首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective To compare recovery times and quality following maintenance of anaesthesia with sevoflurane or isoflurane after a standard intravenous induction technique in horses undergoing magnetic resonance imaging (MRI). Study design Prospective, randomised, blinded clinical study. Animals One hundred ASA I/II horses undergoing MRI. Materials and methods Pre‐anaesthetic medication with intravenous acepromazine and romifidine was followed by induction of anaesthesia with diazepam and ketamine. The animals were randomised into two groups to receive either sevoflurane or isoflurane in oxygen. Horses were subjectively scored (0–5) for temperament before sedation, for quality of sedation, induction and maintenance and anaesthetic depth on entering the recovery area. Recoveries were videotaped and scored by an observer, unaware of the treatment, using two scoring systems. Times to the first movement, head lift, sternal recumbency and standing were recorded along with the number of attempts to achieve sternal and standing positions. Variables were compared using a Student t‐test or Mann–Whitney U‐test (p < 0.05), while the correlation between subjective recovery score and other relevant variables was tested calculating the Spearman Rank correlation coefficient and linear regression modelling performed when significant. Results Seventy‐seven horses entered the final analysis, 38 received isoflurane and 39 sevoflurane. Body mass, age and duration of anaesthesia were similar for both groups. There were no differences in recovery times, scoring or number of attempts to achieve sternal recumbency and standing between groups. Weak, but significant, correlations were found between the subjective recovery score for the pooled data from both groups and both temperament and time in sternal recumbency. Conclusions No differences in recovery times or quality were detected following isoflurane or sevoflurane anaesthesia after intravenous induction. Clinical relevance Sevoflurane affords no obvious advantage in recovery over isoflurane following a standard intravenous induction technique in horses not undergoing surgery.  相似文献   

2.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

3.
REASONS FOR PERFORMING STUDY: Lidocaine and ketamine are administered to horses as a constant rate infusion (CRI) during inhalation anaesthesia to reduce anaesthetic requirements. Morphine decreases the minimum alveolar concentration (MAC) in some domestic animals; when administered as a CRI in horses, morphine does not promote haemodynamic and ventilatory changes and exerts a positive effect on recovery. Isoflurane-sparing effect of lidocaine, ketamine and morphine coadministration has been evaluated in small animals but not in horses. OBJECTIVES: To determine the reduction in isoflurane MAC produced by a CRI of lidocaine and ketamine, with or without morphine. HYPOTHESIS: Addition of morphine to a lidocaine-ketamine infusion reduces isoflurane requirement and morphine does not impair the anaesthetic recovery of horses. METHODS: Six healthy adult horses were anaesthetised 3 times with xylazine (1.1 mg/kg bwt i.v.), ketamine (3 mg/kg bwt i.v.) and isoflurane and received a CRI of lidocaine-ketamine (LK), morphine-lidocaine-ketamine (MLK) or saline (CTL). The loading doses of morphine and lidocaine were 0.15 mg/kg bwt i.v and 2 mg/kg bwt i.v. followed by a CRI at 0.1 mg/kg bwt/h and 3 mg/kg bwt/h, respectively. Ketamine was given as a CRI at 3 mg/kg bwt/h. Changes in MAC characterised the anaesthetic-sparing effect of the drug infusions under study and quality of recovery was assessed using a scoring system. Results: Mean isoflurane MAC (mean ± s.d.) in the CTL, LK and MLK groups was 1.25 ± 0.14%, 0.64 ± 0.20% and 0.59 ± 0.14%, respectively, with MAC reduction in the LK and MLK groups being 49 and 53% (P<0.001), respectively. No significant differences were observed between groups in recovery from anaesthesia. Conclusions and clinical relevance: Administration of lidocaine and ketamine via CRI decreases isoflurane requirements. Coadministration of morphine does not provide further reduction in anaesthetic requirements and does not impair recovery.  相似文献   

4.
5.
Objective To evaluate the effects of a constant rate infusion (CRI) of romifidine on the requirement of isoflurane, cardiovascular performance and recovery in anaesthetized horses undergoing arthroscopic surgery. Study design Randomized blinded prospective clinical trial. Animals Thirty horses scheduled for routine arthroscopy. Methods After premedication (acepromazine 0.02 mg kg?1, romifidine 80 μg kg?1, methadone 0.1 mg kg?1) and induction (midazolam 0.06 mg kg?1 ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen. Horses were assigned randomly to receive a CRI of saline (group S) or 40 μg kg?1 hour?1 romifidine (group R). The influences of time and treatment on anaesthetic and cardiovascular parameters were evaluated using an analysis of variance. Body weight (t‐test), duration of anaesthesia (t‐test) and recovery score (Wilcoxon Rank Sum Test) were compared between groups. Significance was set at p < 0.05. Results All but one horse were positioned in the dorsal recumbent position and ventilated from the start of anaesthesia. End tidal isoflurane concentrations were similar in both groups at similar time points and over the whole anaesthetic period. Cardiac output was significantly lower in horses of the R group, but there were no significant differences between groups in cardiac index, body weight or age. All other cardiovascular parameters were similar in both groups. Quality of recovery did not differ significantly between groups, but more horses in group R stood without ataxia at the first attempt. One horse from group S had a problematic recovery. Conclusions and clinical relevance No inhalation anaesthetic sparing effect or side effects were observed by using a 40 μg kg?1 hour?1 romifidine CRI in isoflurane anaesthetized horses under clinical conditions. Cardiovascular performance remained acceptable. Further studies are needed to identify the effective dose of romifidine that will induce an inhalation anaesthetic sparing effect in anaesthetized horses.  相似文献   

6.
7.
8.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

9.

Objective

Influence of detomidine or romifidine constant rate infusion (CRI) on plasma lactate concentration and isoflurane requirements in horses undergoing elective surgery.

Study design

Prospective, randomised, blinded, clinical trial.

Animals

A total of 24 adult healthy horses.

Methods

All horses were administered intramuscular acepromazine (0.02 mg kg?1) and either intravenous detomidine (0.02 mg kg?1) (group D), romifidine (0.08 mg kg?1) (group R) or xylazine (1.0 mg kg?1) (group C) prior to anaesthesia. Group D was administered detomidine CRI (10 μg kg?1 hour?1) in lactated Ringer's solution (LRS), group R romifidine CRI (40 μg kg?1 hour?1) in LRS and group C an equivalent amount of LRS intraoperatively. Anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. Plasma lactate samples were taken prior to anaesthesia (baseline), intraoperatively (three samples at 30 minute intervals) and in recovery (at 10 minutes, once standing and 3 hours after end of anaesthesia). End-tidal isoflurane percentage (Fe′Iso) was analysed by allocating values into three periods: Prep (15 minutes after the start anaesthesia–start surgery); Surgery 1 (start surgery–30 minutes later); and Surgery 2 (end Surgery 1–end anaesthesia). A linear mixed model was used to analyse the data. A value of p < 0.05 was considered significant.

Results

There was a difference in plasma lactate between ‘baseline’ and ‘once standing’ in all three groups (p < 0.01); values did not differ significantly between groups. In groups D and R, Fe′Iso decreased significantly by 18% (to 1.03%) and by 15% (to 1.07%), respectively, during Surgery 2 compared with group C (1.26%); p < 0.006, p < 0.02, respectively.

Conclusions and clinical relevance

Intraoperative detomidine or romifidine CRI in horses did not result in a clinically significant increase in plasma lactate compared with control group. Detomidine and romifidine infusions decreased isoflurane requirements during surgery.  相似文献   

10.
11.
ObjectiveTo investigate effects of vatinoxan in dogs, when administered as intravenous (IV) premedication with medetomidine and butorphanol before anaesthesia for surgical castration.Study designA randomized, controlled, blinded, clinical trial.AnimalsA total of 28 client-owned dogs.MethodsDogs were premedicated with medetomidine (0.125 mg m?2) and butorphanol (0.2 mg kg?1) (group MB; n = 14), or medetomidine (0.25 mg m?2), butorphanol (0.2 mg kg?1) and vatinoxan (5 mg m?2) (group MB-VATI; n = 14). Anaesthesia was induced 15 minutes later with propofol and maintained with sevoflurane in oxygen (targeting 1.3%). Before surgical incision, lidocaine (2 mg kg?1) was injected intratesticularly. At the end of the procedure, meloxicam (0.2 mg kg?1) was administered IV. The level of sedation, the qualities of induction, intubation and recovery, and Glasgow Composite Pain Scale short form (GCPS-SF) were assessed. Heart rate (HR), respiratory rate (fR), mean arterial pressure (MAP), end-tidal concentration of sevoflurane (Fe′Sevo) and carbon dioxide (Pe′CO2) were recorded. Blood samples were collected at 10 and 30 minutes after premedication for plasma medetomidine and butorphanol concentrations.ResultsAt the beginning of surgery, HR was 61 ± 16 and 93 ± 23 beats minute?1 (p = 0.001), and MAP was 78 ± 7 and 56 ± 7 mmHg (p = 0.001) in MB and MB-VATI groups, respectively. No differences were detected in fR, Pe′CO2, Fe′Sevo, the level of sedation, the qualities of induction, intubation and recovery, or in GCPS-SF. Plasma medetomidine concentrations were higher in group MB-VATI than in MB at 10 minutes (p = 0.002) and 30 minutes (p = 0.0001). Plasma butorphanol concentrations were not different between groups.Conclusions and clinical relevanceIn group MB, HR was significantly lower than in group MB-VATI. Hypotension detected in group MB-VATI during sevoflurane anaesthesia was clinically the most significant difference between groups.  相似文献   

12.
OBJECTIVE: To compare the effects of spontaneous breathing and mechanical ventilation on haemodynamic variables, including muscle and skin perfusion measured with laser Doppler flowmetery, in horses anaesthetized with isoflurane. STUDY DESIGN: Prospective controlled study. ANIMALS: Ten warm-blood trotter horses (five males, five females). Mean mass was 492 kg (range 420-584 kg) and mean age was 5 years (range 4-8 years). MATERIALS AND METHODS: After pre-anaesthetic medication with detomidine (10 microg kg(-1)) anaesthesia was induced with intravenous (IV) guaifenesin and thiopental (4-5 mg kg(-1) IV) and maintained using isoflurane in oxygen. The horses were positioned in dorsal recumbency. In five animals breathing was initially spontaneous (SB) while the lungs of the other five were ventilated mechanically using intermittent positive pressure ventilation (IPPV). Total anaesthesia time was 4 hours with the ventilatory mode changed after 2 hours. During anaesthesia, heart rate (HR) cardiac output (Qt) stroke volume (SV) systemic arterial blood pressures (sAP), and pulmonary arterial pressure (pAP) were recorded. Peripheral perfusion was measured in the semimembranosus and gluteal muscles and on the tail skin using laser Doppler flowmetry. Arterial (a) and mixed venous (v) blood gases, pH, haemoglobin concentration [Hb], haematocrit (Hct), plasma lactate concentration and muscle temperature were measured. Oxygen content, venous admixture (s/Qt) oxygen delivery (DO(2)) and oxygen consumption (VO(2)) were calculated. RESULTS: During mechanical ventilation, HR, sAP, pAP, Qt, SV, Qs/Qt and PaCO(2) were lower and PaO(2) was higher compared with spontaneous breathing. There were no differences between the modes of ventilation in the level of perfusion, DO(2), VO(2), [Hb], (Hct), or plasma lactate concentration. After the change from IPPV to SB, left semimembranosus muscle and skin perfusion improved, while muscle perfusion tended to decrease when SB was changed to IPPV. Low-frequency flow motion was seen twice as frequently during IPPV compared with SB. CONCLUSIONS: Mechanical ventilation impaired cardiovascular function compared with SB in horses during isoflurane anaesthesia. Muscle and skin perfusion changes occurred with ventilation, although further studies are needed to elucidate the underlying mechanisms.  相似文献   

13.
14.
ObjectiveTo evaluate the effects of detomidine or romifidine on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing isoflurane anaesthesia.Study designProspective, randomized, blinded, clinical study.AnimalsA total of 63 healthy horses undergoing elective surgery during general anaesthesia.MethodsHorses were randomly allocated to three groups of 21 animals each. In group R, horses were given romifidine intravenously (IV) for premedication (80 μg kg–1), maintenance (40 μg kg–1 hour–1) and before recovery (20 μg kg–1). In group D2.5, horses were given detomidine IV for premedication (15 μg kg–1), maintenance (5 μg kg–1 hour–1) and before recovery (2.5 μg kg–1). In group D5, horses were given the same doses of detomidine IV for premedication and maintenance but 5 μg kg–1 prior to recovery. Premedication was combined with morphine IV (0.1 mg kg–1) in all groups. Cardiovascular and blood gas variables, expired fraction of isoflurane (Fe′Iso), dobutamine or ketamine requirements, recovery times, recovery events scores (from sternal to standing position) and visual analogue scale (VAS) were compared between groups using either anova followed by Tukey, Kruskal-Wallis followed by Bonferroni or chi-square tests, as appropriate (p < 0.05).ResultsNo significant differences were observed between groups for Fe′Iso, dobutamine or ketamine requirements and recovery times. Cardiovascular and blood gas measurements remained within physiological ranges for all groups. Group D5 horses had significantly worse scores for balance and coordination (p = 0.002), overall impression (p = 0.021) and final score (p = 0.008) than group R horses and significantly worse mean scores for VAS than the other groups (p = 0.002).Conclusions and clinical relevanceDetomidine or romifidine constant rate infusion provided similar conditions for maintenance of anaesthesia. Higher doses of detomidine at the end of anaesthesia might decrease the recovery quality.  相似文献   

15.
ObjectiveTo compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses.Study designProspective ‘blinded’ controlled trial using block randomization.AnimalsForty healthy Freiberger stallions.MethodsThe horses received either intravenous (IV) romifidine (loading dose: 80 μg kg?1; infusion: 30 μg kg?1 hour?1) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg?1; infusion: 29 μg kg?1 hour?1, and butorphanol loading: 18 μg kg?1; infusion: 25 μg kg?1 hour?1) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg?1) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant.ResultsSedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9–9.0 cm, RB: 8.8, 4.7–10.0 cm, and by the dentist R: 6.6, 3.0–8.2 cm, RB: 7.9, 6.6–8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation.Conclusions and clinical relevanceThe described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous.  相似文献   

16.
17.
ObjectiveTo determine in dogs the effects of medetomidine and butorphanol, alone and in combination, on the induction dose of alfaxalone and to describe the induction and intubation conditions.Study designProspective, randomized, blinded clinical trial.AnimalsEighty-five client-owned dogs (ASA 1 or 2).MethodsSubjects were block randomized to treatment group according to temperament. The treatment groups were: medetomidine 4 μg kg?1 (M), butorphanol 0.1 mg kg?1 (B), or a combination of both (MB), all administered intramuscularly. After 30 minutes, a sedation score was assigned, and alfaxalone 0.5 mg kg?1 was administered intravenously over 60 seconds by an observer who was unaware of treatment group. Tracheal intubation conditions were assessed and, if tracheal intubation was not possible after 20 seconds, further boluses of 0.2 mg kg?1 were given every 20 seconds until intubation was achieved. Induction dose and adverse events (sneezing, twitching, paddling, excitement, apnoea and cyanosis) were recorded; induction quality and intubation conditions were scored and recorded.ResultsThe mean dose of alfaxalone required for induction was similar for groups M and B: 1.2 ± 0.4 mg kg?1. The mean dose requirement for group MB (0.8 ± 0.3 mg kg?1) was lower than groups M and B (p < 0.0001). Induction dose was not influenced by temperament or level of sedation. Induction and intubation scores did not differ between treatment groups. Adverse events were noted in 16 dogs; there was no association with treatment group, temperament or level of sedation.Conclusions and clinical relevanceMedetomidine and butorphanol administered in combination reduce the anaesthetic induction dose of alfaxalone compared to either agent alone. This difference should be taken into account when using this combination of drugs in a clinical setting.  相似文献   

18.
Intraoperative bradycardia is not an uncommon complication in anaesthetised horses and it has been recommended that severe bradycardia (defined as heart rate (HR) <25 beats/min) during general anaesthesia, when associated with hypotension (mean arterial pressure (MAP) <70 mmHg) and other signs of inadequate tissue perfusion, should be treated with anticholinergics. Muscarinic antagonists, such as atropine and glycopyrrolate, cause positive chronotropism and dromotropism (improved atrioventricular conduction) by competitively blocking the effects of acetylcholine at muscarinic receptors in the heart. However, in horses, prolonged intestinal hypomotility and colic have been associated with the use of atropine and glycopyrrolate which has led to the investigation of the use of hyoscine N-butylbromide (hyoscine NBB) to treat alpha 2 agonist-induced bradycardia in horses. This report describes the successful use of hyoscine NBB to treat symptomatic intraoperative bradycardia in three isoflurane-anaesthetised horses.  相似文献   

19.

Objectives

To compare the effects of a lidocaine constant rate infusion (CRI) combined with 1% isoflurane versus those of 2% isoflurane alone on cardiovascular variables in anaesthetized horses, and to estimate the sample size required to detect a difference in recovery quality.

Study design

Prospective, randomized, blinded, crossover study.

Animals

Twelve healthy experimental horses.

Methods

Horses were anaesthetized twice using an intravenous (IV) administration of acepromazine, romifidine, diazepam and ketamine. Horses were placed in dorsal recumbency and ventilated mechanically. During the first 10 minutes (P1), anaesthesia was maintained with a 2% inspired isoflurane fraction (FIIso). During the following 20 minutes (P2), horses received IV lidocaine (1.5 mg kg?1) (group IL) or saline (group I). During the last 60 minutes (P3), group IL received a lidocaine CRI (50 μg kg?1 minute?1 IV) and FIIso 1%, whereas group I received a saline CRI and FIIso 2%. Three weeks later, the horses received the alternative treatment. Painful stimuli were induced by introducing an 18 gauge needle intramuscularly. Ketamine and dobutamine requirements and physiological variables were recorded. Recoveries were assessed by two anaesthetists unaware of the treatment. Lidocaine plasma concentrations were measured during recovery. Data were analysed with anova.

Results

During P3, group IL had a lower heart rate (p = 0.002), higher mean arterial pressure (p < 0.001) and lower dobutamine requirement (p < 0.001) than group I. One horse had lidocaine plasma concentrations above toxic levels. Recoveries did not differ significantly between groups. Sample sizes of 208 horses in each group would be necessary to detect a statistically significant difference (85% statistical power) in recovery quality.

Conclusions and clinical relevance

A lidocaine CRI combined with FIIso 1% rather than FIIso 2% alone may improve cardiovascular variables in healthy anaesthetized horses.  相似文献   

20.
ObjectiveTo investigate the influence of a dexmedetomidine constant rate infusion (CRI) in horses anaesthetized with isoflurane.Study designProspective, randomized, blinded, clinical study.AnimalsForty adult healthy horses (weight mean 491 ± SD 102 kg) undergoing elective surgery.MethodsAfter sedation [dexmedetomidine, 3.5 μg kg?1 intravenously (IV)] and induction IV (midazolam 0.06 mg kg?1, ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen/air (FiO2 55–60%). Horses were ventilated and dobutamine was administered when hypoventilation [arterial partial pressure of CO2 > 8.00 kPa (60 mmHg)] and hypotension [arterial pressure 70 mmHg] occurred respectively. During anaesthesia, horses were randomly allocated to receive a CRI of dexmedetomidine (1.75 μg kg?1 hour?1) (D) or saline (S). Monitoring included end-tidal isoflurane concentration, cardiopulmonary parameters, and need for dobutamine and additional ketamine. All horses received 0.875 μg kg?1 dexmedetomidine IV for the recovery period. Age and weight of the horses, duration of anaesthesia, additional ketamine and dobutamine, cardiopulmonary data (anova), recovery scores (Wilcoxon Rank Sum Test), duration of recovery (t-test) and attempts to stand (Mann–Whitney test) were compared between groups. Significance was set at p < 0.05.ResultsHeart rate and arterial partial pressure of oxygen were significantly lower in group D compared to group S. An interaction between treatment and time was present for cardiac index, oxygen delivery index and systemic vascular resistance. End-tidal isoflurane concentration and heart rate significantly increased over time. Packed cell volume, systolic, diastolic and mean arterial pressure, arterial oxygen content, stroke volume index and systemic vascular resistance significantly decreased over time. Recovery scores were significantly better in group D, with fewer attempts to stand and significantly longer times to sternal position and first attempt to stand.Conclusions and clinical relevance A dexmedetomidine CRI produced limited cardiopulmonary effects, but significantly improved recovery quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号