首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimizing nitrogen (N) fertilizer management in irrigated potato (Solanum tuberosum L.) on coarse-textured soils is challenging. The “4R” nutrient stewardship framework of using N fertilizer at the right rate, right source, right placement and right time provides approaches to improve fertilizer use efficiency while maintaining or improving yield. This 3-years replicated field plot study evaluated effects from a series of N fertilization strategies including 10 combinations of sources, placement and timing, as well as fertigation, on irrigated processing potato (cv. Russet Burbank) grown for a total of five site-years in the Province of Manitoba, Canada. Treatments were designed to provide early to late availability of N to the potato crop. Nitrogen was applied to 80% of Provincial N recommendation to increase the likelihood of observing improved fertilizer use efficiency and effects of treatments on yields. Measurements were tuber yield, size distribution, specific gravity, hollow-heart rate, fertilizer apparent N recovery (ANR) and agronomic nitrogen use efficiency (NUE). Results showed differences in yield, quality, ANR and NUE between fertilizer treatments were generally very small or absent. Average tuber marketable yields for fertilizer treatments were significantly greater than those for the unfertilized control (P?<?0.001). Split application of urea at planting and hilling, and urea at planting with fertigation occasionally increased tuber marketable yields on sites of coarse textured soils (P?<?0.05). Use of polymer-coated urea (ESN) or stabilized urea with inhibitors (SuperU) did not affect yield, quality or N use of potato. Site-year difference (P?<?0.001) were apparent for all measures highlighting the importance of soil and climatic conditions on agronomic and environmental effects of N management practices. The results indicate current grower practice of split urea application at planting and hilling and urea at planting following by in-season fertigation are sound. Results indicate growers could shift to the more convenient practice of ESN at planting without reducing yields. Absence of treatment effects suggests N was generally not a limiting factor for the current study, indicating that the current recommendation for potato production in Manitoba over-estimate site-specific crop N needs.  相似文献   

2.
Potato (Solanum tuberosum L.) cultivars are mostly planted using similar seed piece planting depths and hill shapes even though cultivars have unique tuber and stolon characteristics. A hill-shape study was conducted at Aberdeen, Idaho to determine the effects of hill shape on yield and field-green tuber yields and quality along with stolon length and tuber spatial orientation for two potato cultivars, 'Defender' and 'Summit Russet.' Plots were planted in late April to early May. Prior to emergence four hill shapes were formed: 1) plant-and-drag, 2) broad, 3) normal, and 4) peaked. Defender had higher total yield with the broad hill, but there were no differences among the remaining three hill shapes. For Defender, U.S. No. 1 yield was lower with the plant-and-drag hill shape, and the normal and peaked hills produced lower field-green tuber yield. Hill shape had no effect on total, U.S. No. 1, or field-green tuber yields of Summit Russet. The peaked hill resulted in a deeper uppermost tuber for Defender, while the uppermost tuber was deeper in the normal and peaked hills for Summit Russet. The broad hill resulted in a larger average tuber size for Defender, but hill shape had no effect on tuber size for Summit Russet. Total number of tubers per plant, stolon length and tuber spatial orientation were not affected by hill shape for either cultivar. Hill shape and height are important considerations in maximizing yield of saleable tubers, so needs to be customized according to cultivar-dependent stolon length and tuber orientation characteristics.  相似文献   

3.
Improper application of nitrogen (N) has led to high N losses and low N use efficiency in the lower reaches of Yangtze River in China. An effective method to solve such problems is the deep fertilized N in root zone (RZF). Limited information is available on the effect of RZF on the uptake of macronutrients (N, P and K) and rice yield. Field experiments, conducted from 2014 to 2015, compared the farmer fertilizer practice (FFP, with 225 kg ha?1 of N, split into three doses) and RZF using the same rate but placing N 5 cm away from rice roots in holes 10 cm deep (RZF10) or 5 cm deep (RZF5) as a single application. The highest mean yield (10.0 t ha?1) was obtained in RZF10, which was 19.5% more than that in FFP. Root zone fertilization of urea (whether 10 cm deep or 5 cm deep) resulted in greater accumulation of N, P and K in stem, leaf sheaths, leaf blades and grains compared to that in FFP in sandy and in loam soils. The uptake of N, P and K was the highest in RZF10 (average at 176.7, 66.2 and 179.1 kg ha?1, respectively), higher than that in FFP by 45.0, 17.0 and 22.6%, respectively. N apparent recovery efficiency was markedly higher in RZF10 (53.1%) than in FFP (27.5%). RZF10 significantly increased the N, P, K uptake compared with FFP under different N rates in both sandy and loam soils. These results suggest that the N, P and K input amount should be re-determined under RZF.  相似文献   

4.
The effect of seedpiece spacing on the efficiency of nitrogen (N) use by the potato crop is generally unknown. The objective of this experiment was to determine the effect of seedpiece spacing on tuber yield, yield components and N use efficiency parameters of two potato cultivars. Potato cultivars Atlantic and Shepody were grown at two rates of N fertilization (0 or 100 kg N ha?1) and three seedpiece spacings (20, 30, or 40 cm) in 2000 to 2002. Wider seedpiece spacing increased mean tuber weight and the number of tubers per stem, but decreased total tuber yield. The higher tuber yield at the narrow seedpiece spacing was attributed to higher biomass production in combination with lower tuber specific gravity. Seedpiece spacing had no consistent effect on plant N accumulation, and therefore no consistent effect on N uptake efficiency (plant N accumulation /N supply from the soil plus fertilizer). However, a small increase in soil NO3-N concentration in the hill at topkill at wider seedpiece spacing suggested plant N accumulation was slightly reduced at wider seedpiece spacing, but at a level that could not be detected from a plant-based measure of N accumulation. The reduced dry matter accumulation, but similar plant N accumulation, resulted in lower N use efficiency (plant dry matter accumulation / N supply) at wider seedpiece spacing. Wider seedpiece spacing also resulted in generally lower values of N utilization efficiency (plant dry matter accumulation / plant N accumulation) for the 40-cm compared with the 20- and 30-cm seedpiece spacings. Effects of seedpiece spacing on N use efficiency parameters were generally consistent across cultivars and fertilizer N rates. Wider seedpiece spacing did reduce the efficiency of N use by the potato crop; however, the magnitude of the effect was small under the conditions of this study.  相似文献   

5.
Potatoes require high nitrogen (N) fertilizer rates because of their poor N efficiency. Better understanding of N dynamic in potato crops could improve N efficiency and thus enhance crop profitability and reduce N losses. A similar field experiment was conducted in Switzerland in 3 years, from 2009 to 2011, to investigate the yield and quality response to N fertilization of two commercial potato cultivars with different tuber qualities, Bintje and Laura. Five doses of ammonium nitrate were tested: 0, 80, 120, 160 and 200 kg N ha?1. Aboveground and belowground biomass evolution, total yield, starch concentration and tuber sizes were measured annually. In 2011, the total N uptake and the soil mineral N content were also measured during the growing season and at harvest.The study showed that N fertilization had a positive effect on yield and the percentage of large tubers (>?70 mm) and a negative effect on starch concentration. Both cultivars presented the same potential yield, although cv. Laura’s yield was more affected by N fertilization deficiency and more responsive to the late N fertilizer application. At harvest, both cultivars had a similar N uptake efficiency and N utilization efficiency. However, they differed with respect to N uptake dynamics. Nitrogen uptake was slower for cv. Laura than for cv. Bintje due to a longer period required for the development of the belowground biomass. The results provide useful recommendations for improvement of N fertilization practices (e.g. rate and time of application) of these two cultivars in Swiss conditions.  相似文献   

6.
The aim of this study was to estimate the number of blank experiments (BE) (i.e., a uniformity trial) required to estimate the optimum plot size for use in experiments involving potato crops. The study was based on data on the mass of potato tubers (Solanum tuberosum L.) from 3456 hills (i.e., 24 rows of 144 hills each) obtained from a BE. Using these data, BE of different sizes (i.e., 2 rows of 24, 36, 48 and 72 hills) were planned to estimate optimum plot size. For each BE, 11 plot sizes (X) were planned based on the sum of adjacent hills, and the mean, variance and coefficient of variation (CV) between plots of the same size were calculated. Regression models for CV were adjusted in terms of X to estimate the optimum plot size. For each BE size, a bootstrap resampling method was used to estimate the sufficient number of BE to enable precise estimates of optimum plot size, mean and other statistics. It was found that a sampling potato hill yield of 39% of subdivisions within an experimental area where a potato experiment is to be performed is sufficient to estimate optimum plot size for the experiment. Plots composed of one row of six hills are sufficient to estimate potato yield.  相似文献   

7.
【目的】为解决水稻土壤保肥能力较弱,水稻产量较低,氮肥利用效率不高等问题,【方法】于山东省济宁市任城区水稻田设置氮肥水平与栽植密度双因素大田试验,设4个施氮量水平,即无氮(N1,0 kg/hm2)、低氮(N2,216 kg/hm2)、中氮(N3,288 kg/hm2)和高氮(N4,360 kg/hm2);栽植密度设3个梯度,即低密度(24万穴/hm2)、中密度(27万穴/hm2)和高密度(30万穴/hm2)。以探究不同氮肥水平和栽植密度下水稻成熟期土壤养分含量及氮肥利用效率的变化。【结果】随着土层加深,氮、磷、钾、有机质含量均明显下降。其中D3N4处理碱解氮含量下降了60.8%,D3N3处理速效磷含量降低了72.7%。随着施氮量增加,土壤pH值和有机质含量有所下降,速效钾含量升高,肥料偏生产力和氮肥农学利用效率降低,产量先升高后降低;随着栽植密度增加,土壤pH值与速效磷含量有所下降,表层土壤碱解氮含量略有升高,有机质含量与产量及肥料偏生产力均先升高后降低,氮肥农学利用效率降低。【结论】当栽植密度为27万穴/hm2时,氮肥用量288 kg/hm2,水稻产量最高,为14 615.3 kg/hm2;相同密度下氮肥按照216 kg/hm2施用,水稻产量、氮肥农学效率和肥料偏生产力均较高。研究结果可在实际生产中参考应用。  相似文献   

8.
Municipal solid waste (MSW) compost is readily available in eastern Canada and may be a good source of fertility. A 3-year experiment evaluated the effects of MSW compost and fertilizer on soil fertility, elemental composition and yield of potato (Solanum tuberosum L.) grown in a sandy loam soil. Three rates of compost (MSW1, MSW2, and MSW3), one rate of fertilizer (NPK), and one mixture of 1/2 MSW1 compost and 1/2 NPK fertilizer were applied annually to plots in a three-crop rotation; each year the MSW1 rate attempted to match the rate of P applied in the NPK treatment. Mehlich-3 extracts were evaluated for 11 elements at two soil depths (0?C15 and 15?C30 cm). Potato shoots and roots or whole plants were assessed for 16 elements. Treatments had no consistent significant influence on marketable tuber yields although the NPK treatment produced mathematically the highest yields. After 3 years, treatments had influenced soil concentrations of K, Ca, S, Cu, Zn, and Na in Mehlich-3 extracts at the 0?C15 cm depth, but only the concentration of Na at the 15?C30 cm depth. The concentration of Mg in the plant tissue was consistently highest in plants fertilized with NPK; this treatment also produced higher Mn concentrations in the last 2 years. Shoot Cu concentrations were highest in the MSW3 plots. The compost did not increase heavy metal concentrations in shoot, root or whole-plant tissue and would be safe to use at agronomic rates of application.  相似文献   

9.
Surface water runoff from the hill, where potatoes are planted, to the furrow may exacerbate potato drought sensitivity. Planting into furrows and constructing midrow ridges may improve water use efficiency and relieve water stress on potato by directing water toward, not away from, the plants. A 3-year field study was conducted to compare yields and tuber size distributions of furrow- and hill-planted potato (Solanum tuberosum L., ‘Russet Burbank’) on coarse-textured, well-drained soils under sprinkler irrigation. A split-plot experimental design with main plots of row orientation (N-S vs E-W) and subplots of planting method (hill and furrow) combined with two planting depths was used at two central North Dakota sites. Except for planting method and limiting the post-emergence cultivation in the furrow treatments, all cultural practices (fertilizer, irrigation, etc.) were identical and corresponded with conventional practices for hill planted potato. Row orientation did not affect yield for any tuber size category. Averaged over 3 years, furrow-planted potato produced 24% larger tubers (188 vs 151 g), 31% smaller yield for tubers <113 g (4.99 vs 7.21 Mg ha?1), 28% smaller yield for tubers 113 to 170 g (8.14 vs 11.3 Mg ha?1), 8% larger yields for tubers 170 to 283 g (18.0 vs 16.6 Mg ha?1), 103% larger yields for tubers 283 to 454 g (10.9 vs 5.36 Mg ha?1), 341% larger yields for tubers >454 g (2.65 vs 0.60 Mg ha?1), and 10% larger total yields (46.2 vs 41.9 Mg ha?1) compared with hill-planted potato. There were no differences in tuber specific gravity. Preliminary soil water measurements indicated an inter-row water-harvesting effect for furrow planting compared with hill planting. The furrow-planting method may offer significant potential for ameliorating the drought sensitivity of potato.  相似文献   

10.
Maximizing fertilizer nitrogen (N) uptake efficiency, while maintaining crop productivity may reduce potential nitrate contamination of groundwater. A two-year field investigation was conducted to evaluate the effects of applied N on fertilizer N uptake, uptake efficiency, and total fertilizer N recovery of potato (Solarium tuberosum L. var. Russet Burbank) grown on irrigated sandy soils in Michigan. Nitrogen was applied as15N-depleted ammonium sulfate [(NH4)2SO4] at rates 0, 56, and 112, kg N ha-1 in a single application at planting or 112 and 168 kg N ha-1 in split applications during the growing season. Fertilizer N uptake efficiency was relatively unaffected by the N treatments. Fertilizer N uptake efficiency for the whole crop at onset of senescence averaged 52 percent, while values calculated for tubers at harvest were 34 percent. An average of 27 percent of the applied N was present in the soil to a depth of 120 cm after harvest. Approximately 83 percent of this N was found in the 0–30 cm depth. Over 90 percent of the recovered soil N was in the organic form. In this investigation, crop fertilizer N uptake and fertilizer N recovery in soil averaged 63 percent and was largely unaffected by the rate or timing of fertilizer N applications.  相似文献   

11.
《Field Crops Research》1998,57(1):45-56
Cassava (Manihot esculenta Crantz) is often cultivated in sandy soils that are very low in nutrients and organic matter. Under such conditions, yields often decline when the crop is grown successively without fertilizer application. An 8-year on-farm trial was conducted on sandy soils in northern Colombia to study effects of (1) surface mulching with residues of the grass Panicum maximum, (2) moderate applications of N, P and K fertilizer and (3) tillage on crop productivity, root quality and soil properties. Mulch applications significantly increased root and top biomass, increased root dry matter content while reducing its yearly variation, and decreased root HCN, particularly in the absence of fertilizer. Mulch applications also significantly reduced soil temperatures within the top 20 cm and increased soil organic carbon, K, P, Ca and Mg. Without mulch, soil pH decreased over the years. Annual applications of 21 kg ha−1 P resulted in a build-up of soil P, whereas no build-up of soil K was observed with applications of 41 kg K ha−1. The application of N, P and K fertilizer significantly increased root and top biomass and reduced root HCN, especially if no mulch was applied. Where both mulch and fertilizer applications were absent, root yield and top biomass declined over the years. Tillage, except when combined with fertilizer application, had no effect on root yield, top biomass, root dry matter or HCN contents. Neither were effects of tillage observed in any of the studied soil parameters. The trial indicated that, to sustain cassava productivity in poor sandy soils, applications of plant mulch and/or chemical fertilizer are highly desirable.  相似文献   

12.
Soil types and fertilizer regimes were evaluated on growth, yield, and quality of Amaranthus tricolor lines, IB (India Bengal), TW (Taiwan), BB (Bangladesh B), and BC (Bangladesh C) in developing management practices in Okinawa. Growth and yield of all amaranth lines were higher in gray soil (pH 8.4) than in dark red soil (pH 6.6) and red soil (pH 5.4). The combined NPK fertilizer resulted in highest growth parameters and yield of amaranths in all soils. Nitrogen fertilizer alone did not affect growth parameters and yield of amaranths in dark red and red soils. Growth parameters and yield increased similarly with the 30, 40, and 50 g m?2 of NPK fertilizer in BB line, and with the 20, 30, 40, and 50 g m?2 in BC line. Agronomic efficiency of NPK fertilizer at 50 g m?2 was not prominent on the amaranths, compared to the fertilizer at 40 g m?2. Amaranth lines had higher Na in dark red and red soils, while K and Mg in gray soil, Ca in gray and red soils, and Fe in dark red soil. The NPK fertilizer resulted in higher Na, Ca, Mg, and P in BB line in glasshouse. These minerals in BB line were not clearly affected, but in BC line were lower with NPK fertilizer at 20–50 g m?2 in field. These studies indicate that gray soil is best for amaranth cultivation and combined NPK fertilizer at 20–40 g m?2 is effective in gray soil in Okinawa for higher yield and minerals of amaranth.  相似文献   

13.
Management of fertilizer phosphorus (P) is a critical component of potato production systems as potato has a relatively high P requirement and inefficiently uses soil P. Phosphorus promotes rapid canopy development, root cell division, tuber set, and starch synthesis. Adequate P is essential for optimizing tuber yield, solids content, nutritional quality, and resistance to some diseases. Although soil test P is the primary tool for assessing P fertilizer needs, in some areas petiole P analysis has been successfully utilized to guide in-season P applications. Potato has been shown in some studies to respond to fertilizer P at soil test levels considered very high for most other crops (100+ mg kg?1 Bray P1 or Mehlich I or III and 20+ mg kg?1 sodium bicarbonate) especially on medium- to finer-textured soils. Even on high-testing soils, fertilizer P rates for top yields sometimes exceed 150 kg P2O5 ha?1. In addition, many states/provinces continue to recommend half or more of the amount of P in the harvested portion of the crop irrespective of soil test P level. In most situations, few differences are expected among fertilizer P sources; however, high rates of diammonium phosphate (DAP) or urea-phosphate (UAP) should not be band-applied in contact or near the seed piece. Most research determined that fertilizer P was most efficiently used when band-applied at planting (e.g., 5 cm to each side of the seed piece); however, some western USA work on high-pH soils showed increased yields and petiole P levels with preplant broadcast applications. In-season applications with the irrigation water can be successful when the potato roots are sufficiently close to the soil surface; however, most research indicates that P applications are more effective when applied at planting or early in the season. Potato fertilizer phosphorus best management practices include: (1) apply the fertilizer P rate calibrated for local soils; (2) band-apply fertilizer P at least 5 cm from the seed piece, especially on very sandy soils or where DAP or UAP are used; (3) use petiole P tests to determine the need for in-season applications; (4) account for all P sources applied, including animal manures; and (5) utilize the best soil conservation practices to reduce P losses to surface waters.  相似文献   

14.
马铃薯平衡施肥及钾肥效应研究   总被引:5,自引:2,他引:5  
在甘肃高海拔干旱区采用马铃薯高产栽培技术和平衡施肥技术,马铃薯产量为35 350 kg.hm-2,超过当地平均产量1.2倍,配施钾肥马铃薯可增产16.7~2 916.7 kg.hm-2,增幅0.1%~9.0%,每千克K2O可增收马铃薯0.2~19.4 kg,增产增收效益好。施钾后马铃薯薯块数增加29.3%,薯块重增加7.7%,增产以增加穴薯为主,其次是增加薯块重,同时马铃薯品质也有较大改善。试验表明,在施入适量有机肥和氮磷基础上,高产高效的K2O用量为150 kg.hm-2。  相似文献   

15.
In order to increase the efficacy of water and control the losses of fertilizer, it is necessary to assess the influence of level of fertilization on crop responses, movement and balance of water and solutes from fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization on crop responses and fertilizer solute transport in rice crop field in a sub-humid and sub-tropical region. Field experiment was conducted on rice crop (cultivar IR 36) during the years 2003, 2004, and 2005. The experiment included four fertilizer treatments comprising different levels of fertilizer application. The fertilizer treatments during the experiment were: F1 = control with N:P2O5:K2O as 0:0:0 kg ha?1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha?1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha?1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha?1. The results of the investigation revealed that the magnitudes of crop parameters such as grain yield, straw yield, and maximum leaf area index increased with increase in fertilizer application rate. The levels of fertilization had very little effect on water loss via deep percolation and water use by the crop. The levels of fertilization had considerable effect on N leaching loss and uptake of N whereas it had no significant impact on leaching loss of water-soluble phosphorus. This indicated that PO4-P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. The results also revealed that increase in level of fertilization increased water use efficiency considerably by increased crop yield. From the observed data of nutrient use efficiency, crop yield and environmental pollution, the fertilization rate of N:P2O5:K2O as 80:40:40 kg ha?1 (F2) was the most suitable fertilizer treatment for rice crop among studied treatments.  相似文献   

16.
In hydroponics, nutrient management is the limiting factor to obtaining optimal production, and nitrogen (N) is the key component to consider when optimizing nutrient management in these types of systems. The objective of this study is to evaluate different combinations of N fertilizer concentrations in order to optimize the yield of basic seed potato minitubers in a three-phase hydroponic system. Treatments consisted of five combinations of N concentrations, applied before and after 21 days after plant transplant as follows, respectively: 1) 13 and 13, 2) 13 and 0, 3) 13 and 7.8, 4) 13 and 16, and 5) 13 and 26 mmol L?1. Propagation was performed by transplanting 3–4 cm potato plantlets cv. Agata from sprouts. There were significant effects of N treatments on all measured variables (root, leaf, stem, and plant dry weight and minituber number and weight). To obtain the maximum minituber number yield, 9.51 minitubers/plant, corresponding to 67 minitubers/m2, post 21-day adjusted N concentration was 18.4 mmol/L. Treatment 4 promoted higher basic seed potato minituber yield in a three-phase hydroponic system.  相似文献   

17.
为加速推广马铃薯新品种,本研究以鄂马铃薯7号为试材,在高低两个海拔高度进行不同种植密度、不同底肥种类的高产栽培试验。种植密度设计每667 m2 3 500株、4 400株、5 400株3个水平,底肥设计每667 m2施牛粪2 500 kg、复合肥25 kg、复合肥10 kg+过磷酸钙25 kg 3个水平。结果表明:无论低山还是二高山地区鄂马铃薯7号的最佳种植方式是667 m2种植密度5 400株、底肥为复合肥25 kg,667 m2平均产量达2 324.5 kg。  相似文献   

18.
Efficient water and fertilizer use is of paramount importance both in rain-fed and irrigated rice cultivation systems to tread off between the crop water demand during the dry spell and the fertilizer leaching. This lysimeter study on paddy in a lateritic sandy loam soil of the eastern India, to simulate the water and solute transports using the HYDRUS-1D model, reveals that this model could very well simulate the soil depth-specific variations of water pressure heads and nitrogen (N) concentrations with the efficiency of >86 and 89%, respectively. The change in the level of water ponding depth did not have a significant effect on the time to peak and the temporal variability of N concentration in the bottom soil layer. The lysimeter-scale water balance analysis indicated that the average deep percolation loss and crop water use were 35.01 ± 2.03 and 39.74 ± 1.49% of the total water applied during the crop growth period, respectively. Similarly, the amount of N stored in the plant and lost through soil storage, deep percolation, and other losses (mineralization, denitrification, and gaseous N loss to the atmosphere through plant leaves) were 1.60 ± 0.16, 0.17 ± 0.04, 12.00 ± 0.48, and 86.23 ± 0.41% of the total applied nitrogen, respectively. The simulation results reveal that a constant ponding depth of 3 cm could be maintained in paddy fields to reduce the N leaching loss to 7.5 kgN/ha.  相似文献   

19.
生态肥与化肥配施对水稻产量和氮肥利用效率的影响   总被引:2,自引:0,他引:2  
通过田间试验研究了“绿营高TM”生态肥与化肥不同比例配施对水稻产量和氮肥利用效率的影响。配施绿营高生态肥各处理分蘖增长平缓,成穗率高,而对照(单施化肥)分蘖前期分蘖发生快,无效分蘖多。生态肥与化肥配施各处理灌浆期叶面积指数和干物质积累量明显高于对照,使汕优63增产6.40%~953%,秀水63增产6.70%~952%,差异均达5%显著水平,不同配施处理间产量差异不显著。汕优63和秀水63生态肥配施各处理的氮肥农学效率和氮肥回收效率均显著高于对照,表明合理配施生态肥可以促进水稻健壮生长,中后期可提供较多的养分,增加灌浆期绿叶面积,促进光合产物向籽粒转运,增加干物质产量和稻谷产量,而且还可以减少氮肥施用量,提高氮肥利用效率。  相似文献   

20.
为给河南省不同生态区域小麦氮肥高效利用提供理论依据,于2012-2013年在南阳和信阳2个地点,2013-2014年南阳、信阳和郑州3个地点,通过田间试验研究了施氮量对10个小麦品种产量和氮肥利用效率的影响。结果表明,小麦产量和氮肥利用效率均显著受品种、地点和施氮水平的影响,同时显著存在品种×地点和地点×施氮量的互作效应;其中,品种效应相对较小,地点对产量和氮肥农学利用效率的影响较大,施氮水平对氮肥偏生产力的调控效应最大。10个品种中,周麦28在各地点均获得了较高的产量和氮肥偏生产力,表现出较好的适应性。3个地点中,郑州和南阳的小麦产量和氮肥偏生产力均显著高于信阳,而信阳具有较高的氮肥农学利用效率,说明适量的氮肥供给对于信阳改善小麦生产非常重要。增施氮肥可以显著提高小麦产量,但降低了氮肥偏生产力和氮肥农学利用效率,且不同地点和品种对施氮水平的响应存在差异。综合各品种产量和氮肥利用效率对施氮水平的响应,在3个地点小麦在较低施氮水平(120kg·hm-2)下均可达到高产高效的生产目标,但各地点也存在需要高氮肥投入的小麦品种,如郑州的郑麦3596、南阳的洛麦24及信阳的西农509和宛麦16。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号