玉米产量及产量相关性状QTL进行了图谱整合,构建了玉米产量及产量相关性状QTL的综合图谱和一致性图谱。结果表明,玉米产量及产量相关性状QTL在10条染色体上呈非均匀分布,第1染色体上最多,第10染色体上最少;发掘出96个玉米产量及产量相关性状的“一致性”QTL;关联性较强的产量性状的QTL常集中在相同或相近的座位上。  相似文献   

16.
不同生态环境下玉米产量性状QTL分析   总被引:35,自引:10,他引:25  
以玉米(Zea mays L.)自交系黄早四和Mo17为亲本得到的191个F2单株为作图群体,衍生的184个F2∶3 家系作为性状评价群体,分析了单株穗数、穗行数、行粒数、百粒重和单株籽粒产量在北京和新疆2个生态环境下的表现和数量性状基因位点的定位结果。QTL检测结果表明,2个环境共检测出47个QTL,分布于除第10染色体以外的9条染色体,其中与单株穗数相关的QTL共10个,可解释的表型变异为5.3%~25.6%;与穗行数相关的QTL共13个,可解释的表型变异为4.5%~23.2%;与行粒数相关的QTL有9个,解释的表型变异为5.4%~13.7%;与百粒重相关的QTL达10个,可解释的表型变异为4.9%~13.3%;与单株籽粒产量相关的QTL有5个,可解释的表型变异为6.1%~35.8 %。大部分产量QTL只在单一环境下被检测到,说明产量相关QTL与环境之间存在明显的互作。表型相关显著的产量性状,它们的QTL容易在相同或相邻标记区间检测到。研究还发现了若干个QTL富集区域,可能是发掘通用QTL的候选位点。  相似文献   

17.
多亲本高世代互交(multi-parent advanced generation intercross,MAGIC)群体是近年来发展起来的新一代遗传作图及育种群体。MAGIC群体最初是以研究动物及人类复杂性状遗传基础为目标而构建的基于多亲本的重组近交群体,随后将其构建方法衍生到植物中应用。MAGIC群体应用于作物遗传育种,可以建立包含无限多株系的群体,主要的优势是拥有大量可利用的多样性遗传基因池。亲本可选用育种中性状优异的材料,通过多次重组创造大量的遗传变异。群体中选出的优良株系可用作育种中间材料或直接组配新品种,也可灵活应用于数量性状位点(quantitative trait locus,QTL)的精确遗传定位分析,真正做到育种群体和定位群体的有机整合。作物耐逆性大多是由QTL控制,因此,主要围绕MAGIC群体的定义、构建流程、遗传特征及其在作物耐逆性研究上的应用和发展前景作综合性阐述。  相似文献   

18.
胚大小在调控玉米籽粒营养组成及籽粒大小方面扮演着重要角色,解析玉米胚大小自然变异的遗传基础对玉米籽粒品质和产量的协同改良具有重要意义。本研究利用由普通玉米自交系B73和高油玉米自交系By804组配的RIL群体,结合高密度的SNP遗传图谱同时对玉米胚大小、籽粒大小和油分等15个性状进行QTL定位分析,共鉴定到82个QTL,包括38个胚大小性状QTL、23个籽粒大小性状QTL和21个油分性状QTL。每个QTL解释的表型变异范围为2.50%~26.32%,平均为7.94%。QTL的置信区间变幅为0.3~52.8 Mb,平均长度为11.6 Mb;置信区间小于5、10和20 Mb的QTL占所有QTL的比例分别为32.9%、58.5%和79.3%。对检测到的QTL位点进行共定位分析鉴定到15个QTL热点区域,其中10个热点区域至少调控胚大小、籽粒大小、油分等三类性状中的两类,5个QTL热点区域只控制一类性状。在上述热点区域内,鉴定到已克隆的控制玉米籽粒油分的主效基因DGAT1-2和影响籽粒发育的基因Dek15。这些结果为玉米籽粒品质改良提供了重要信息。  相似文献   

19.
以耐旱性差异较大的两个亲本珍汕97B(ZS97B)和IRAT109构建的重组自交系(RIL)为试验材料,在正常水分条件和干旱胁迫[浓度为18%的聚乙二醇-6000(PEG-6000)模拟干旱]条件对水稻苗期苗高、根长、苗高生长速率、根长苗高比、叶卷曲进行QTL定位分析,共检测到24个相关的QTL,贡献率变幅在7.35%~39.30%。其中正常条件下检测到13个相关的QTL位点,分布在第1、2、3、5、6、10、12染色体上;干旱胁迫条件下检测到11个相关的QTL位点,分布在第1、3、5、7、10、12染色体上。2种条件下检测到的QTL位点差异很大,表明不同处理条件下相关性状的遗传机制不同。此外,在第1染色体上的RM472~RM104存在控制苗高、苗高生长速率、根长、根长苗高比多个性状的QTL,并且此区间在2种处理条件下能重复检测到控制苗高位点。  相似文献   

20.
利用高密度SNP 遗传图谱定位小麦穗部性状基因   总被引:2,自引:2,他引:2  
小麦穗部性状之间相关性密切, 其中穗粒数和千粒重是重要的产量构成要素, 挖掘与穗部性状相关联的基因位点对分子标记辅助育种及解释基因效应具有重要意义。本研究以RIL群体(山农01-35×藁城9411) 173个F8:9株系为材料, 利用90 k小麦SNP基因芯片、DArT芯片技术及传统的分子标记技术构建的高密度遗传图谱, 在5个环境下进行穗部相关性状QTL定位。检测到位于1B、4B、5B、6A染色体上7个控制千粒重的加性QTL, 解释表型变异率6.00%~36.30%, 加性效应均来自大粒母本山农01-35; 检测到8个控制穗长的加性QTL, 解释表型变异率14.34%~25.44%; 3个控制穗粒数的加性QTL; 5个控制可育小穗数的加性QTL; 3个控制不育小穗数的加性QTL, 贡献率为8.70%~37.70%; 4个控制总小穗数的加性QTL; 6个控制小穗密度的加性QTL。通过基因型与环境互作分析, 检测到32个加性QTL, 解释表型变异率0.05%~1.05%。在4B染色体区段EX_C101685–RAC875_C27536检测到控制粒重、穗长、穗粒数、可育小穗数、不育小穗数、总小穗数的一因多效QTL,其贡献率为5.40%~37.70%, 该位点在多个环境中被检测到, 是稳定主效QTL。在6A染色体wPt-0959-TaGw2-CAPS区间上检测到控制粒重、总小穗数的QTL。研究结果为穗部性状的分子标记开发、基因精细定位和功能基因克隆奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号