首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
细菌耐药性及生物被膜感染问题一直备受关注,抗生素的使用不当或滥用导致了细菌耐药性越来越严重,一些细菌出现了多重耐药甚至超级耐药的情况。为了抵抗宿主的免疫反应及抗菌药物的攻击,细菌聚集后会形成生物被膜。生物被膜的形成进一步加强细菌的耐药性,生物被膜感染是细菌性疾病迁延不愈的重要原因之一。寻找广谱、高效的抗菌和抗生物被膜的抗生素替代物是目前的研究热点。纳米银(silver nanoparticles, AgNPs)由于自身的物理、化学和生物学特性,在抗菌及抗生物被膜方面受到广泛的关注,其抗菌机制主要包括了破坏细胞壁和细胞膜、DNA损伤、氧化应激等,抗生物被膜机制主要包括抑制相关基因的表达、抑制聚集黏附、阻断群体感应等。论文综述了纳米银抗菌及抗生物被膜的研究进展,以期为开发新型抗菌药物提供参考。  相似文献   

2.
金黄色葡萄球菌是引起奶牛细菌性乳腺炎的主要原因,生物被膜的形成是金黄色葡萄球菌在不利环境条件下持久性存在的关键因素。探索同一株菌在生物被膜态与浮游态生长状态下的耐药性与其生长状态的相关性,可为进一步探究金黄色葡萄球菌的耐药性机制奠定基础。本研究培养了金黄色葡萄球菌的生物被膜,使用光学显微镜和扫描电镜观察其形成过程。测定并比较了9种抗菌药物对32株金黄色葡萄球菌在生物被膜态和浮游态的最小抑菌浓度,并对两种状态下的金黄色葡萄球菌进行转录组学测序,筛选出具有显著性差异的细胞信号通路和表达基因,同时对主要差异表达的基因进行RT-qPCR验证。结果发现,在生物被膜形成前期,随着培养时间的延长,显微镜下观察到的生物被膜态菌聚集面积越来越大,结构也越来越紧密,培养至72 h后,生物被膜逐渐开始分散。MIC测定结果显示浮游态菌的抑菌浓度低于生物被膜态菌。转录组结果显示两种状态菌的差异表达基因共1 512个,其中,生物被膜态菌中上调基因760个,下调752个。GO与KEGG富集分析显示,相比于浮游态菌,生物被膜态菌中与代谢相关的通路显著富集,其次为氨基酸的生物合成和ABC转运蛋白通路。与生物被膜形成相关的基因,如编码ABC转运蛋白的基因表达上调,而与代谢途径相关的基因下调。RT-qPCR验证了10个主要差异基因,其表达差异趋势与转录组测序结果一致。这些差异可能对金黄色葡萄球菌生物被膜态的高耐药性和细菌毒力的研究有所帮助。  相似文献   

3.
《中国兽医学报》2014,(10):1693-1698
细菌生物被膜是指由于单一或多种类群细菌为了适应周围环境,由自身产生的多聚基质包围而形成,吸附于异物或组织表面,具有三维立体结构的膜样物,是细菌微菌落聚集体。生物被膜保护着细菌得以在恶劣环境中存活生长,较之浮游细菌,其更能抵抗宿主的免疫反应、抗生素及消毒剂的攻击。目前致病菌生物被膜形成在兽医学上的重要性极少受到关注,本文对细菌生物被膜的基础知识及动物重要病原菌已做的研究作一综述,旨在阐明病原菌形成生物被膜的机理,更加重视细菌生物被膜状态在动物疾病中的重要作用,并针对细菌生物被膜形成过程中重要的关键基因设计新型药物。  相似文献   

4.
细菌耐药拮抗剂的研究   总被引:6,自引:1,他引:5  
本文介绍了具有拮抗细菌耐药性作用的物质的研究进展情况,包括灭活酶抑制剂、药物渗透促进剂、外输泵抑制剂、细菌生物被膜抑制剂、抗菌药物增强剂、耐药质粒消除剂等。  相似文献   

5.
大肠埃希菌多重耐药性的形成机制   总被引:1,自引:0,他引:1  
细菌耐药(尤其多重耐药)现象的出现,给我国养殖业带来巨大的经济损失,大肠埃希菌耐药性可分为原发性和获得性.大肠埃希菌外排泵功能增强、膜通透性下降均可以导致多重耐药的产生,而质粒、整合子/基因盒系统等可移动的遗传因子在多重耐药性的传播上有着重要作用.此外,细菌生物被膜的形成使细菌对多种抗菌药物产生强大的抵抗力.文章从上述几个方面阐述大肠埃希菌产生多重耐药的形成机制,并提出相应的防控对策.  相似文献   

6.
细菌耐药性问题已成为全世界的共同挑战,其导致抗菌药物的作用下降,细菌性疾病发病率及死亡率不断攀升。疾病治疗难度加大、治疗费用增加以及动物生产力的持续降低,给畜牧养殖业造成严重经济损失。因此,寻找新方案以对抗耐药细菌尤为重要。纳米技术于近代兴起,被广泛运用于生物医学等多个领域,在对抗耐药细菌方面具有显著优势。纳米技术可通过破坏细菌细胞膜、抑制外排泵、产生活性氧(ROS)、抑制和降解生物被膜等多种机制降低细菌抗性。本文将从纳米技术的应用历程、对抗耐药菌的策略以及对抗耐药菌机制等三个方面进行简要概述,以期为兽药研究者提供一定借鉴。  相似文献   

7.
作者介绍了具有颉颃细菌耐药性作用的物质的研究应用进展情况,包括灭活酶抑制剂、药物渗透促进剂、外输泵抑制剂、细菌生物被膜抑制剂、抗菌药物增强剂、耐药质粒消除剂等。  相似文献   

8.
金黄色葡萄球菌生物被膜(BF)是由金葡菌黏附在载体上,大量聚集后形成团块状的菌团。目前通过实时荧光定量PCR、激光共聚焦显微技术或电镜扫描等技术手段可检测金葡菌生物被膜的相关基因及结构,进一步揭示其耐药机制,以便抗菌和抗生物被膜药物的研发,更有效防止金葡菌生物被膜的感染。  相似文献   

9.
大肠埃希菌生物被膜研究进展   总被引:1,自引:0,他引:1  
细菌生物被膜指多个细菌黏附于机体或物体表面,分泌胞外多聚物将其自身包裹其中而形成的结构。研究表明人类许多细菌感染与生物被膜有关,生物被膜具有极高的抗药性和免疫逃逸能力,这也是许多细菌感染难以根除的重要原因之一,近年来已成为医学界关注的热点。大肠埃希菌是最重要的条件致病菌之一,论文从大肠埃希菌生物被膜的形态结构、检测方法、耐药机制、应对策略4个方面综述了大肠埃希菌生物被膜研究的进展。  相似文献   

10.
生物被膜的形成过程及耐药机制   总被引:1,自引:0,他引:1  
细菌生物被膜(Bacterial Biofilm,BBF)是临床常见感染的主要致病原,可导致感染迁延不愈和反复急性发作。由于细菌生物被膜可以保护细菌抵御抗菌药物的杀伤和逃逸宿主的免疫,导致临床相关感染的难治性。所以,BBF耐药屏障的研究已成为国外医学、药学、微生物学专家关注的重要课题。  相似文献   

11.
本试验分别采用微量肉汤稀释法和改良结晶紫法对65株文昌鸡源大肠杆菌进行15种临床常用抗菌药物耐药性检测和生物被膜形成能力鉴定,以了解海南文昌鸡源大肠杆菌耐药谱型和生物被膜表型之间的相关性。结果显示,65株文昌鸡源大肠杆菌中89.23%具有多重耐药现象,64.62%具有交叉耐药现象;81.54%的菌株具有不同的生物被膜形成能力,只有18.46%的菌株无细菌生物被膜形成能力。本试验结果表明,具有生物被膜形成能力的菌株大都表现出多重耐药性,但交叉耐药性与无生物被膜形成能力菌株相差不明显。  相似文献   

12.
畜牧养殖中细菌耐药性产生机制与对策   总被引:1,自引:0,他引:1  
畜牧养殖中抗菌药物耐药性问题日趋严重.细菌耐药性产生机制主要有产生钝化酶、改变药物作用靶点、通过主动外排或形成非渗透性膜、形成生物被膜、增加代谢颉颃物等.近几年研究又发现常用抗菌药的多种耐药新机制.针对细菌耐药机制,提出合理用药、加强饲养管理、研制开发耐酶药物、抗菌药物替代品、耐药抑制剂及破坏耐药基因新技术等对策,减少耐药性的产生与传播.  相似文献   

13.
细菌生物被膜(BBF)是一类由生物大分子包裹细菌而形成的具有特殊复杂结构的微克隆多细胞群体,由其感染所引起的疾病具有迁延不愈、反复发作等特点,在临床上有较大危害性。当前临床上用于治疗细菌生物被膜疾病的药物主要集中于大环内酯类抗生素,文章综述了细菌生物被膜结构特点和大环内酯类抗生素的药效动力学,并将大环内酯类抗生素清除、抑制细菌生物被膜的主要机理归纳为阻碍细菌黏附过程、破坏细菌生物被膜基础结构和干扰细菌的群体感应系统。  相似文献   

14.
生物被膜的形成是大肠杆菌引起消化道反复难治性感染的重要因素。大肠杆菌形成生物被膜后使感染易于慢性化、控制困难,具有高度耐药性的同时还能逃避免疫系统的攻击和抗菌药物的杀伤作用。生物被膜的耐药机制主要包括营养限制、渗透障碍、表型结构学说等。现就大肠杆菌生物被膜的形成、耐药机制及其防治策略等研究现状做一综述。  相似文献   

15.
近些年来,由于科学知识的缺乏和经济利益的驱使,使得抗菌药物的应用越来越广泛,细菌耐药性不断加强,而且很多细菌已由单药耐药发展到多重耐药。如饲料中添加抗菌药物,实际上等于持续低剂量用药,动物机体长期与药物接触,造成耐药菌不断增多,耐药性也不断增强。而耐药菌株又可能将耐药因子传递给其他敏感细菌,使其他异种菌株变成耐药菌株,从而带来预防与治疗动物疾病的困难.间接造成了大量的兽药残留.直接危害人类健康。  相似文献   

16.
抗菌药物的广泛使用,导致细菌耐药性日益严重,耐药菌所致的感染给人类健康及畜禽生产带来巨大威胁。细菌耐药可由多种机制所介导,研究细菌的耐药机制对防止或延缓耐药性的产生具有重要意义。近年来,影响药物与作用靶位结合及作用靶位结构变化等机制介导的耐药受到人们的关注。论文将对作用靶位变化导致细菌耐药问题的最新研究进展进行综述,以期为防止和延缓细菌耐药性的产生提供理论依据。  相似文献   

17.
近年来,由于抗菌药物的广泛使用,细菌耐药性不断加强,而且很多细菌已由单药耐药发展到多重耐药。动物机体长期与药物接触,造成耐药菌不断增多,耐药性也不断增强。抗菌药物残留于动物性食品中,同样使人也长期与药物接触,导致人体内耐药菌的增加。如今,不管是在动物体内,还是在人体内,细菌的耐药性已经达到了较严重的程度。为此,加强和控制不合理应用抗生素和滥用抗生素现象,避免或减少细菌耐药性问题。  相似文献   

18.
为了探究大环内酯类药物泰乐菌素和阿奇霉素对木糖葡萄球菌敏感菌株及其耐药菌株生物被膜形成的影响,试验首先通过倍比稀释法测定两种药物对木糖葡萄球菌敏感菌株及其耐药菌株的最小抑菌浓度(MIC),然后利用结晶紫染色法考察木糖葡萄球菌敏感菌株及其耐药菌株生物被膜的形成能力,并测定细菌生长情况,最后考察两种药物浓度及药物孵育时间对生物被膜形成的影响。结果表明:木糖葡萄球菌耐药菌株生物被膜的形成能力弱于敏感菌株,木糖葡萄球菌敏感菌株与其耐药菌株的生长存在差异。0.312 5μg/mL的泰乐菌素和阿奇霉素对木糖葡萄球菌敏感菌株生物被膜的形成具有极显著抑制作用(P<0.01),对耐药菌株生物被膜形成的抑制作用不显著(P>0.05);25μg/mL的泰乐菌素和阿奇霉素对耐药菌株生物被膜的形成具有显著或极显著抑制作用(P<0.05或P<0.01)。随着药物孵育时间的延长,对生物被膜形成的抑制效果逐渐增强。说明大环内酯类药物泰乐菌素和阿奇霉素在一定程度上能抑制木糖葡萄球菌敏感菌株及其耐药菌株生物被膜的形成且具有时间依赖性。  相似文献   

19.
近年来抗菌药物的广泛使用,导致细菌耐药性问题日益严重,耐药菌所致的感染给人类健康及畜禽生产带来巨大威胁,随着高通量测序技术的迅速发展,细菌转录组学的研究可帮助人们探究细菌耐药前后发生差异表达的基因以及筛选出具有调控作用的非编码RNA。本文以细菌耐药性的产生机制和调控机制为出发点,从转录组水平探讨耐药细菌中外排泵系统、二元调控系统、代谢途径相关基因的差异表达情况和非编码RNA对细菌外排泵系统、细胞膜通透性和生物被膜的调控机制,以期为细菌耐药性研究奠定基础。  相似文献   

20.
通过细胞培养板法研究了猪链球菌2型生物被膜的生物学特性。结果显示:大部分猪链球菌均具有不同程度形成生物被膜的能力,其中3株(3/15)形成能力较强;猪链球菌生物被膜的成熟约需60 h,培养基中葡萄糖浓度是影响生物被膜形成的重要因素;生物被膜中的多糖含量显著高于浮游菌;氨苄青霉素钠和阿莫西林对这3株猪链球菌生物被膜的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)均高于游离菌约2 500倍;扫描电镜观察发现,生物被膜内猪链球菌彼此黏连,形成致密的三维立体结构。对猪链球菌生物被膜生物学特性的研究为进一步揭示生物被膜的形成机制、耐药机理,以及清除生物被膜等提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号