首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF‐2) play a paramount role in the regulation of normal and pathologic angiogenesis in the ovary of mammals. Very little is known on the expression of these two growth factors in the avian ovary. The aim of this study was to determine for the first time the localization of VEGF and FGF‐2 in the ovary of the ostrich using immunohistochemical techniques to investigate the vascularization of the rapidly growing huge ostrich oocyte. At the oocyte periphery, distinct VEGF‐positive granules are visible. In our opinion, the expression of VEGF in the growing oocytes, which does not occur in mammals such as bovines, does not significantly contribute to angiogenesis in the theca interna and externa, where all the original and developing vessels are located, but may contribute to the mitoses and survival of granulosa cells during folliculogenesis. A different immunostaining can be demonstrated for FGF‐2: from late pre‐vitellogenic follicles, FGF‐2 immunopositivity can be observed at the inner perivitelline layer area. In the stroma, the smooth muscle cells of small arteries and the endothelial cells of venules and veins are positively stained for FGF‐2. Another interesting finding of this study is the occurrence of a significant number of VEGF‐ and FGF‐2 positive heterophilic granulocytes within the ovarian stroma, which migrate from the periphery of the ovary towards the growing follicles. We assume that the growth factors of the heterophilic granulocytes contribute significantly to the angiogenesis seen in both theca layers.  相似文献   

2.
The aim of this study was to document the expression and localization of VEGF system comprising of VEGF isoforms (VEGF 120, VEGF 164 and VEGF 188) and their receptors (VEGFR1 and VEGFR2) in buffalo corpus luteum (CL) obtained from different stages of the oestrous cycle. Real‐time RT‐PCR (qPCR), Western blot and immunohistochemistry were applied to investigate mRNA expression, protein expression and localization of examined factors. In general, all the components of VEGF system (the VEGF isoforms and their receptors) were found in the water buffalo CL during the oestrous cycle. The mRNA as well as protein expression of VEGF system was highest during the early and mid‐luteal phase, which later steadily decreased (p < 0.05) after day 10 to reach the lowest level in regressed CL. As demonstrated by immunohistochemistry, VEGF protein was localized predominantly in luteal cells; however, VEGFR1 and VEGFR2 were localized in luteal cells as well as in endothelial cells. In conclusion, the dynamics of expression and localization of VEGF system in buffalo corpora lutea during the luteal phase were demonstrated in this study, indicating the possible role of VEGF system in the regulation of luteal angiogenesis and proliferation of luteal as well as endothelial cells through their non‐angiogenic function.  相似文献   

3.
[目的]观察EP2受体激动剂Butaprost对奶牛子宫内膜上皮细胞中血管内皮生长因子(vascular endothelial growth factor,VEGF)基因表达的影响,探讨前列腺素类化合物对奶牛子宫内膜组织修复的机制。[方法]分离培养奶牛子宫内膜上皮细胞,采用荧光定量PCR技术检测EP2受体激动剂Butaprost对奶牛子宫内膜上皮细胞中VEGFmRNA表达的影响。[结果]10-6mol/L的Butaprost作用于奶牛子宫内膜上皮细胞4、8、16、24h可显著(P<0.05)或极显著(P<0.01)地促进VEGFmRNA的表达。[结论]EP2受体激动剂Butaprost能够促进奶牛子宫内膜上皮细胞中VEGF基因的表达。  相似文献   

4.
Cystic follicles have excess fluid derived from blood flow in the theca interna of the follicle; therefore, the vasculature network is related to cystic follicle formation. Vascular endothelial growth factor (VEGF) is a potent stimulator of blood vessel permeability and angiogenesis. The aim of this study was to examine the expression of VEGF receptors proteins and mRNA in cystic follicles to elucidate the VEGF system in cystic follicles. The expression of protein for VEGF receptors; fms‐like‐tyrosine kinase‐1 (Flt‐1) and foetal liver kinase‐1 (Flk‐1) was detected by the immunohistochemical method. The mRNA expression of Flt‐1 and Flk‐1 in cystic follicles was determined by RT‐PCR. Concentration of oestradiol‐17β and progesterone in the follicular fluid of cystic follicles was determined using ELISA. Flt‐1‐ and Flk‐1 proteins were localized in granulosa and theca interna cells and endothelial cells of theca layers. The intensity of Flt‐1 and Flk‐1 immunoreaction was similar among cystic follicles with various ratios of oestradiol‐17β/progesterone concentrations. The expression of Flt‐1 and Flk‐1 mRNA was similar, regardless of the ratio of oestradiol‐17β to progesterone in follicular fluid. These results demonstrate that cystic follicles have both VEGF receptors in the granulosa and theca interna layers, which may be responsible for the increased permeability of microvessels, causing the accumulation of follicular fluid in cystic follicles.  相似文献   

5.
血管内皮生长因子(Vascular endothelial growth factor, VEGF)是一种特异的作用于血管内皮细胞的生长因子,具有促进血管生成活性的功能性蛋白,也是新近发现的一种作用于毛囊的生长因子。毛囊具有周期性生长的特性,而在毛囊周期性变化过程中伴随着血管的新生。作者对毛囊周围血管新生及VEGF在该过程中的调控机制的研究进展予以综述。  相似文献   

6.
The corpus luteum (CL) is a transient reproductive gland that produces progesterone (P), required for the establishment and maintenance of pregnancy. Although the regulation of bovine luteal function has been studied for several decades, many of the regulatory mechanisms involved are incompletely understood. We are far from understanding how these complex mechanisms function in unison. The purpose of this overview is to stress important steps of regulation during the lifetime of CL. In the first part, the importance and regulation of angiogenesis and blood flow during CL formation is described. The results underline the importance of growth factors especially of vascular endothelial growth factor A (VEGF A) and basic fibroblast growth factor (FGF-2) for development and completion of a dense network of capillaries. In the second part, the regulation of function by endocrine/paracrine- and autocrine-acting regulators is discussed. There is now more evidence that besides the main endocrine hormones LH and GH local regulators as growth factors, peptides, steroids and prostaglandins are important modulators of luteal function. During early CL development until mid-luteal stage oxytocin, prostaglandins and P itself stimulate luteal cell proliferation and function supported by the luteotropic action of a number of growth factors. The still high mRNA expression, protein concentration and localization of growth factors [VEGF, FGF-1, FGF-2, insulin-like growth factors (IGFs)] in the cytoplasm of luteal cells during mid-luteal stage suggest maintenance (survival) functions for growth factors. In the absence of pregnancy regression (luteolysis) of CL occurs. Progesterone itself regulates the length of the oestrous cycle by influencing the timing of the luteolytic signal prostaglandin F2alpha (PGF2alpha) from the endometrium. The cascade of mediators afterwards is very complex and still not well-elucidated. Evidence is given for participation of blood flow, inflammatory cytokines, vasoactive peptides (angiotensin II and endothelin-1), reactive oxygen species, angiogenic growth factors (VEGFs, FGFs, IGFs) and decrease of the classical luteotropic components as LH-R, GH-R, P450(scc) and 3beta-HSD. Despite of differences in methodology and interpretations, progress has been made and will continue to be made.  相似文献   

7.
The corpus luteum (CL) of the estrous cycle in the cow is a dynamic organ which has a life time of approximately 17-18 days. The main function of the CL is to secrete a large amount of progesterone (P) thereby supporting the achievement of pregnancy. As the CL matures, the steroidogenic cells establish contact with many capillaries and the matured CL is composed of many vascular endothelial cells that account for up to 50% of all CL cells. The bovine CL produces several major angiogenic and vasoactive foctors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin-1 and -2 (ANPT-1 and -2), prostaglandin F (PGF), endothelin-1 (EDN1), angiotensin II (Ang II) and nitric oxide (NO). These factors regulate P secretion directly and/or indirectly within the CL. Moreover, different actions of PGF in the early cycle CL (non-luteolytic) and the mid cycle CL (luteolytic) may provide insight into the luteolysis cascade in the cow. The aim of the present review is to describe the current concepts of the local mechanisms for the cascade of development and regression of the bovine CL as regulated by luteal angiogenic and vasoactive factors.  相似文献   

8.
The aim of this study was to investigate the course of expression of platelet‐activating factor (PAF), PAF‐receptor (PAF‐R), epidermal growth factor (EGF), EGF‐R, vascular endothelial growth factor (VEGF), VEGF‐R1 and VEGF‐R2 in uterine tissue during canine pregnancy. For this purpose, 20 bitches were ovariohysterectomized at days 10–12 (n = 10), 18–25 (n = 5) and 28–45 (n = 5) days after mating, respectively. The pre‐implantation group was proven pregnant by embryo flushing of the uterus after the operation, the others by sonography. Five embryo negative, that is, non‐pregnant, bitches in diestrus (day 10–12) served as controls. Tissue samples from the uterus (placentation sites and horn width, respectively) were excised and snap‐frozen in liquid nitrogen after embedding in Tissue Tec®. Extraction of mRNA for RT‐PCR was performed with Tri‐Reagent. In the embryos, mRNA from all factors except VEGF was detected. In the course of pregnancy, significantly higher expression of PAF and PAFR as well as VEGF and VEGFR2 during the pre‐implantation stage than in all other stages and a strong upregulation of EGF during implantation were characteristic. The course of EGF was in diametrical opposition to the course of the receptor. These results point towards an increased demand for VEGF, EGF and PAF during the earliest stages of canine pregnancy.  相似文献   

9.
Angiogenesis, which is essential for malignancies to progress, depends on various signalling proteins including vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors 1 and 2 (VEGFR-1 and VEGFR-2). Microvessel density (MVD) is frequently used to evaluate angiogenesis. This study assessed the relationship between expression of VEGF, VEGFR-1 and VEGFR-2, MVD and the survival time in dogs with lymphoma. VEGF, VEGFR-1 and VEGFR-2 expression was evaluated immunohistochemically and microvessel profiles were counted in 34 lymphoma samples. Seventy-nine percent of the samples showed high VEGF expression and 62% were highly positive for VEGFR-1; VEGFR-2 immunoreactivity was mostly negative. Dogs treated with chemotherapy had a median survival time of 266days, but no significant relationships were found between overall survival time, MVD and expression of VEGF, VEGFR-1 or VEGFR-2. In this study, VEGF its receptors and the MVD were no prognostic factors in dogs with lymphoma.  相似文献   

10.
This study was designed to verify whether fasting influences vascular endothelial growth factor (VEGF) production and VEGF, VEGF receptor-2 (VEGFR-2) as well as endothelin (ET) system members (endothelin converting enzyme-1, ECE-1; ET-1; endothelin receptor type A, ET-A) mRNA expression in pig corpora lutea; furthermore, we wanted to assess whether fasting affects steroidogenesis in luteal cells. Eight prepubertal gilts were induced to ovulate and were randomly assigned to two groups: (A) n = 4, normally fed; and (B) n = 4, fasted for 72 h starting 3 days after ovulation. At the end of fasting, ovaries were removed from all the animals and corpora lutea (CLs) were collected. VEGF and steroid levels in luteal tissue were determined by ELISA and RIA, respectively; VEGF, VEGFR-2, ET-1, ET-A and ECE-1 mRNAs expression was measured by real-time PCR. VEGF protein levels were similar in the two groups, while all steroid (progesterone, testosterone, estradiol 17beta) concentrations were significantly (P < 0.001) higher in CLs collected from fasted animals compared with those from normally fed gilts. VEGF, VEGFR-2, ET-1 and ECE-1 (but not ET-A) mRNA expression was significantly lower (P < 0.05) in fasted versus normally fed animals. The overall conclusion is that all the parameters studied are affected by feed restriction, but the mechanisms activated at luteal level are possibly not fully adequate to compensate for nutrient shortage.  相似文献   

11.
Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4–6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins.  相似文献   

12.
The role of VEGF and its receptors has extensively been studied in tumours. In contrast, the presence and function of VEGF in normal tissues like the lymph node has not been given much attention until now. To study the expression of VEGF, VEGFR-1, VEGFR-2 and VEGFR-3 in the heterogenous cell population of the canine lymph node, laser capture microdissection was used to isolate pure cell fractions of macrophages, lymphocytes, endothelial cells, and capsule cells of the canine lymph node. To clarify if macrophages take up VEGF from the environment or express VEGF, VEGFR-1, VEGFR-2 or VEGFR-3 themselves, the mRNA expression was studied by real-time RT-PCR. After RNA isolation and subsequent analysis with the Agilent 2100 Bioanalyzer only RNA samples with appropriate RNA integrity were used for real-time PCR. For the accurate relative quantification of mRNA expression levels several reference genes were evaluated. It was shown that the reference genes HPRT1 and B2M serve as reliable reference genes for gene expression studies in the canine lymph node. Expression data analysis revealed no significant difference in VEGF expression levels between endothelial cells and the other investigated cells. VEGFR-1 expression was significantly lower in lymphocytes. Also macrophages showed a highly significant lower expression of VEGFR-1 compared to endothelial cells. In addition, the VEGFR-2 expression in lymphocytes and macrophages was significantly lower in comparison to endothelial cells. We were not able to detect VEGFR-3 mRNA in the lymphocyte cell population, in macrophages and cells of the lymph node capsule VEGFR-3 was expressed at very low levels. It was shown that laser capture microdissection in combination with quantitative real-time PCR is a valuable tool for studying the expression patterns of specific cells in their microenvironment. Our results support the hypothesis that VEGF and its receptors have other biological roles besides stimulating angiogenesis in the normal lymph node. These biological functions need to be clarified in further studies.  相似文献   

13.
To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and -2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance.  相似文献   

14.
Polyclonal antisera for vascular endothelial growth factor (VEGF) and its two main receptor molecules, VEGF-I (Flt) and VEGF-II (KDR), were used in a conventional immunocytochemical staining method to localize these angiogenic ligand molecules in the endometrium and placenta of the mare during the oestrous cycle and pregnancy. The anti-VEGF and anti-Flt sera both labelled the lumenal and glandular epithelia of the endometrium throughout the oestrous cycle and both the invasive trophoblast cells of the endometrial cups and the non-invasive trophoblast of the allantochorion in pregnancy. The anti-KDR serum likewise stained the maternal and foetal epithelial layers during the oestrous cycle and pregnancy and it also labelled fibroblast-like cells in the endometrial and allantoic stromas and the endothelium of foetal and maternal capillaries. The results demonstrated that constant supplies of the principal vasculogenic and angiogenic factor, VEGF, and its two major receptors, Flt and KDR, are available on both the maternal and foetal sides of the placental barrier throughout gestation in the mare. They are presumed to facilitate the continuing development of the extensive foetal and maternal capillary networks that are such prominent features within the microplacentomes of the diffuse, epitheliochorial equine placenta.  相似文献   

15.
Water buffaloes are easily adaptable animals, whose raising and economical exploitation have been growing in the last three decades all over the world. Hyperstimulation of ovarian function in this species is a common technique aiming to improve reproductive performance. Superovulatory treatment affects corpus luteum (CL) function, which is highly correlated to angiogenic process. The aim of this study was therefore to assess the temporal protein and mRNA expression of VEGF and its receptors in the CL of non-treated and superovulated buffaloes. For that purpose blood samples and CL from 36 healthy (30 untreated, groups 1–5, and 6 superovulated, group 6) non-pregnant buffaloes were collected and the samples were divided into 6 groups according to the age of CL. Plasma samples were submitted to RIA to measure progesterone concentration and CL were subjected to immunohistochemistry and real time PCR for VEGF (vascular endothelial growth factor), Flt-1 (fms-like tyrosine kinase receptor 1) and KDR (kinase insert domain containing region). The VEGF system protein and mRNA expression during CL life span of untreated animals showed a specific time-dependent profile, although protein did not always reflect mRNA concentrations. VEGF expression in luteal cells was high correlated to plasma progesterone levels. Superovulated CL showed a significant increase of the VEGF-system protein and a significant decrease of mRNA expression compared to untreated animals in the same stage of the oestrous cycle. We conclude that VEGF, Flt-1 and KDR protein and mRNA expression in buffalo CL is dependent of estrous cycle stage and superovulatory treatment is able to increase the translation rate of this system.  相似文献   

16.
We hypothesized that the special hormonal environment present in animals with cystic ovarian disease (COD) interferes with cellular production of growth factors (GFs). The objective of the present study was to characterize the expression of insulin-like growth factor (IGF)-I, fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in induced COD using immunohistochemistry. We used an experimental model based on the exposure to constant light of adult rats during 15 weeks. We quantified the expression of GFs in cystic and normal ovaries by the Immunohistochemical Stained Area (IHCSA). In animals with COD, a significant reduction in the IHCSA of IGF-I in the follicular fluid, theca and granulosa layers of cysts occurred; and an increase in the interstitial tissue with regard to the control group. We found moderate immunoreactivity of FGF-2 in granulosa and theca layers of secondary and tertiary follicles and lower expression in the granulosa and theca interna layers of cystic follicles. Immunoexpression of VEGF was found in granulosa and theca cells of secondary and tertiary follicles. This study shows changes in the ovarian expression of IGF-I, FGF-2 and VEGF in induced COD. We can propose that an alteration in the control of the follicular dynamic, through the GFs, added to other features, could be involved in the ovarian cyst pathogenesis.  相似文献   

17.
The expression of 5 markers associated with angiogenesis, proliferation, and apoptosis was studied in 26 canine simple mammary gland adenocarcinomas (SMGAs). The adenocarcinomas were graded histologically, and tissue sections were immunohistochemically stained for the expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), intra-tumor microvessel density, and tumor proliferation (PI) using antibodies against VEGF, VEGFR-2, von Willebrand factor, and Ki-67 antigen, respectively. Apoptotic indices (AI) were determined by an apoptosis assay. Markers VEGF and VEGFR-2 were detected in 96% and 100% of SMGAs, respectively. A high correlation between histologic grade and PI (r = 0.73), a moderate correlation between VEGF and histologic grade (r = 0.33), and between VEGF and PI (r = 0.42) were found. There was a significant difference in median PI among the 3 histologic grade groups (r < 0.05). Vascular endothelial growth factor may stimulate tumor cell proliferation through an autocrine loop, since VEGF and VEGFR-2 were expressed in most tumors.  相似文献   

18.
In the ovary, the development of new capillaries from pre‐existing ones (angiogenesis) is a complex event regulated by numerous local factors. The dominant regulators of angiogenesis in ovarian follicles and corpora lutea are the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin‐like growth factor (IGF), angiopoietin (ANPT) and hypoxia‐inducible factor (HIF) family members. Antral follicles in our study were classified according to the oestradiol‐17‐beta (E2) content in follicular fluid (FF) and were divided into five classes (E2 < 0.5, 0.5–5, 5–20, 20–180 and >180 ng/ml FF). The corresponding sizes of follicles were 5–7, 8–10, 10–13, 12–14 and >14 mm, respectively. Follicle tissue was separated in theca interna (TI) and granulosa cells (GC). The corpora lutea (CL) in our study were assigned to the following stages: days 1–2, 3–4, 5–7, 8–12 13–16 and >18 of the oestrous cycle and months 1–2, 3–4, 6–7 and >8 of pregnancy. The dominant regulators were measured at mRNA and protein expression levels; mRNA was quantified by RT‐qPCR, hormone concentrations by RIA or EIA and their localization by immunohistochemistry. The highest expression for VEGF‐A, FGF‐2, IGF‐1 and IGF‐2, ANPT‐2/ANPT‐1 and HIF‐1‐alpha was found during final follicle maturation and in CL during the early luteal phase (days 1–4) followed by a lower plateau afterwards. The results suggest the importance of these factors for angiogenesis and maintenance of capillary structures for final follicle maturation, CL development and function.  相似文献   

19.
The corpus luteum (CL) is a temporary endocrine gland producing a large amount of progesterone, which is essential for the establishment and maintenance of pregnancy. Galectin-1 is a β-galactose-binding protein that can modify functions of membrane glycoproteins and is expressed in the CL of mice and women. However, the physiological role of galectin-1 in the CL is unclear. In the present study, we investigated the expression and localization of galectin-1 in the bovine CL and the effect of galectin-1 on cultured luteal steroidogenic cells (LSCs) with special reference to its binding to the glycans on vascular endothelial growth factor receptor-2 (VEGFR-2). Galectin-1 protein was highly expressed at the mid and late luteal stages in the membrane fraction of bovine CL tissue and was localized to the surface of LSCs in a carbohydrate-dependent manner. Galectin-1 increased the viability in cultured LSCs. However, the viability of LSCs was decreased by addition of β-lactose, a competitive carbohydrate inhibitor of galectin-1 binding activity. VEGFR-2 protein, like galectin-1, is also highly expressed in the mid CL, and it was modified by multi-antennary glycans, which can be recognized by galectin-1. An overlay assay using biotinylated galectin-1 revealed that galectin-1 directly binds to asparagine-linked glycans (N-glycans) on VEGFR-2. Enhancement of LSC viability by galectin-1 was suppressed by a selective inhibitor of VEGFR-2. The overall findings suggest that galectin-1 plays a role as a survival factor in the bovine CL, possibly by binding to N-glycans on VEGFR-2.  相似文献   

20.
目的研究血管内皮生长因子(vascular endothelial growth factor,VEGF)在绵羊肺脏中的表达分布特征。方法取成年绵羊肺脏组织,制备石蜡切片,利用HE染色法观察绵羊肺脏组织的形态结构,采用免疫组织化学方法检测VEGF在绵羊肺脏组织中的分布。结果肺脏的各类型细胞均可见VEGF表达,在绵羊肺脏导气部的细支气管和终末细支气管的上皮细胞,呼吸部的肺泡管和呼吸性细支气管的上皮细胞,以及肺的血管内皮细胞均可检测到VEGF的强阳性表达信号。结论VEGF广泛分布于绵羊肺脏组织中,对其形态结构和功能的维持具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号