首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
研究目的利用AM真菌进行柑桔菌根化育苗是培育壮苗和提高果品品质的新趋势,在对枳壳菌根苗进行研究的基础上,找到一个较好的优势菌种作为育苗菌剂。方法盆栽条件下研究了AM真菌Gigasporamargarita、Glomusmosseae和Glomusversiforme对枳壳实生苗营养生长及矿质含量的影响,并比较了种间差异的效应。结果接种AM真菌的枳壳幼苗根系均有效地被侵染,与对照相比,能显著促进植株根系和茎叶的生长,对须根的生长促进作用尤为突出;提高了叶片矿质元素N、P、K、Ca、Mg、Zn、Cu和Mn的含量,与对照差异均达到显著水平。3种AM真菌种间比较,其效应排序为Glomusmosseae>Gigasporamargarita>Glomusversiforme,但叶片矿质元素的含量与生长趋势并不完全一致。结论接种Glomusmosseae处理生长最好,矿质元素N、P、Mg和Cu的含量最高,菌根依赖性最大,且差异显著。AM真菌G.mosseae是参试3个菌种中培养枳壳菌根化壮苗的最佳菌种。  相似文献   

2.
丛枝菌根真菌(AM真菌)能够促进植物对土壤中磷素的吸收,研究白浆土AM真菌在不同磷浓度下玉米氮,磷含量的影响,为AM真菌在白浆土区种植玉米应用提供依据。采用盆栽试验,以玉米为宿主植物,设置3个施磷水平(P_2O_5):0、200、400mg/kg,同时设置接种AM真菌和未接种处理,3次重复。结果表明:同一施磷水平下,AM真菌可调节玉米地上部分氮含量;同一施磷水平,AM真菌可促进玉米地上地下部分磷含量增加;P0+AM真菌处理显著提高了玉米地上生物量,说明在低磷条件下,AM真菌能够更有效促进玉米生长;结论:接种AM真菌可改善玉米营养状况,促进玉米生长且低磷条件下更有效。  相似文献   

3.
丛枝菌根对土壤中多环芳烃降解的影响   总被引:5,自引:2,他引:5  
以菲和芘为多环芳烃(PAHs)代表物,紫花苜蓿(Medicagos ativa L.)为宿主植物,研究了丛枝菌根(AM)对土壤中PAHs降解的影响.供试5种丛枝菌根真菌(AMF)为Glomus mosseae、Glomus etunicatum、Glomus versiforme、Glomus constrictum和Glomusintraradices.土样中菲和芘的起始浓度分别为0~170.6mg·kg-1和66.06mg·k-1.结果表明,PAHs污染土壤中,AMF对紫花苜蓿的侵染状况良好.20~60d,供试5种AMF对土壤中菲的修复效率均在91%以上.与有植物无AMF对照相比,接种AMF后土壤中菲和芘的残留浓度明显降低,其中Glomus mosseae、Glomus versiforme、Glomus constrictura对菲和芘降解的促进效果最好.AM作用下,紫花苜蓿吸收积累对菲、芘降解的贡献率小于1.4%;而接种AMF明显提高了土壤微生物的数量和活性,这应是AM促进土壤中菲、芘降解的-个重要机理.  相似文献   

4.
在大田条件下,研究了在早稻移栽前,紫云英不同翻压时间对晚稻收获后土壤养分含量以及晚稻养分吸收的影响。结果表明:在早稻移栽前5~15 d翻压紫云英均有利于提高土壤中全N含量以及有效N、P和K含量,但是对土壤中全P、全K含量影响不显著。在移栽前5 d翻压紫云英,晚稻茎秆和籽粒中N、P含量和晚稻产量有所下降;在移栽前10~15 d翻压紫云英,可以显著增加茎秆和籽粒中N、P、K含量,并提高晚稻产量,以在移栽前15 d翻压紫云英的效果最好。  相似文献   

5.
丛枝菌根真菌对洛阳红牡丹苗期生长及矿质营养的影响   总被引:1,自引:0,他引:1  
为了解丛枝菌根(AM)真菌对洛阳红牡丹的生长效应,在温室盆栽条件下研究了AM真菌混合菌剂(Gigaspora margarita、Glomus mosseae和Glomus versiforme)对洛阳红牡丹无菌苗营养生长及矿质营养的影响.结果表明,接种AM真菌的植株均被有效侵染;与对照比较,接种AM真菌可显著促进植株地上和地下部分生长,对促进根系的生长效应尤为明显,苗高增加23.4%,叶面积增加18.2%,主根长度增加103.5%,侧根数量增加107.2%.接种AM真菌可显著提高叶片中N、P、K、Ca、Mg、Zn、Cu和Mn的含量,P和Mn含量分别增加59.2%和40.1%.  相似文献   

6.
丛枝菌根化枳橙根际微生态环境的研究   总被引:1,自引:1,他引:0  
用根内球囊霉、摩西球囊霉、地表球囊霉及其混合菌剂接种无菌根枳橙幼苗进行盆栽试验,研究接种AM真菌对枳橙幼苗根际土壤微生态环境的影响,结果表明:接种AM真菌的根系形成了40%~70%的菌根侵染率;菌根枳橙的苗高、地茎、地上部/地下部生物量等营养生长显著增加;AM真菌对根际微生物种群数量产生一定的影响,使根区细菌、放线菌、真菌、固氮菌、氨化菌、纤维素分解菌的数量和微生物生物量显著增加(p<0.05);接种AM真菌增加了根际土壤碱性磷酸酶、脲酶的活性,各种酶活性与菌根侵染率呈极显著正相关(p<0.01);接种菌根的根际土壤中,可直接被植物吸收利用的N、P元素出现富集现象,且N、P含量与菌根侵染率呈极显著正相关.通径分析结果表明:枳橙根际土壤微生物、酶活性、pH及养分特性通过直接和间接作用共同影响着菌根真菌的侵染率.  相似文献   

7.
通过持续3年的田间小区试验,研究了单独或联合接种AM真菌和蚯蚓对玉米修复砷污染土壤效率的影响。结果表明:接种AM真菌和蚯蚓均能显著提高玉米根系的AM真菌侵染率(P<0.05),且双接种处理显著高于单接种处理(P<0.05);接种蚯蚓或蚯蚓与AM真菌双接种能显著提高玉米地上部、地下部生物量(P<0.05);AM真菌与蚯蚓...  相似文献   

8.
丛枝茵根真菌接种植物后,能够促进植物养分的吸收和植株的生长,提高植物的抗逆性.为了系统认识AM真菌提高植物抗寒性的机理,为植物避免冻害、南种北引、抗寒育种等提供理论依据,从AM真菌对宿主植物矿质元素吸收、形态结构、生理生化、基因表达等4个方面就国内外对丛枝菌根提高植物的抗寒性研究进行了综述.  相似文献   

9.
分别建立丛枝菌根(AM)真菌Gigaspora margarita、Gigaspora rosea和Glomus intraradices与紫云英转化根双重共培养体系,并利用该体系研究不同Zn浓度对单接种与混合接种AM真菌侵染紫云英转化根的影响。结果表明,0.1 mmol/L Zn提高了大部分处理的根段侵染率、菌丝密度以及P的吸收,0.5mmol/L Zn抑制了AM真菌菌丝的生长,但能增加部分处理转化根对P的吸收。0.1 mmol/L Zn浓度下,单接种Glomus intraradices、混合接种Gigaspora margarita与Glomus intraradices的根段侵染率最高,并且在混合侵染根段中Glomus intraradices根段侵染率比Gigaspora margarita高12%。  相似文献   

10.
接种AM真菌对黑麦草吸收和分配Cd的影响   总被引:8,自引:0,他引:8  
采用盆栽实验方法模拟不同程度的Cd污染状况,研究接种丛枝菌根(AM)真菌对黑麦草生长和耐Cd毒性的影响。结果表明,土壤中Cd水平提高,明显增加了黑麦草的菌根侵染率,但对其生长无显著影响,表明黑麦草在磷营养和生长上对丛枝菌根真菌依赖性较小。Glomusmosseae和Glomusintaradices对Cd毒害均具有一定耐性,它们的存在明显促进了黑麦草对重金属Cd的吸收,强化了Cd在根系中的固持作用,进而减少了Cd向地上部的分配比例,减轻了Cd对地上部的毒害。这一特性对于Cd污染土壤的改良和牧草品质的保持具有重要意义。  相似文献   

11.
周艳菲  林会  赵斌 《湖北农业科学》2012,51(15):3193-3197
建立了菌根真菌(AMF)的DNA含量和TB染色所观察的侵染率之间的相关性曲线.将荧光定量PCR技术运用到AMF对植物紫云英(Astragalus sinicus L.)的侵染率检测中,实现了混合侵染条件下对菌根中AMF的种类和侵染率同时进行定性和定量检测.在盆栽实验中,利用所建立的方法检测了不同盐、磷浓度及交互作用对AMF侵染紫云英的影响,结果表明,不同磷浓度下,盐浓度的增加对Glomus mosseae和Glomus intraradices侵染率的影响不同.G.intraradices在混合接种中占有绝对的优势.从AMF对紫云英的促生效果上看,AMF侵染率的增加提高了紫云英的抗盐胁迫能力,促进了植物生长.  相似文献   

12.
丛枝菌根真菌对彩叶草耐寒性的影响   总被引:2,自引:0,他引:2  
于盆栽条件下研究了丛枝菌根(AM)真菌:Glomus mosseae、Glomus versiforme及其群落(G.mosseae、G.versiforme和Glomus intraradices)对观叶植物彩叶草(Coleus blumei)耐寒性的影响。结果表明,在15~5℃低温范围内,接种AM真菌处理能显著提高彩叶草叶片中SOD活性、可溶性蛋白和可溶性糖含量;降低叶片中丙二醛(MDA)含量和膜透性,其中以AM真菌群落接种的效果最佳。认为AM真菌能提高彩叶草的耐寒性。  相似文献   

13.
丛枝菌根真菌对君迁子贮藏营养及抗冻性的影响   总被引:6,自引:1,他引:5  
研究了3种丛枝菌根真菌Glomus mosseae(Nicol. & Gerd.)Gerd. & Trappe,Glomus intraradices Schenck& Smith和Glomus versiforme(Karsten) Berch接种对君迁子生长、贮藏营养和抗冻性的影响。结果表明,接种丛枝菌根真菌提高了枝干木质部和韧皮部的贮藏营养水平,木质部和韧皮部淀粉、韧皮部可溶性糖含量极显著高于对照,木质部可溶性糖、全氮含量显著高于对照;同时,接种后极显著提高了君迁子1年生苗的抗冻性,这与贮藏营养水平的提高相一致;接种后显著促进了君迁子苗木的生长,苗高、二次枝数、地上部干重、鲜重极显著高于对照,苗高提高了24 5%~50 7%,二次枝数增加了2 14~2 37条,地上部干重为对照的2 9~4 4倍。  相似文献   

14.
丛枝菌根真菌对番茄植株内源激素含量的影响   总被引:3,自引:0,他引:3  
于温室盆栽条件下对番茄(Lycospersicon esukurentamu)幼苗接种丛枝菌根(AM)真菌摩西球囊霉(Glomusmosseae)、地表球囊霉(Glomus versiforme)、根内球囊霉(Glomus intraradices)、幼套球囊霉(Glomus etunicatum)或珠状巨孢囊霉(Gigaspora margarita)10d后定期采样,应用间接酶联免疫吸附分析法(ELISA)测定各处理番茄植株根和叶片内源激素吲哚乙酸(IAA)、赤霉素(GA)、玉米素核苷(ZR)和脱落酸(ABA)含量。接种20d G.mosseae处理的番茄根系菌根侵染率高达68.5%,显著高于其他接种处理;供试AM真菌显著增加了番茄植株鲜重、株高、地上部和地下部干重、其根或叶内IAA、GA、ZR和ABA含量均显著高于不接种对照,以G.mosseae处理的根或叶中IAA、GA、ZR和ABA含量最高。  相似文献   

15.
AM真菌与施氮量对白术光合色素的影响   总被引:3,自引:0,他引:3  
以非灭菌土为生长基质,采用盆栽试验和室内分析相结合的方法,研究了不同施氮水平下接种AM真菌摩西球囊霉(Glomus mosseae)对白术光合色素的影响。结果表明,接种AM真菌提高了白术根系菌根侵染率和植株的光合色素含量,进而使光合作用增强;AM真菌的接种效应因施肥量不同而变化,施氮量为0.3~0.45 g/kg土时效果最好;适氮量和AM真菌结合有交互正效应,有利于白术生长。  相似文献   

16.
以非灭菌土为生长基质,采用盆栽试验和室内分析相结合的方法,研究了不同施氮水平下接种AM真菌摩西球囊霉(Glomus mosseae)对白术生物产量和氮素含量的影响。结果表明,接种AM真菌提高了白术根系菌根侵染率和植株的生物产量、全氮含量,改善了植株的氮肥利用率;AM真菌的接种效应因接种量和施肥量不同而变化,土壤中施氮量为0.3~0.45 g/kg时效果最好;适宜的施氮量和接种AM真菌有交互正效应,有利于白术生长。  相似文献   

17.
通过土培试验研究了施P量与AM真菌摩西球囊霉(Glomus mosseae)对黄芪生长和生理学特性的影响。结果表明,不同施P水平对AM真菌的接种效果有显著影响,接种AM真菌能够提高黄芪根系菌根侵染率,但高P量抑制了AM真菌对黄芪的侵染。不同施P水平下接种AM真菌能有效提高黄芪产量、植株可溶性糖和矿质元素含量,但对植株可溶性蛋白含量无显著影响。并且在施P量为56~112 mg P/kg土水平下AM真菌效果较好。  相似文献   

18.
以非灭菌土为生长基质,采用盆栽试验和室内分析相结合的方法,研究了不同施氮水平下接种AM真菌摩西球囊霉(Glomus mosseae)对白术叶片保护酶的影响.结果表明,接种AM真菌提高了白术根系菌根侵染率,植株SOD、CAT和POD保护酶系统的活性随AM真菌的接种效应和施肥量不同而变化.适氮量和AM真菌结合对白术有交互正效应.  相似文献   

19.
在温室沙培灭菌条件下,分别以AlPO4(Al-P)和FePO4·4H2O(Fe-P)为磷源,以枳[Poncirus trifoliate (L.) Raf.]实生苗为试材,以摩西球囊霉(Glomus mosseae)为菌剂,研究低磷胁迫条件下接种丛枝菌根真菌对枳利用难溶性磷酸盐及生长的影响.结果表明:接种菌根菌显著增加了枳的干重、含磷量及吸磷量;未接种条件下,枳可以利用一定量的Al-P和Fe-P,但更容易利用Fe-P;接种后,枳对Al-P的利用量显著高于不接种的,随Al-P的施用量提高,菌根效应、全株吸磷量、真菌吸磷最及真菌吸磷贡献率显著增加;枳对Fe-P的利用量接种与不接种差异显著,但菌根效应、全株吸磷量、真菌吸磷量、真菌吸磷贡献率及菌根效应均低于Al-P(换算成P2O5)处理;接种处理的基质中有效磷含量显著高于未接种的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号