首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Geoderma》1986,37(4):341-360
Four soils developed along a moraine ridge crest are described. Morphologically three of the four soils had distinct podzol (Spodosol) profiles. When the chemical and morphological criteria used by three classification systems and the F.A.O. soil map legend are applied to the soils, however, this results in a divergence in the classification/designation of the four soils.Local differences in the height of the ridge crest above the adjacent till plain, are thought to be sufficient to cause changes in the micro-climate along the ridge. These differences in micro-climate appear in turn to influence the pattern and extent of colonisation by vegetation along the ridge crest. These two factors interact to produce the observed intensification of podzol development along the ridge crest from site 4, the most exposed site, to site 1, the least exposed site.  相似文献   

2.
《Biological conservation》1985,34(3):273-288
The effects of footpath development on arctic and alpine flora are examined in relation to two footpaths at the Okstindan Research Station in northern Norway where the level of use since the inception of the footpaths can be established. The patterns of vegetation in relation to landform are described and the control which these have on the form of the footpath is discussed. The effects of trampling on the plants is examined and the more robust species are identified. Comparisons are made between the two paths with regard to the effects of the different levels of use and the effects of the paths on plant distributions immediately adjacent to them are examined. Differences in soil compaction and the response to rainfall are discussed in relation to the processes of footpath erosion. The problems of prevention of erosion and possible conservation measures are suggested.  相似文献   

3.
This study aimed at clarifying whether a notable group of soils of the Jæren region, SW Norway, with deep humus‐rich top soils support a man‐made genesis. Four sites were investigated. The soils are characterized by thick top soils of 45, 70, 80, and 90 cm, which are enriched in soil organic matter and often also in artifacts, like fragments of potter's clay, indicating an anthropogenic origin. Soil pH ranges from 5.4 to 6.2 (H2O) and 4.4 to 5.3 (CaCl2), respectively. Soil organic C (SOC) contents range from 6.4 to 51.6 g kg?1 and N contents vary between 0 and 2.9 g kg?1. Increased P contents of up to 2,924.3 mg kg?1 total P (Pt) and 1,166.4 mg kg?1 citric acid‐soluble phosphorus (Pc) in the humus‐rich top soils support the assumption of an anthropogenic influence. Although many characteristics indicate an anthropogenic genesis, one soil lacks the required depth of 50 cm of a plaggen horizon and cannot be classified as Plaggic Anthrosol (WRB) and Plagganthrept (US Soil Taxonomy). As the requirement is 40 cm in the German system, all soils can be classified as Plaggenesch. The formation of these soils is related to human activity aiming at increasing soil fertility and overcoming the need of bedding material, the basic aims of the plaggen management in Europe. Highest P contents ever found for this kind of soils and references from the literature indicate that the formation of the soils in Norway started at Viking time, hence, being older than most other Plaggic Anthrosols.  相似文献   

4.
Soil plots were established in catchments within the frame of the Norwegian Monitoring Programme for Long-Range Transported Air Pollutants. Four soil plots of about 10 m by 20 m were established within each catchment in areas with relatively homogeneous soil and vegetation. Multiple soil cores were taken at 50 points in a grid from each plot (repeated 4 times) and the samples were pooled by depths. Each soil core was divided by soil horizon, by predefined depths or by a combination of these, usually giving one soil sample for each 2-cm-depth down to about 15 cm. The soil pH measured in water suspension varied for all soils between 3.5 and 4.9. Base saturation measured at pH 7 varied between 2% and 22% with the highest values in the upper, more humus rich layers. All of the monitored catchments include acid soils poor in base cations. After 8 years the plots were resampled using the same procedure as for the first sampling. In most of the plots a decreasing pH trend from the first to the second sampling was measured. However, the base saturation was generally higher in all plots at the second sampling compared with the first. There are no clear effects of the different pollution regimes in the various catchments. It must be emphasized, however, that 8 years is a short period for measuring long-term soil changes.  相似文献   

5.
Atmospheric mobilization and exchange at the air-water interface are significant features of biogeochemical cycling of Hg at the Earth's surface. Our marine studies of Hg have been extended to terrestrial aquatic systems, where we are investigating the tropospheric cycling, deposition and air-water exchange of Hg in the mid-continental lacustrine environs of northcentral Wisconsin. This program is part of a multidisciplinary examination into the processes regulating the aquatic biogeochemistry of Hg in temperate regions. Trace-metal-free methodologies are employed to determine Hg and alkylated Hg species at the picomolar level in air, water and precipitation. We have found Hg concentrations and atmospheric fluxes in these fresh water systems to be similar to open ocean regions of the Northern Hemisphere. A well constrained mass balance for Hg has been developed for one of the lakes, Little Rock Lake, which is an extensively studied clear water seepage lake that has been divided with a sea curtain into two basins, one of which is untreated (reference pH: 6.1) while the other is being experimentally acidified (current pH: 4.7). This budget shows that the measured total atmospheric Hg deposition (ca. 10 μg m−2 yr−1) readily accounts for the total mass of Hg in fish, water and accumulating in the sediments of Little Rock Lake. This analysis demonstrates the importance of atmospheric Hg depositional fluxes to the geochemical cycling and bioaccumulation of Hg in temperate lakes. It further suggests that modest increases in atmospheric Hg loading could lead directly to enhanced levels of Hg in biota. Analogous modeling for monomethylmercury (MMHg) is as yet limited. Nevertheless, preliminary data for the atmospheric deposition of MMHg indicate that this flux is insufficient. to account for the amounts of MMHg observed in biota. An in-lake synthesis of MMHg is implicated. The importance of volatile Hg which is principally in the elemental form, and its evasion to the atmosphere is also illustrated. We suggest that the in-lake production of Hg° can reduce the Hg (II) substrate used in the in-lake microbiological synthesis of MMHg.  相似文献   

6.
Two soil profiles (Alfisols) developed in the Neogene terrace of the Kücük Menderes Valley, Izmir, Turkey, were studied micromorphologically. Both profiles developed in limestone with admixtures of schists. They were fully decarbonated in the beginning. They are both truncated.  相似文献   

7.
The micromorphological data on aridic soils are far from numerous; therefore, the information presented here contributes to the development of pedogenetic ideas and characterization of diagnostic horizons and genetic properties in substantive-genetic classification systems. The diversity, functioning, and resilience of aridic soils are basically determined by the properties of their topsoils, which are regarded as recent dynamic formations as opposed to subsoils that formed under a different paleoclimatic environment; topsoil properties are more important for soil classification. Each of the two upper horizons in the new system of soil classification (the light-humus and xero-humus) has the same micromorphological features in different soils; however, in a sequence of soils, some individual micromorphological properties were revealed that indicate increasing aridity. The micromorphological properties of topsoils make it possible to identify the mechanisms of certain phenomena: aeolian deposition, structural rearrangement, the dynamics of secondary carbonates, and cryptosolonetzic manifestations.  相似文献   

8.
9.
挪威北部土壤微生物活性的季节变化   总被引:9,自引:0,他引:9  
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacteria] biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.  相似文献   

10.
Abstract

The concentrations of the more‐or‐less strongly retained trace elements present in the root zone of some northern Nigerian soils were determined. The soils were chosen to represent some of the more extensively distributed soil orders under cultivation in the Nigerian savanna zone. Extraction by concentrated HNO3 was used to determine the so‐called “total”; amount of retained Cu, Zn, Pb, Ni, Cd, and B in the soils. Aqueous solutions of the chelating agents, EDTA and DTPA, were used to extract the more weakly retained Cu, Zn, Pb, Ni, and Cd; whereas, hot water was used to extract the weakly retained B. The “total”; and the more‐weakly‐retained contents of these trace elements were significantly correlated with the amount of clay, silt, and the oxalate‐extractable oxyhydroxides present in the soils; whereas, only the weakly retained elements were significantly correlated with the content of organic matter in the soil. Both the “total”; concentrations and weakly‐retained Cu, Zn, and B were so low that deficiency problems may develop in these sandy soils if cultivated more intensively on a commercial scale without due precautions. The concentrations of the weakly‐retained toxic elements, Pb, Ni, and Cd, were low indicating that industrial pollution has not yet occurred.  相似文献   

11.
Environmental damages like forest decline in Northern Slovakia could be a result of long-distance transport of pollutants with the dominating north-west winds. On 10 sites, primarily in the northbound upper slopes of west-east oriented mountain ranges in Northern Slovakia, the extent of the heavy metal contamination in soils along a north-south transect was examined. Oi, Oe, Oa, A, and B horizons were sampled and the total concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined. The ranges of heavy metal concentrations in the forest floor were higher than reported for comparable samples from Bavarian soils except for Zn (Cd: 0.65–1.77; Cr: 12–40; Cu: 19–41; Ni: 8–24; Pb: 70–187; Zn: 31–92 mg kg?1), in the mineral soil the concentrations were lower. The depth distribution of the metal concentrations indicated a contamination with Cd, Cr, Cu, Ni, Pb, and Zn. The concentration differences between forest floor and mineral soil tended to be higher at the northern than at the southern sites for Cu, Ni, Pb, and Zn, indicating a long-distance transport from the north. Correlation and principal component analyses of the total metal concentrations revealed three groups: Cu, Pb, and Zn inputs mainly seemed to result from long-distance transport from the north, Cr and Ni inputs additionally from local sources. Cd probably had its origin mainly in local sources. This result was further confirmed by the grouping of the sites when clustered.  相似文献   

12.
Decomposition of different organic materials in soils   总被引:10,自引:0,他引:10  
Laboratory experiments were conducted to evaluate organic C mineralization of various organic materials added to soils. A soil sample was mixed with organic material to approximate a field application of 9 g organic C kg-1 soil (0.9% or 50 Mg ha-1). The organic materials used were four crop residues [corn (Zea mays L.), soybean (Glycine max L. Merr.), sorghum (Sorghum vulgare Pers.), and alfalfa (Medicago sativa L.)], four animal manures [chicken (Gallus domesticus), pig (Sus scrofa), horse (Equus caballus), and cow (Bos taurus)] and four sewage sludges [Correctionville (Imhoff tank), Charles City (holding tank), Davenport (secondary digester), and Keokuk (primary digester)]. The soil-organic material mixture was incubated under aerobic conditions at room temperature (20±2°C) for 30 days. The CO2 evolved was collected in standard KOH solution by continuously passing CO2-free air over the soil. Results showed that, in general, the amounts of CO2-C released mereased rapidly initially, but the pattern differed among the organic materials used. More than 50% of the total CO2 produced in 30 days of incubation was evolved in the first 6 days. Expressed as percentages of organic C added, the amounts of CO2 evolved ranged from 27% with corn to 58% with alfalfa. The corresponding percentages for animal manures ranged from 21 to 62% with horse and pig manures, respectively, and for sewage sludges they ranged from 10 to 39% for Charles City and Keokuk sludges. All CO2 evolution data conformed well to a first-order kinetic model. Potentially, readily mineralizable organic C values and first-order rate constants (k) of the organic matter-treated soils ranged from 1.422 g C kg-1 soil with ak value of 0.0784 day-1 to 6.253 g C kg-1 soil with ak value of 0.0300 day-1. The half-lives of the C remaining in soils ranged from 39 to 54 days for plant materials. The corresponding half-lives for the C remaining from animal manures and sewage sludges ranged from 37 to 169 days and from 39 to 330 days, respectively.  相似文献   

13.
Soils that are forming on volcanic parent materials have unique physical and chemical properties and in most cases, on wet and humid climates, are classified as Andisols. The main purpose of this study is to examine if the soils that are forming on volcanic materials under a dry Mediterranean climate, in Nisyros Island (Greece), meet the requirements to be classified as Andisols. Soils from seven sites were sampled and examined for their main physico-chemical properties and selective dissolution analysis. Dithionite–citrate–bicarbonate (DCB) extractable Al and Fe (Áld, Fed), acid ammonium oxalate extractable Al, Fe, and Si (Álo, Feo and Sio), and sodium pyrophosphate extractable Al and Fe (Alp, Fep) were measured. In addition, Al and Si were determined after reaction with hot 0.5 M NaOH, (AlNaOH and SiNaOH) and with Tiron-(C6H4Na2O8S2), (AlT and SiT). P-retention was also measured. The soils are characterised by coarse texture, low organic matter content, low values of cation exchange capacity (CEC), and high pH values. Values of Sio, Alo and Feo are less than 0.022%, 0.09% and 0.35% respectively, highlighting the lack of noncrystalline components. The ratio (Fed–Feo)100/Fed is quite high expressing the degree of crystallisation of free iron oxides. For all samples tested, values of the Alo + 1/2Feo index are extremely low (< 0.24%). High SiNaOH and SiT (arising 2.76% and 2.18% respectively) indicate the presence of silica in amorphous forms. P-retention values are very low (< 12.6%). The results indicated the absence of noncrystalline minerals except for amorphous silica, and do not exhibit andic or vitric soil characteristics to be classified as Andisols.  相似文献   

14.
15.
Coniferous forest soils often consume less of the greenhouse gas methane (CH4) than deciduous forest soils. The reasons for this phenomenon have not been resolved. It might be caused by differences in the diffusive flux of CH4 through the organic layer, pH or different concentrations of potentially inhibitory compounds. Soil samples were investigated from three adjacent European beech ( Fagus sylvatica ) and Norway spruce ( Picea abies ) stands in Germany. Maximal CH4 oxidation velocities (Vmax(app)) and Michaelis Menten constants (KM(app)), retrieved from intact soil cores at constant CH4 concentrations, temperature and matric potential, were twice as great in beech as in spruce soils. Also atmospheric CH4 oxidation rates measured in homogenized soil samples displayed the same trend. Greatest atmospheric CH4 oxidation rates were detected in the Oa horizon or in the upper 5 cm of the mineral soil. In contrast to the beech soils, the Oa horizon of the spruce soils consumed no CH4. A differential effect due to divergent diffusive flux through the litter layer was not found. pH and ammonium concentration were similar in samples from both forest soil types. Ethylene accumulation in all soils was negligible under oxic conditions. These collective results suggest that the different atmospheric CH4 uptake by beech and spruce soils is caused by different CH4 oxidizing capacities of methanotrophic communities in the Oa horizon and top mineral soil.  相似文献   

16.
Abstract

Pedotransfer functions (PTFs), predicting the soil water retention curve (SWRC) from basic soil physical properties, need to be validated on arable soils in Norway. In this study we compared the performance of PTFs developed by Riley (1996), Rawls and Brakensiek (1989), Vereecken et al. (1989), Wösten et al. (1999) and Schaap et al. (2001). We compared SWRCs calculated using textural composition, organic matter content (SOM) and bulk density as input to these PTFs to pairs of measured water content and matric potential. The measured SWRCs and PTF input data were from 540 soil horizons on agricultural land in Norway. We used various statistical indicators to evaluate the PTFs, including an integrated index by Donatelli et al. (2004). The Riley PTFs showed good overall performance. The soil specific version of Riley is preferred over the layer specific, as the latter may introduce a negative change in water content with increasing matric potential (h). Among the parameter PTFs, Wösten's continuous PTF showed the overall best performance, closely followed by Rawls&B and Vereecken. The ANN-based continuous PTF of Schaap showed poorer performance than its regression based counterparts. Systematic errors related to both particle size and SOM caused the class PTFs to perform poorly; these PTFs do not use SOM as input, and are therefore inappropriate for soils in Norway, being highly variable in SOM. The PTF performance showed little difference between soil groups. Water contents in the dry range of the SWRC were generally better predicted than water contents in the wet range. Pedotransfer functions that included both SOM and measured bulk density as input, i.e. Wösten, Vereecken and Rawls&B, performed best in the wet range.  相似文献   

17.
Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.  相似文献   

18.
Laboratory studies were conducted to determine the sulfate content and sulfate adsorption properties of soils from two watersheds in Southern Norway, which show no net sulfate retention in the field (input — output). Soils from both watersheds had generally high soluble sulfate contents, especially in surface horizons and in marsh soils. With one notable exception — an Fe podzol at Birkenes —adsorbed insoluble sulfate contents were low or negligible, even in cases in which free Fe oxides were fairly high. Aluminium oxide in the Fe podzol at Birkenes seemed to lend it considerable ability to adsorb sulfate. With a few exceptions - Fe-humus podzol (B-2) and Fe podzol (B-3) at Birkenes — there were minor changes in water soluble or adsorbed sulfate contents of the soils collected in early automn or in spring (after snow melt).Only one of the soils from Storgama (an Fe-humus podzol subsoil) and two of the soils from Birkenes (subsoils from an Fe-humus podzol and an Fe podzol) adsorbed additional sulfate with CaS04 treatments. Most soils from these watersheds have limited ability to retain sulfate, a result which is consistent with the sulfate budgets at these sites. However, the real extent of the sulfate-adsorbing soils at both sites will strongly affect the rapidity with which watershed sulfate output responds to changes in atmospheric sulfate loading at these sites.  相似文献   

19.
P. Goldberg 《CATENA》1979,6(2):167-181
Hayonim Cave, situated in the western part of Upper Galilee is a solution cavity formed in limestone and filled with a partly cemented mixture of stony and slightly silty clays. Prehistoric industries range from Mousterian (ca. 80,000 to 40,000 BP) at the base, to Natufian (ca. 10,000 BP) whose burials are dug into the underlying Upper Palaeolithic and Kebaran deposits, a one to two meter accumulation of Byzantine ash, with guano and clays rich in organic matter capping the sequence.Micromorphological investigation, using principally the terminology of BREWER, was undertaken to describe systematically the sediments and to interpret the depositional and palaeoenvironmental history of the cave sediments. Skeleton components (including litho- and pedo-relicts) consist of limestone fragments, bone, quartz silt, chert and abundant rounded red clay clumps that contain quartz silt and bone inclusions. Other items are burnt wood, phytoliths (?) and carnivore (Hyaena?) faecal remains. Plasma, mostly localized in the form of clumps, is predominantly red clay with argillasepic and mosepic plasmic fabrics. With the exception of the quartz silt which was blown into the cave, most of the skeleton material is biogenic or anthropogenic in origin.Post-depositional modification is represented by cementation with calcite micrite and sparite, and precipitation of vugh-type collophane (hydroxyapatite). Calcite cementation is found in the Mousterian, in the center of the cave, and in the Kebaran, near the cave entrance, suggesting possibly moister environments during these periods.  相似文献   

20.
Carbonatite originating from the Lillebukt Alkaline Complex at Stjernøy in Northern Norway possesses favorable lime and potassium (K) fertilizer characteristics. However, enrichments of barium (Ba) and strontium (Sr) in carbonatite may cause an undesired uptake by plants when applied to agroecosystems. A field survey was carried out to compare concentrations of Ba, Sr, and macronutrients in indigenous plants growing in mineral soil developed on a bedrock of apatite–biotite–carbonatite (high in Ba and Sr) and of apatite–hornblende–pyroxenite (low in Ba and Sr) at Stjernøy. Samples of soil and vegetation were collected from three sites, two on carbonatite bedrock and one on pyroxenite bedrock. Ammonium lactate (AL)‐extracted soil samples and nitric acid microwave‐digested samples of soil, grasses, dwarf shrubs, and herbs were analyzed for element concentration using ICP‐MS and ICP‐OES. Concentrations of magnesium (Mg) and calcium (Ca) in both soil (AL) and plants were equal to or higher compared to values commonly reported. A high transfer of phosphorus (P) from soil to plants indicates that the apatite‐P is available to plants, particularly in pyroxenite soil. The non‐exchangeable K reservoir in the soil made a significant contribution to the elevated K transfer from soil to plant. Total concentrations of Ba and Sr in surface soil exhibited a high spatial variation ranging from 490 to 5,300 mg Ba kg?1 and from 320 to 1,300 mg Sr kg?1. The transfer of AL‐extractable elements from soil to plants increased in the order Ba < Sr < Ca < Mg < K, hence reflecting the chemical binding strength of these elements. Concentrations of Ba and Sr were low in grasses (≈ 20 mg kg?1), intermediate in dwarf shrubs and highest in herbs. Plant species and their affinity for Ca seemed more important in explaining the uptake of Ba and Sr than the soil concentration of these elements. The leguminous plant species Vicia cracca acted as an accumulator of both Ba (1.800 mg kg?1) and Sr (2.300 mg kg?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号