共查询到15条相似文献,搜索用时 93 毫秒
1.
基于模糊集理论的苹果表面阴影去除方法 总被引:2,自引:7,他引:2
为了提高阴影影响下的苹果目标提取精度,该文提出了一种基于模糊集理论的苹果表面阴影去除方法。该方法将含阴影图像作为一个模糊矩阵,利用所设计的隶属函数进行图像去模糊化处理,达到图像增强的目的,进而削弱苹果表面阴影对目标分割的影响。为了验证算法的有效性,采用基于灰度阈值和基于颜色聚类2种算法对去除阴影前后的目标图像进行分割,并选用分割误差、假阳性率、假阴性率和重叠系数4项指标进行了分析比较,试验结果表明,去除阴影之后,2种分割算法所提取的苹果目标区域较去除阴影之前有了较大的提高,2种分割算法的平均分割误差分别为3.08%和3.46%,比去除阴影之前降低了20.53%和25.92%,假阳性率、假阴性率分别降低了29.79%、29.98%和21.25%、29.83%,重叠系数分别提高30.96%和24.55%。与灰度变换法去除阴影后分割的效果比较表明,该方法的平均分割误差降低了29.23%,假阳性率、假阴性率分别降低了30.97%和20.40%,重叠系数提高了26.60%;与直方图均衡化法的比较表明,分割误差降低了25.59%,假阳性率、假阴性率分别降低了22.74%和27.56%,而重叠系数提高了27.43%。这一系列数据表明,基于模糊集理论的阴影去除方法具有较好的阴影去除效果。经过去除阴影后,可以获得更高的目标分割性能,目标提取精度显著提高,表明将模糊集方法应用于苹果目标的阴影去除可以有效地提高苹果目标区域的提取精度。 相似文献
2.
为了解决苹果采摘机器人的果实识别率在不同光照条件下表现不稳定的问题,该文提出一种基于光照无关图的苹果识别方法。该方法首先采用中值滤波法对苹果图像进行预处理,然后对处理后的彩色图像提取光照无关图,消除光照变化的影响,再采用Ostu阈值分割法进行目标果实的提取。最后通过对苹果图像进行识别试验的结果表明,在4种不同的光照情况下,采用基于光照无关图的识别方法得出的识别率的稳定度是不采用光照无关图的识别方法的3倍,并且其平均识别率也高达90.45%。基于光照无关图的苹果识别方法能够克服光照变化对目标识别带来的负面影 相似文献
3.
基于光照无关图的农业机器人视觉导航算法 总被引:2,自引:6,他引:2
完成沿作物行的行走作业是农业机器人视觉导航系统的一个基础功能,但是由于田间环境的复杂性,比如阴影的存在和天气的恶劣变化等外界因素的影响使导航参数的提取变得困难。该研究针对农业机器人视觉导航中存在的阴影干扰问题,采用基于光照无关图的方法去除导航图像中的阴影,然后采用增强的最大类间方差法进行图像分割和优化的Hough变换提取作物行中心线,最终通过坐标转换获得导航参数。最后,通过作物行跟踪试验表明,基于光照无关图的阴影去除方法不仅满足了导航实时性的要求,而且使农业机器人在光照变化的情况下导航参数提取的鲁棒性有了更大的提高。 相似文献
4.
有效的阴影检测和去除算法会大大提高自然环境下果实识别算法的性能,为农业智能化提供技术支持。该研究采用超像素分割的方法,将一张图像分割成多个小区域,在对图像进行超像素分割的基础上,对自然光照下的果园图像阴影区域与非阴影区域进行对比分析,探索8个自定义特征用于阴影检测。然后采用SVM的方法,结合8个自主探索的自定义特征,对图像中每个超像素分割的小区域进行检测,判断每个小区域是否处于阴影中,再使用交叉验证方法进行参数优化。根据Finlayson的二维积分算法策略,对检测的每一个阴影区域进行阴影去除,获得去除阴影后的自然光照图像。最后进行阴影检测的识别准确性试验,试验结果表明,本研究的阴影检测算法的平均识别准确率为83.16%,经过阴影去除后,图像的阴影区域亮度得到了提高,并且整幅图像的亮度更为均匀。该研究可为自然环境下机器人识别果实及其他工农业应用场景提供技术支持。 相似文献
5.
水果全表面图像信息是否完整,直接影响水果表面颜色和缺陷检测的结果。该文提出了一种基于尺度不变特征转换(SIFT,scale invariant feature transform)算子的图像拼接方法,实现多视角水果图像的拼接以获取完整的水果表面信息。首先以15°固定间隔旋转水果以获取各视角下的连续图像,在图像2R-G-B通道下实现图像目标和背景分离,并对目标图像进行灰度直方图均衡化以增强其纹理信息,有利于特征点的提取。运用SIFT算法提取图像特征点,因为特征向量数量多、维数高,采用普通的K-D树算法搜索匹配点将消耗大量时间,因此将图像划分为16个区域,通过多次试验可知中间4个区域为特征点是最容易匹配的区域,这样就缩小匹配点可能存在的区域。采用极线几何约束法和改进型随机抽样一致(random sample consensus,RANSAC)算法以提高图像拼接精度,减少匹配时间。根据平移矩阵,对前后图像进行拼接,从而实现水果表面图像的完整拼接。试验结果表明:该算法平均匹配精度提高35.0%,平均拼接时间为2.5 s,较传统K-D树算法缩短67.8%时间,拼接效果还原率为93.9%。该文算法具有一定的尺度、旋转以及仿射变换不变性,适用于随机呈现的不同姿态球状水果图像拼接。该研究可为基于机器视觉的农产品品质检测和等级划分提供科学参考。 相似文献
6.
基于数字图像处理的苹果表面缺陷分类方法 总被引:9,自引:4,他引:9
为了实现苹果分级完全自动化,研究了苹果表面缺陷图像分类方法。提取了苹果表面缺陷图像区域的特征参数。根据表面缺陷特征,同时考虑缺陷形状的投影畸变,提出了一种苹果表面缺陷分类方法。分类方法利用二叉树将一个复杂的多模式分类问题分解为多级的、相对简单的二类模式分类问题,并采用人工神经网络与阈值判别相结合的方法,将苹果表面缺陷分为碰压伤、刺伤、裂果、病虫果和虫伤。试验表明:该分类方法能将苹果表面缺陷进行分类。 相似文献
7.
为了提高采摘机器人的适用性和工作效率,保证成熟苹果果实的及时采摘,需要机器人具有夜间连续识别、采摘作业的能力。针对夜间苹果图像的特点,该文提出一种基于引导滤波的具有边缘保持特性的Retinex图像增强算法。利用颜色特征分量采用具有边缘保持功能的引导滤波来估计出照度分量;进而利用单尺度Retinex算法对图像进行对数变换获得仅包含物体本身特性的反射分量图像;分别对照度分量和反射分量图像增强后,再合成为新的夜间苹果的增强图像。文中选取30幅荧光灯辅助照明下采集到的夜间苹果图像进行试验的结果显示,该文增强算法处理后的30幅图像的平均灰度值,分别比原始图像、直方图均衡算法、同态滤波算法和双边滤波Retinex算法处理后的图像平均提高230.34%、251.16%、14.56%、7.75%,标准差平均提高36.90%、-23.95%、53.37%、28.00%,信息熵平均提高65.88%、99.68%、66.85%、17.53%,平均梯度提高161.70%、64.71%、139.89%、17.70%。且该文算法较双边滤波Retinex方法的运行时间平均减少74.56%。表明该文算法在夜间图像增强效果和运行时间效率上有明显的提高,为后续夜间图像的分割和目标识别提供了保障。 相似文献
8.
基于平滑轮廓对称轴法的苹果目标采摘点定位方法 总被引:1,自引:5,他引:1
果实采摘点的精确定位是采摘机器人必须解决的关键问题。鉴于苹果目标具有良好对称性的特点,利用转动惯量所具有的平移、旋转不变性及其在对称轴方向取得极值的特性,提出了一种基于轮廓对称轴法的苹果目标采摘点定位方法。为了解决分割后苹果目标边缘不够平滑而导致定位精度偏低的问题,提出了一种苹果目标轮廓平滑方法。为了验证算法的有效性,对随机选取的20幅无遮挡的单果苹果图像分别利用轮廓平滑和未进行轮廓平滑的算法进行试验,试验结果表明,未进行轮廓平滑算法的平均定位误差为20.678°,而轮廓平滑后算法平均定位误差为4.542°,比未进行轮廓平滑算法平均定位误差降低了78.035%,未进行轮廓平滑算法的平均运行时间为10.2ms,而轮廓平滑后算法的平均运行时间为7.5ms,比未进行轮廓平滑算法平均运行时间降低了25.839%,表明平滑轮廓算法可以提高定位精度和运算效率。利用平滑轮廓对称轴算法可以较好地找到苹果目标的对称轴并实现采摘点定位,表明将该方法应用于苹果目标的对称轴提取及采摘点定位是可行的。 相似文献
9.
10.
基于主成分与聚类分析的苹果加工品质评价 总被引:29,自引:13,他引:29
为了探讨苹果品种间理化品质的差异,给选育新品种和苹果合理加工利用提供理论支持,采集了30个苹果品种为试材进行模式识别分析。该试验所用苹果在2011年8-10月份按照苹果可采成熟度(九成熟)在辽宁省兴城市国家种质资源圃进行采集。试验测定了单果质量、体积、密度、果皮颜色、硬度、糖酸比、维生素C等20项理化品质指标,采用描述性统计、主成分和聚类分析方法对苹果品种和品质关系进行了分析。结果显示,30个品种苹果的密度、果型指数和含水率3项指标未表现出差异。对剩余17项品质指标进行了主成分分析,依据主成分解释总变量和碎石图提取了6个主成分反映原变量的82.3%的信息。第一主成分主要综合了可滴定酸、糖酸比及固酸比的信息即口尝品质因子;第二主成分主要综合了L值,a值和b值的信息,命名为颜色因子;其余主成分依次为甜度因子、质构因子、内在品质因子和果个大小因子。结合主成分得分图直观地显示了苹果品种和理化指标间关系:辽伏、理想、早金冠和瑞光分布在PC1和PC2的正向区间,糖酸比和固酸比值较大、口感好,但是果皮颜色较绿,是品质较好的早熟苹果;寒富、赤阳和红富士依次落在PC1和PC2第四区间,食用品质好、果皮颜色较红,是较为常见的晚熟苹果。分布在第二区间的普利阿姆,白星,Pvma果皮颜色绿且口感酸涩,不适宜鲜食,这些品种可能较为适宜进行加工。第三区间品种固酸比、甜酸比取值较小但是果皮颜色红,为选育果皮颜色受消费者喜爱且内在品质好的早熟品种提供了理论支持。聚类分析将30个品种苹果分为5类,聚类结果与主成分得分图结果基本一致,该试验初步判定30个品种苹果是否适宜鲜食,为苹果品种选育和加工应用利用提供理论依据。 相似文献
11.
基于Snake模型与角点检测的双果重叠苹果目标分割方法 总被引:1,自引:4,他引:1
为了实现重叠苹果目标的精确分割,提出了一种Snake模型与角点检测相结合的重叠苹果目标分割方法。该方法首先利用Snake模型得到重叠苹果目标的轮廓,接着采用提出的基于距离测度的角点检测算法寻找重叠苹果目标的角点,针对距离扰动产生伪角点的问题,采用3级db1小波变换得到不含细节信号的近似距离信号,并通过Spline样条内插算法使其恢复到原始信号的长度,从而去除伪角点,最后提出了一种基于长轴分割准则的分割点选取方法并实现了重叠苹果目标的分割。为了验证算法的有效性,利用20幅重叠苹果目标进行了试验,并与人工计算得到的分割线进行了对比,试验结果表明,利用文中算法分割重叠苹果目标的最大误差为13.27°,最小误差为1.20°,平均误差为6.41°,表明Snake模型与角点检测算法相结合对重叠苹果目标具有较好的分割性能,将该方法应用于重叠苹果目标的分割是可行的。 相似文献
12.
基于MFICSC算法的生菜图像目标聚类分割 总被引:1,自引:1,他引:1
生菜图像目标分割是基于图像处理的生菜生理信息无损检测的前提。为了解决因生菜富含水分使得图像采集镜头反光而导致生菜叶片图像灰度分布不均的问题,该文采用一种修正的图像灰度均衡算法对生菜图像进行灰度均衡处理,应用混合模糊类间分离聚类算法(MFICSC)进行生菜图像目标分割,使总体类间距离最大化,能够同时生成模糊隶属度和典型值,对处理噪声数据和克服一致性聚类问题均表现良好。分别采用MFICSC算法和Otsu算法进行了生菜图像目标分割对比试验,结果表明MFICSC算法具有较好的聚类准确度,效果优于传统Otsu分割算法。 相似文献
13.
利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立。该文分别按东南和西北2个方向获取富士苹果成熟期的40株果树的80幅图像,通过果实特征提取,获取东南方向识别出的图斑数量(参数1)、西北方向识别出的图斑数量(参数2)、东南方向识别出的图斑像素面积(参数3)、西北识别出的图斑像素面积(参数4),分别以识别出的4个参数及双方向图斑数量之和(参数5)、双方向图斑像素面积之和(参数6)共6个参数为自变量,以获取的单株产量信息为因变量,以奇数组20株果树为建模数据集建立线性回归模型。结果表明以参数5构建的产量估测模型的决定系数R2最高为0.81,相对均方根差(NRMSE)值最低为0.11,说明以该参数构建的模型其估测效果最好;进一步利用以参数5构建的估测模型对偶数组20株果树进行验证,其NRMSE值为0.16,估测结果较好,但也存在估测产量较大波动的情况。深入讨论引起估测偏差的情况,后期研究应重点提高逆光、弱光照条件下的成熟期苹果的识别率,及解决由于单果因遮挡被分离而被识别为多果的情况和多果因重叠被识别为单果的情况,以提高识别效果,进而提高产量模型估测效果。 相似文献
14.
基于凸壳理论的遮挡苹果目标识别与定位方法 总被引:1,自引:8,他引:1
为实现受果树枝叶遮挡、果实间相互遮挡的果实目标识别,该文提出了一种基于凸壳理论的遮挡苹果目标识别方法。该方法首先将图像由RGB颜色空间转换至L*a*b*颜色空间,并利用K-means聚类算法将图像分为树叶、枝条和果实3个类别,然后利用形态学方法对果实目标进行处理,得到目标边缘并进行轮廓跟踪,接着利用目标边缘的凸壳提取连续光滑的轮廓曲线,最后估计该光滑曲线段的圆心及半径参数,实现遮挡果实的定位。为了验证该算法的有效性,利用Hough圆拟合算法进行了对比试验,试验结果表明,该方法的平均定位误差为4.28%,低于Hough圆拟合方法的平均定位误差16.3%,该方法显著提高了目标定位的精度,能够有效识别遮挡苹果。 相似文献
15.
基于改进Graph Cut算法的生猪图像分割方法 总被引:1,自引:4,他引:1
生猪图像分割为生猪行为特征提取、参数测量、图像分析、模式识别等提供易于理解和分析的图像表示,准确有效的生猪图像分割是生猪行为理解和分析的基础.针对传统Graph Cut算法分割精度差、分割效率低及不能准确分割特定目标的问题,该文结合交互分水岭算法,提出基于改进Graph Cut算法的生猪图像分割方法.采用交互分水岭算法对图像进行区域划分,划分的各个区域块看作超像素,用超像素替代传统加权图中的像素点,构造新的网络图替代传统加权图,重新构造能量函数以完成前景背景的有效分割.试验结果表明:该方法峰值信噪比平均范围为[30,40],结构相似度平均范围为[0.9,1],两种评价准则的结果与主观评价一致,图像分割质量、精度得到明显提升;平均耗时缩短到传统GraphCut算法的33.7%,提高了分割效率;在复杂背景、噪声干扰、光照强度弱等条件下可以快速分割出特定目标生猪,具有较高鲁棒性. 相似文献