共查询到20条相似文献,搜索用时 12 毫秒
1.
Hydraulic properties and embolism in small-diameter roots of five temperate broad-leaved tree species with contrasting drought tolerance 总被引:1,自引:0,他引:1
Paul K?cher Viviana Horna Ingo Beckmeyer Christoph Leuschner 《Annals of Forest Science》2012,69(6):693-703
? Context
It has been estimated that about half of a plant??s total hydraulic resistance is located belowground, but it is not well known how temperate tree species differ in root hydraulic properties and how these traits vary with the species?? drought tolerance.? Aims
We examined root anatomical and hydraulic traits in five broad-leaved tree species with different drought tolerance, analyzed the relation between root anatomy and hydraulic conductivity and root embolism, and investigated the relation of these traits to the species?? drought tolerance.? Methods
In small-diameter roots (2?C6?mm), we measured vessel diameters and vessel density, specific hydraulic conductivity, and the percental loss of conductivity (??native?? embolism) during summer in a mixed forest.? Results
Specific conductivity was positively related to vessel diameter but not to vessel density. Drought-tolerant Fraxinus showed the smallest mean vessel diameters and drought-sensitive Fagus the largest. Specific conductivity was highly variable among different similar-sized roots of the same species with a few roots apparently functioning as ??high-conductivity roots??.? Conclusion
The results show that coexisting tree species can differ largely in root hydraulic traits with more drought-sensitive trees apparently having larger mean vessel diameters in their roots than tolerant species. However, this difference was not related to the observed root conductivity losses due to embolism. 相似文献2.
Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones 总被引:1,自引:0,他引:1
Urban O Sprtová M Kosvancová M Tomásková I Lichtenthaler HK Marek MV 《Tree physiology》2008,28(8):1189-1197
We tested the hypothesis that leaf age affects photosynthetic induction, because conductance to CO2 diffusion usually decreases with increasing leaf age. Photosynthetic inductions, primarily determined by the light modulation of Rubisco activity and stomatal opening, were investigated in both young and mature leaves, as defined by leaf plastochron index (LPI), from three poplar clones: Populus alba L., P. nigra L. and P. x euramericana (Dode) Guinier. In all clones, maximum assimilation rates (A max), maximum stomatal conductance (G Smax) and dark respiration rates (RD) were higher in young leaves (LPI = 3-5) than in mature leaves (LPI = 10-14), and A max decreased from P. alba via P. x euramericana to P. nigra. The clones with high photosynthetic capacity had low induction states 60 s after leaf illumination (IS60; indicating a slow initial induction phase), and required less time to reach 90% photosynthetic induction (T90). In contrast, the clone with the lowest photosynthetic capacity (P. nigra) exhibited high IS60 (high initial induction state) but a long induction time (high T90). A comparison of mature leaves with young leaves revealed significantly (P < 0.01) lower IS60 values in mature leaves of P. nigra only, and significantly higher T90 values in mature leaves of P. alba only. In all clones, young leaves exhibited a lower percentage of maximum transient stomatal limitation during photosynthetic induction (4-9%) compared with mature leaves (16-30%). Transient biochemical limitation, assessed on the basis of the time constants of Rubisco activation (tau), was significantly higher in mature leaves than in young leaves of P. alba; whereas there were no significant differences in tau between young and mature leaves of the other poplar clones. Thus, our hypothesis that leaf age affects photosynthetic induction was confirmed at the level of transient stomatal limitation, which was significantly higher in mature leaves than in young leaves in all clones. For the induction parameters IS60, T90 and tau, photosynthetic induction was more clone-specific and was dependent on leaf age only in some cases, an observation that may apply to other tree species. 相似文献
3.
?Context
Tree species differ largely in their capability to produce characteristic shade leaves with effective morphological and physiological acclimation to low light.?Aims
By examining the sun/shade leaf differentiation in leaf morphology, foliar nitrogen and photosynthetic capacity in five temperate tree species of different successional status, we aimed at identifying those leaf traits that determine the development of a typical shade crown with low light-acclimated leaves.?Methods
Leaf morphology, foliar N content, photosynthetic capacity (V cmax, J max and A max) and leaf dark respiration (R d) were measured in the canopies of 26 adult trees of Fraxinus, Acer, Carpinus, Tilia and Fagus species.?Results
Six traits (the sun/shade leaf differentiation in specific leaf area, leaf size, A max per leaf area or per mass, photosynthetic N use efficiency and R d) were found to characterise best the degree of low light acclimation in shade leaves. All five species exhibited certain modifications in leaf morphology and/or physiology in response to low light; Fagus sylvatica showed the highest and Fraxinus excelsior the lowest shade leaf acclimation.?Conclusions
Our results indicate that the five early/mid- to late-successional species have developed species-specific low light acclimation strategies in their shade crowns which differ in terms of the relative importance of leaf morphological and physiological acclimation. 相似文献4.
We assessed the relative limitations to photosynthesis imposed by stomatal and non-stomatal processes in Dacrydium cupressinum Lamb. (Podocarpaceae), which is the dominant species in a native, mixed conifer-broad-leaved rainforest in New Zealand. For comparison, we included three co-occurring broad-leaved tree species (Meterosideros umbellata Cav. (Myrtaceae), Weinmannia racemosa L.f. (Cunoniaceae) and Quintinia acutifolia Kirk (Escalloniaceae)) that differ in phylogeny and in leaf morphology from D. cupressinum. We found that low foliage phosphorus content on an area basis (P(a)) limited light-saturated photosynthesis on an area basis (A(sat)) in Q. acutifolia. Depth in the canopy did not generally affect A(sat) or the relative limitations to A(sat) because of stomatal and non-stomatal constraints, despite reductions in the ratio of foliage mass to area, foliar nitrogen on an area basis (N(a)) and P(a) with depth in the canopy. In the canopy-dominant conifer D. cupressinum, A(sat) was low, consistent with low values of the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (V(cmax)). In comparison, the A(sat) response of the three broad-leaved tree species was quite variable. Although A(sat) was high in the canopy-dominant M. umbellata, it was low in the sub-canopy trees W. racemosa and Q. acutifolia. Relative stomatal limitation to photosynthesis was more pronounced in W. racemosa (40%) than in the other three species (28-33%). Despite differences in degree, non-stomatal limitation to A(sat) predominated in all tree species. 相似文献
5.
Paul Köcher Tobias Gebauer Viviana Horna Christoph Leuschner 《Annals of Forest Science》2009,66(1):101-101
6.
Tree ring analysis investigates growth processes at time horizons of several weeks to millennia, but lacks the detail of short-term fluctuation in cambial activity. This study used electronic high-precision dendrometry for analyzing the environmental factors controlling stem diameter variation and radial growth in daily resolution in five co-existing temperate broad-leaved tree species (genera Fraxinus, Acer, Carpinus, Tilia and Fagus) with different growth and survival strategies. Daily stem radius change (SRC(d)) was primarily influenced by the atmospheric demand for water vapor (expressed either as vapor pressure deficit (D) or relative air humidity (RH)) while rainfall, soil matrix potential, temperature and radiation were only secondary factors. SRC(d) increased linearly with increasing RH and decreasing D in all species. The positive effect of a low atmospheric water vapor demand on SRC(d) was largest in June during the period of maximal radial growth rate and persisted when observation windows of 7 or 21 days instead of 1 day were used. We found a high synchronicity in the day-to-day growth rate fluctuation among the species with increment peaks corresponding to air humidity maxima, even though the mean daily radial growth rate differed fivefold among the species. The five -species also differed in the positive slope of the growth/RH relationship with the steepest increase found in Fraxinus and the?lowest in Fagus. We explain the strong positive effect of high RH and low D on radial stem increment by lowered transpiration which reduces negative pressure in the conducting system and increases turgor in the stem cambium cells, thereby favoring cell division and expansion. The results suggest that mechanistic models of tree growth need to consider the atmospheric water status in addition to the known controlling environmental factors: temperature, soil moisture and precipitation. The results further have implications for sensitivity analyses of tree growth to climatic changes. 相似文献
7.
Fleur Longuetaud Frédéric Mothe Philippe Santenoise Ndiaye Diop Jana Dlouha Meriem Fournier Christine Deleuze 《Annals of Forest Science》2017,74(3):64
? Key message
Intensive measurements of basic specific gravity and relative water content of lumens show that within-stem variations strongly depend on species and cannot be summarised through the typical patterns reported in the literature; breast height measurements are not always representative of the whole stem.? Context
Knowledge of the distribution of wood properties within the tree is essential for understanding tree physiology as well as for biomass estimations and for assessing the quality of wood products.? Aims
The radial and vertical variations of basic specific gravity (BSG) and relative water content of lumens (RWC L ) were studied for five species: Quercus petraea/robur, Fagus sylvatica, Acer pseudoplatanus, Abies alba and Pseudotsuga menziesii. The observations were compared with typical patterns of variations reported in the literature.? Methods
Wood discs were sampled regularly along tree stems and X-rayed in their fresh and oven-dry states.? Results
At breast height, BSG was found to clearly increase radially (pith to bark) for two species and to decrease for one species. For F. sylvatica and A. alba, the radial variations of BSG were rather U-shaped, with in particular inner wood areas showing respectively lower and higher BSG than the corresponding mature wood. RWC L increased generally from inner to outer area but wet sapwood was clearly distinguishable only for the coniferous species. Vertical variations of BSG and RWC L were strongly dependant on the species with usually non-linear patterns.? Conclusion
The observed variations of BSG were only partially in agreement with the reported typical radial patterns. Despite the vertical variations, the mean BSG of a cross-section at breast height appeared to be a good estimator of the mean BSG of the whole stem (although the difference was statistically significant for coniferous species), whereas breast height measurement of RWC L was not representative of the whole stem.8.
We measured the seasonal and temperature responses of leaf photosynthesis and respiration of two co-occurring native New Zealand tree species with contrasting leaf phenology: winter-deciduous fuchsia (Fuchsia excorticata J. R. Forst & G. Forst) and annual evergreen wineberry (Aristotelia serrata J. R. Forst & G. Forst). There was no difference in the amount of nitrogen per unit leaf area (Narea, range 40-160 mmol m-2, P = 0.18) or specific leaf area (S, range 8-27 m2 kg-1, P = 0.87) in summer leaves of wineberry or fuchsia. The amount of nitrogen per unit leaf area and S varied significantly with height of leaves in the canopy for both species (r2 range 0.61-0.87). Parameters describing the maximum rates of rubisco carboxylation (Vcmax) and electron transport (Jmax) were related significantly to Narea, and were 60% higher on average in spring and summer leaves than in autumn and winter leaves for both species. The seasonal effect remained significant (P < 0.001) when Narea was included in a regression model, indicating that seasonal changes were not only due to changes in Narea. Values for Vcmax and Jmax were 30% lower in wineberry leaves than in fuchsia leaves on average, although the difference ranged from 15% in summer leaves to 39% in autumn leaves. Activation energies describing the temperature dependence of Vcmax and Jmax in wineberry were 111 and 114% of corresponding values for fuchsia (Ea (Vcmax) = 39.1 kJ mol-1, Ea (Jmax) = 32.9 kJ mol-1). Respiration at night was the same (P = 0.34) at 10 degrees C for both species (R10 = 0.7 micromol m-2 s-1), although activation energies (E0) were higher in wineberry than in fuchsia (47.4 and 32.9 kJ mol-1 K-1, respectively). These results show that rates of photosynthesis are higher in winter-deciduous fuchsia than in annual evergreen wineberry. 相似文献
9.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter. 相似文献
10.
Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves. 相似文献
11.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season. 相似文献
12.
Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests. 相似文献
13.
为了探讨梨砧木光合作用与气孔形态特征间的关系及其对环境的适应性,分别以杜梨和豆梨为试材,分析了2种砧木生长量、叶片各光合参数日变化规律和下表皮气孔形态特征的差异情况。观测结果表明:相同环境条件下,杜梨的生长量显著高于豆梨的;两者间净光合速率(Pn)日变化规律的差异显著,其中,杜梨叶片Pn的日变化曲线呈单峰曲线,而豆梨的为双峰曲线,且杜梨的Pn整体大于豆梨的;杜梨的气孔导度(Gs)、蒸腾速率(Tr)在10:00时后均显著大于豆梨的,但杜梨的水分利用效率(WUE)仍维持在较高水平上;豆梨叶片下表皮气孔密度是杜梨的1.5倍;两者气孔长度、气孔开度的日变化规律均相似,但在白天气孔开度的最小值,杜梨出现在14:00时,而豆梨出现在12:00时。相关性分析结果表明:杜梨的WUE与试验环境温度(T)呈显著负相关(P<0.05),而与叶片表面的相对湿度(Hr)呈显著正相关(P<0.05);豆梨的WUE与T呈极显著负相关(P<0.01),而与RH呈显著正相关(P<0.05)。研究结果表明:豆梨气孔对高温、强光等环境的响应较为敏感且强烈,随着每日温度的升高,其气孔闭合现象出现的时间提早,致使光合作用减弱;而杜梨能够保持气孔的正常形态,且杜梨的Gs、Tr均维持在较高水平上,其光合能力较强,并具有较高的水分利用效率,从而表现出更强的环境适应性。 相似文献
14.
Mahieu Stéphanie Novak Sandra Barre Philippe Delagarde Rémy Niderkorn Vincent Gastal François Emile Jean-Claude 《Agroforestry Systems》2021,95(7):1295-1308
Agroforestry Systems - In temperate regions, tree leaves could be a source of energy, protein, vitamins and minerals for ruminants. Our objective was to study the diversity in chemical composition... 相似文献
15.
Seedlings of seven temperate tree species (Acer pseudoplatanus L., Betula pendula Roth, Fagus sylvatica L., Fraxinus excelsior L., Juglans regia L., Quercus petraea Matt. Liebl. and Quercus robur L.) were grown in a nursery under neutral filters transmitting 45% of incident global irradiance. During the second or third year of growth, leaf photosynthetic capacity (i.e., maximal carboxylation rate, Vcmax, maximal photosynthetic electron transport rate, Jmax, and dark respiration, Rd) was estimated for five leaves from each species at five or six leaf temperatures (10, 18, 25, 32, 36 and 40 degrees C). Values of Vcmax and Jmax were obtained by fitting the equations of the Farquhar model on response curves of net CO2 assimilation (A) to sub-stomatal CO2 mole fraction (ci), at high irradiance. Primary parameters describing the kinetic properties of Rubisco (specificity factor, affinity for CO2 and for O2, and their temperature responses) were taken from published data obtained with spinach and tobacco, and were used for all species. The temperature responses of Vcmax and Jmax, which were fitted to a thermodynamic model, differed. Mean values of Vcmax and Jmax at a reference temperature of 25 degrees C were 77.3 and 139 micromol m(-2) s(-1), respectively. The activation energy was higher for Vcmax than for Jmax (mean values of 73.1 versus 57.9 kJ mol(-1)) resulting in a decrease in Jmax/Vcmax ratio with increasing temperature. The mean optimal temperature was higher for Vcmax than for Jmax (38.9 versus 35.9 degrees C). In addition, differences in these temperature responses were observed among species. Temperature optima ranged between 35.9 and above 45 degrees C for Vcmax and between 31.7 and 43.3 degrees C for Jmax, but because of data scatter and the limited range of temperatures tested (10 to 40 degrees C), there were few statistically significant differences among species. The optimal temperature for Jmax was highest in Q. robur, Q. petraea and J. regia, and lowest in A. pseudoplatanus and F. excelsior. Measurements of chlorophyll a fluorescence revealed that the critical temperature at which basal fluorescence begins to increase was close to 47 degrees C, with no difference among species. These results should improve the parameterization of photosynthesis models, and be of particular interest when adapted to heterogeneous forests comprising mixtures of species with diverse ecological requirements. 相似文献
16.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy
of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen
broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences
in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR
with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved
trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level,
and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass
in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree
variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific
and intraspecific variations in aLAR. 相似文献
17.
The experiment was carried out on five different species ofPaulownia for callus induction from leaves. MS medium was adopted as basic medium, and from different combinations of NAA and BA the
suitable media were determined for callus induction, bud differentiation, and root differentiation of five different species.
MS+0.5NAA+4BA, MS+0.3NAA+2BA, MS+0.5NAA+4BA, MS+0.3NAA+6BA, and MS+0.3NAA+8BA were suitable media of callus inductions of
leaves, respectively, forPaulownia tomentosa, Paulownia australis, Paulownia fortunei, Paulownia elongata andP. tmentosa x P. fortunei, and MS+0.3NAA+12BA, MS+0.3NAA+12BA, MS+0.5NAA+12BA, MS+0.5NAA+12BA, and MS+0.7NAA+12BA were suitable media for bud differentiation
from leaf callus respectively for above five species. The rooting media was determined as 2MS+0.1NAA, 1/2MS+0.1NAA, 1/2MS,
1/2MS+0.3NAA, and 1/2MS+0.5NAA. These results provide reference data for breeding new fine varieties with different kinds
ofPaulownia protoplasts fusions.
Foundation Item: This paper was supported by National Nature Science Foundation of China (No. 39870631) and Nature Science Foundation of
Henan Province (No. 994011100).
Biography: Fan Guo-qiang (1964), male Ph. Doctor, Professor in Forestry Department of Henan Agriculture University. Zhengzhou 450002,
P. R. China. E-mail: guoqiangf@263.net.
Responsible editor: Song Funan 相似文献
18.
Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO(2) and temperature 总被引:1,自引:0,他引:1
Biochemical models of photosynthesis suggest that rising temperatures will increase rates of net carbon dioxide assimilation and enhance plant responses to increasing atmospheric concentrations of CO(2). We tested this hypothesis by evaluating acclimation and ontogenetic drift in net photosynthesis in seedlings of five boreal tree species grown at 370 and 580 &mgr;mol mol(-1) CO(2) in combination with day/night temperatures of 18/12, 21/15, 24/18, 27/21, and 30/24 degrees C. Leaf-area-based rates of net photosynthesis increased between 13 and 36% among species in plants grown and measured in elevated CO(2) compared to ambient CO(2). These CO(2)-induced increases in net photosynthesis were greater for slower-growing Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb., and Larix laricina (Du Roi) K. Koch than for faster-growing Populus tremuloides Michx. and Betula papyrifera Marsh., paralleling longer-term growth differences between CO(2) treatments. Measures at common CO(2) concentrations revealed that net photosynthesis was down-regulated in plants grown at elevated CO(2). In situ leaf gas exchange rates varied minimally across temperature treatments and, contrary to predictions, increasing growth temperatures did not enhance the response of net photosynthesis to elevated CO(2) in four of the five species. Overall, the species exhibited declines in specific leaf area and leaf nitrogen concentration, and increases in total nonstructural carbohydrates in response to CO(2) enrichment. Consequently, the elevated CO(2) treatment enhanced rates of net photosynthesis much more when expressed on a leaf area basis (25%) than when expressed on a leaf mass basis (10%). In all species, rates of leaf net CO(2) exchange exhibited modest declines with increasing plant size through ontogeny. Among the conifers, enhancements of photosynthetic rates in elevated CO(2) were sustained through time across a wide range of plant sizes. In contrast, for Populus tremuloides and B. papyrifera, mass-based photosynthetic rates did not differ between CO(2) treatments. Overall, net photosynthetic rates were highly correlated with relative growth rate as it varied among species and treatment combinations through time. We conclude that interspecific variation may be a more important determinant of photosynthetic response to CO(2) than temperature. 相似文献
19.
Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario,Canada 总被引:1,自引:0,他引:1
Amy Wotherspoon Naresh V. Thevathasan Andrew M. Gordon R. Paul Voroney 《Agroforestry Systems》2014,88(4):631-643
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system. 相似文献
20.
不同种泡桐叶片愈伤组织诱导及其植株再生(英文) 总被引:8,自引:0,他引:8
在确定5种泡桐叶片诱导愈伤组织基本培养基为MS的基础上,通过不同的NAA和BA的组合,筛选出了毛泡桐(Paulownia tomentosa)、南方泡桐(Pauiownia australis)、白花泡桐(Paulownia fortunei)、兰考泡桐(Paulownia elongata)和豫杂一号泡桐(P.tomentosa x P. fortunei)叶片愈伤组织诱导、芽分化和根分化的最适培养基。MS+0.5NAA+4BA、MS+0.3NAA+2BA、MS+0.5NAA+4BA、MS+0.3NAA+6BA和MS+0.3NAA+8BA分别为五种泡桐树种叶片愈伤组织诱导的最适培养基,上述树种的叶片愈伤组织诱导芽分化最适培养基分别为MS+0.3NAA+12 BA、MS+0.3NAA+12 BA、MS+0.5NAA+12 BA、MS+0.5NAA+12 BA和MS+0.7NAA+12 BA,最后找出了5种泡桐芽诱导根的最适培养基分别为1/2MS+0.1NAA、1/2MS+0.1NAA、1/2MS、1/2MS+0.3NAA和1/2MS+0.5NAA。这些结果为开展泡桐基因工程研究和利用不同种泡桐叶片原生质体融合培育泡桐新品种提供了参考。 相似文献