首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
The present study investigates the performance of recommended doses of chemical fertilizer (RDF) and locally isolated strains of Azotobacter, Azospirillum, and arbuscular mycorrhizal fungi (AMF) inoculated either solely or in combination with seedlings of Red Delicious and Lal Ambri cultivars. The RDF (T7) treatment recorded significantly greater vegetative growth and leaf nitrogen (N), phosphorus (P), and potassium (K) contents over multi-inoculation of Azotobacter + Azospirillum + AMF (T6) but root colonization and microbial counts decreased significantly. Inoculation of Azotobacter + Azospirillum + AMF (T6) was superior over sole and dual inoculation with respect to vegetative growth and nutrient contents in leaves and soil but had significant greater counts of Azotobacter, Azospirillum, and Pseudomonas than RDF. Greatest root colonization (34.0 and 35.1%) was recorded in Azotobacter + Azospirillum + AMF (T6) followed by AMF (T4) treatment (29.3 and 32.0%) in Red Delicious and Lal Ambri seedlings, respectively. Overall, it can be inferred that multiinoculation of synergistically interacting bioinoculants may be helpful in the establishment of healthy organic apple orchards.  相似文献   

2.
The effects of salinity on four faba bean (Vicia faba L) cultivars [Giza 429, Giza 843, Misr 1 (Orobanche-tolerant), and Giza 3 (Orobanche-susceptible)] and soil properties were investigated in a pot experiment with addition of 0, 50, and 100 mM sodium chloride (NaCl) for 9 weeks. Salinity significantly decreased calcium (Ca2+), magnesium (Mg2+), potassium (K+), bicarbonate (HCO3 ?), and sulfate (SO4 2?) while significantly increasing sodium (Na+), chloride (Cl?), pH, and electrical conductivity (EC; dS m?1). Root length density (cm cm?3), root mass density (mg cm?3), total dry weight, and salt-tolerance indexes were significantly reduced as a result of application of salinity. The results presented support evidence on the positive relationship between Orobance tolerance and salt tolerance in the three cultivars (Giza 429, Giza 843, and Misr 1). This adaptation was mainly due to a high degree of accumulation of inorganic nitrogen (N), phosphorus (P), K+, Ca2+, and Mg2+ and lesser quantities of Na+ and Cl?, as well as greater K+/Na+ and Ca2+/Na+ ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号