首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has previously been shown that treatment of soil with periodate and tetraborate releases much of the carbohydrate and destroys an equivalent proportion of the soil aggregates. The residual carbohydrate is proportionately richer in glucose, arabinose and xylose, sugars characteristic of plant remains, than the whole soil. The effect of sodium periodate (0.02 M, 6–168 h) and sodium tetraborate (0.1 M, 6 h) treatment of soil on carbohydrates of different origin was examined using 14C-labelled soil in which the label was present in microbial products arising from 7 and 28 day incubations of 14C-glucose in soil, or in both plant and microbial materials resulting from 12 week incubations of 14C-labelled barley leaf and 1 year incubations of 14C-labelled ryegrass in soil. Arabinose and xylose were the sugars most resistant to periodate in the glucose incubated soil; in the ryegrass incubation arabinose, xylose and glucose were more persistent than galactose, mannose and rhamnose. In the barley leaf incubation arabinose was more persistent than galactose and rhamnose. Thus periodate oxidation did not distinguish between sugars of different origin in soil and it was concluded that in the case of arabinose and xylose the persistence related to differences in chemical structures rather than to physical factors such as particle size of the plant fragments. The composition of the more stable residue can therefore not be used as an indication of polysaccharide origin in any comparison of the relative effects of plant and microbially derived material as aggregating agents.  相似文献   

2.
A soil of the Countesswells series was repeatedly methylated by the Hakomori procedure and a chloroform-soluble product isolated after each methylation. Ninety-two per cent of the material engendered by seven methylations was released during the first four methylations. This had a methoxyl content of about 20% and contained 2% N. Later fractions had lower methoxyl and N contents. Residual carbohydrate in the soil had reducing sugar content on hydrolysis, equivalent to about 3% of the original value. The extracted material had the infrared spectrum of a methylated soil polysaccharide and, on hydrolysis by 2 m trifluoracetic acid, released methylated sugar derivatives of which 68 were characterised by GC-MS. Derivatives corresponding to (1→4) linked sugars predominated for both hexose and pentose sugars but there was also a large proportion of (1→3) linkages, (1→3) linkages predominated for the deoxyhexose sugars. There were more sugars with only one or two methylated hydroxyl groups than could be accounted for as branching points because of the relatively small numbers of end groups. Prior reduction of the soil with sodium borohydride had no measurable effect on the nature or yield of the methylated product. This indicates that amino acid sugar linkages susceptible to β-elimination reactions can have only a very small influence on the reaction. The isolated sugar derivatives accounted for 70% of the total soil sugars. The methylated material before hydrolysis had a low nominal molecular weight on diafiltration, with 68% < 10000. Some of the sugars unaccounted for were probably lost during the dialysis stage necessary to remove dimethyl sulphoxide.  相似文献   

3.
Earthworms are known to play a role in aggregate formation and soil organic matter (SOM) protection. However, it is still unclear at what scale and how quickly earthworms manage to protect SOM. We investigated the effects of Aporrectodea caliginosa on aggregation and aggregate-associated C pools using 13C-labeled sorghum (Sorghum bicolor (L.) Moench) leaf residue. Two incubations were set up. The first incubation consisted of soil samples crushed <250 μm to break up all macroaggregates with three treatments: (i) control soil; (ii) soil+13C-labeled residue and (iii) soil+13C-labeled residue+earthworms. Earthworms were added after 8 d and 12 d (days) later, aggregate size distribution was measured together with total C and 13C in each aggregate fraction. A second incubation was made to assay protected versus unprotected total C and 13C from 21-d laboratory incubations of intact and crushed large (>2000 μm) and small (250-2000 μm) macroaggregates and microaggregates (53-250 μm). Eight different pools of aggregate-associated C were quantified: (1) and (2) unprotected C pools in large and small macroaggregates, (3) unprotected C pools in microaggregates, (4) and (5) protected C pools in large and small macroaggregates, (6) protected C pool in microaggregates, and (7) and (8) protected C pools in microaggregates within large and small macroaggregates. In the presence of earthworms, a higher proportion of large macroaggregates was newly formed and these aggregates contained more C and 13C compared to bulk soil. There were no significant differences between the samples with or without earthworms in the C pool-sizes protected by macroaggregates, microaggregates or microaggregates within small macroaggregates. However, in the presence of earthworms, the C protected by microaggregates within large macroaggregates was a significant pool and 22% of this C pool was newly added C. In conclusion, these results clearly indicate the direct involvement of earthworms in providing protection of soil C in microaggregates within large macroaggregates leading to a possible long-term stabilization of soil C.  相似文献   

4.
Understanding mechanisms of microaggregate formation in soils requires knowledge of their exact size distribution. With this in mind, we have used X‐ray attenuation to determine the size distributions of microaggregates and primary particles in the range 0.2–63 μm, with a resolution of 100 size increments. Ten arable and grassland soils with organic C contents ranging from 14.7 to 37.7 g kg?1 were analysed. They were subjected to ultrasound at 52 J ml?1 which destroyed most aggregates > 63 μm to give microaggregates in the size range 1–63 μm. The size distribution of microaggregates differed significantly from that of primary particles and was largely independent of their organic C content. Microaggregates were most abundant in 19 of the 100 size increments, contributing to 92% of the major peaks of the size distribution. These preferred increments differed from those of primary particles, but the order for the two was similar. Further analysis of the size distribution revealed a larger mean weight diameter of microaggregates, depending on the size distribution of primary particles. The results suggest a major effect of the size distribution of primary particles on microaggregation, whereas land use seems to have a negligible effect. The proportion of mechanically dispersible clay decreased with increasing C content and indicates structural stability at the microscale.  相似文献   

5.
长期免耕对东北地区玉米田土壤有机碳组分的影响   总被引:6,自引:0,他引:6  
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates ( 2000 μm) was higher in NT than that in CT, while small macroaggregates (250-2000 μm) showed an opposite trend. Therefore, the total proportion of macroaggregates ( 2000 and 250-2000 μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM m) and microaggregates occluded within macroaggregates (iPOM mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM m and iPOM mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i.e., iPOM m and iPOM mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.  相似文献   

6.
化肥对黑土不同粒级碳水化合物的影响   总被引:1,自引:1,他引:1  
本文采集公主岭市长期定位监测基地不施肥和施用不同化肥的黑土,通过超声波分散-离心分离得到细黏粒(<0.2μm)、粗黏粒(0.2~2μm)、粉粒(2~53μm)、细砂粒(53~250μm)、粗砂粒(250~2000μm)5个颗粒级别,分析全土及不同粒级中土壤碳水化合物并进行含量与分布的比较。结果表明,黑土中不同粒级碳水化合物库的性质差异显著,碳水化合物多集中在粉+黏粒中;长期施用化肥后,黑土全土及各粒级碳水化合物库大小和浓度基本上没有变化;粗砂粒级(Gal+Man)(:Ara+Xyl)下降,表明该粒级中植物来源碳水化合物所占比重有所增加,暗示出粗砂粒级对施肥措施更为敏感。  相似文献   

7.
Nature of soil carbohydrate and its association with soil humic substances   总被引:4,自引:0,他引:4  
The fulvic acid and alkali-soluble polysaccharide fractions of a sandy loam arable soil of the Countesswells series have been subjected to acid hydrolysis or methylation and the products examined by infra-red and NMR spectroscopy, pyrolysis mass spectrometry and chemical analysis. Infra-red and NMR spectroscopy of the polysaccharide fraction indicated that the substance was predominantly carbohydrate, although sugars accounted for less than one-third of the weight by chemical analysis. Pyrolysis mass spectrometry con-firmed the presence of sugars by sugar anhydride formation, but also showed the presence of ‘secondary’ or ‘pseudo’ polysaccharide. The fulvic acid contained only 2–3% sugars by chemical analysis, whereas a much larger carbohydrate component was suggested by physicochemical analyses. Infra-red and pyrolysis mass spectrometry difference spectra for the residues after acid hydrolysis indicated the release of material with some of the characteristics of glycoprotein. Most of the carbohydrate present in the fulvic acid was of the secondary or pseudo polysaccharide type. The hypothesis that the secondary polysaccharide could be a degraded polysaccharide structure in which some sugar residues have been partly transformed to melanoidins by Maillard reaction is explored.  相似文献   

8.
Stable macroaggregates (> 200 μm) of cultivated soils are reported in the literature to be richer in organic carbon, and in young organic carbon in particular, than microaggregates (< 200 μm). However, the nature of this additional carbon is not yet known. To determine it, we compared the composition of organic matter in stable macroaggregates with that in unstable ones. Macroaggregates 2–3 mm in diameter were separated from two silty cultivated soils from the Paris basin. They were slaked, and the primary particle composition of the resulting fractions was analysed. We used the natural abundance of 13C to quantify the amount of young carbon, derived from a maize crop, in the various size fractions. The stable macroaggregates were richer in total C and in young C (younger than 6 and 23 years respectively in the two soils studied) than the unstable ones. This young C comprised 50% particulate organic matter, 20% associated with silt and 30% with clay particles. We propose a schematic composition of aggregates in these soils in which stable aggregates are formed by the binding of microaggregates by additional young organic matter, predominantly plant debris. Young organic matter is preferentially incorporated and is responsible for aggregation, though it is eventually redistributed among aggregate classes through the destruction and re‐formation of the aggregates. We have developed a model to simulate this redistribution. The model shows that stable macroaggregates have a life of a few years, but that microaggregates may exist for decades. We suggest that the stabilization and de‐stabilization of macroaggregates in soils is linked to the incorporation and biodegradation of plant debris.  相似文献   

9.
Abstract

To assess the interaction of water soluble stabilizing agents with soil particles, soil microaggregation was studied after treatments with two uncharged organic conditioners, Polyvinyl alcohols (PVAs) and Dextrans, of different molecular weight. The size distribution of microaggregates (diameter <250 pm) was determined on two soils of low organic matter contents with differing texture by means of a laser light technique. PVAs and Dextrans modified the microaggregate size distribution, increasing the proportion of >75 μm aggregates. The extent of this modification increased with the molecular weight of the conditioners and, for the same molecular weight, decreased with increasing amount of conditioner used. The aggregating effect of PVAs was stronger on particles smaller then 5 μm, which formed microaggregates in the range 10–100 μm which were not broken down even by ultrasonication. S.E.M. micrographs of soil aggregates confirmed the results reported above. PVAs and Dextrans appeared to produce a more porus structure with more aggregates of about 100 μm size, both in the clay soil and, to a lesser extent, in the sandy soil.  相似文献   

10.
Wet sieving was used to separate an Orthic Humic Gleysol into fractions of seven different particle sizes ranging from < 105 μm to 420. All fractions, including the coarse plant residue and water soluble material, were hydrolysed with H2SO4 and analysed for total C and neutral sugar content. Their carbohydrate composition was determined by gas-liquid chromatography of the alditol acetates. The major fraction which consisted of particles < 105 μm was enriched by 30% in both organic matter and carbohydrate content. Although the ratio of carbohydrate to organic matter in the major fraction was the same as in the original soil, it varied considerably in the other fractions. The distribution of monomers among the individual fractions varied in a regular pattern. The relative amount of monomers (hexoses, pentoses and deoxyhexoses) in the major fraction ( < 105 μm, and the water soluble material, were essentially the same as in the original soil. It is concluded that the results of this study support the view that the polysaccharides in soil are of bacterial origin.  相似文献   

11.
Tillage may influence the microbial populations involved in soil aggregation. We evaluated the effects of no till (NT) and conventional tillage (CT, tillage depth about 7 cm) continuous spring wheat system on culturable heterotrophic bacterial communities predominant in microaggregates (0.25–0.05 mm) and on soil-aggregating basidiomycete fungi in aggregate-size classes (4.75–2.00, 2.00–0.25, and 0.25–0.05 mm) at 0–20 cm depth of a Williams loam (fine-loamy, mixed, Typic Argiustolls) in dryland Montana, USA. Enzyme-linked immunosorbent assay used to quantify antigenic response to basidiomycete cell walls, was higher in NT than in CT in 4.75–2.00 mm size class in 2007 and higher in all classes and years at 0–5 cm depth, but was not different between tillage, years, and classes at 5–20 cm. The culturable bacteria from microaggregates were subjected to a soil sedimentation assay to determine their soil binding capability. The proportion of isolates which can function as soil aggregators was higher in NT than in CT at 0–5 cm but was not different at 5–20 cm. Our results provide a first insight into the beneficial effects of dryland NT compared to CT in reducing soil disturbance and residue incorporation and enriching the proportion of microorganisms responsible for aggregation, especially at the soil surface.  相似文献   

12.
陈奇  丁雪丽  张彬 《土壤通报》2021,52(6):1460-1472
微生物残体是土壤有机碳库的重要贡献者。为明确外源氮添加对土壤微生物残体积累动态的影响,本文收集整理了1980—2020年已发表的文献,共选取122组试验观测数据,利用整合分析方法(Meta-analysis),以微生物残体标识物-氨基糖为目标组分,定量分析了不同种类和数量的外源氮添加对土壤中微生物来源细胞残体积累数量和组成比例的影响,并系统解析其主要影响因素。结果表明:外源氮添加(0 ~ 6000 kg hm?1)对微生物细胞残体的积累有显著的促进作用,并能引起土壤中真菌和细菌来源细胞残体相对比例发生明显变化。与不加氮对照相比,氮添加使土壤氨基糖总量增加27%,其中氨基葡萄糖、氨基半乳糖和胞壁酸含量分别增加22.5%、29.8%和19.0%。同时,不同种类外源氮素添加对氨基糖积累特征的影响也有所不同,表现为有机氮(如动物厩肥)比无机氮添加对氨基糖积累的促进作用更大。此外,氮添加对氨基糖的影响程度还与土壤自身的碳氮比、土地利用类型和自然降雨量等环境因子密切相关。其中是否添加碳源对微生物残体的响应有较大影响,表现为:无碳源添加会降低土壤氨基糖葡萄糖和胞壁酸对氮添加的响应,削弱了微生物残体对土壤有机质的贡献比例;而氮源同时配合碳源添加条件下,土壤氨基糖积累量显著高于单一氮源添加的处理,说明氮添加对微生物残体积累的影响存在着碳氮耦合效应。  相似文献   

13.
长期不同施肥下黑土和红壤团聚体氮库分布特征   总被引:4,自引:2,他引:2  
为阐明长期不同施肥下土壤氮库的演变特征,揭示氮库稳定性不同的团聚体对不同施肥的响应,为化肥和有机物的合理施用提供科学依据。本研究通过对黑土和红壤22年的田间肥料定位试验,研究了长期不同施肥模式对土壤全氮、 微生物氮以及各级团聚体中氮贡献率的影响。结果表明,长期不施肥(CK)和施用化肥(NPK),黑土土壤全氮含量以0.015 g/(kga)的速率显著下降(P 0.05);而长期化肥配施有机肥(NPKM),黑土全氮含量以0.025 g/(kga) 的速率显著上升(P 0.05)。在CK、 NPK、 NPKM和秸秆还田(NPKS)处理下,红壤全氮含量均没有显著变化。施肥22年后,NPKM处理下黑土和红壤微生物氮含量较NPK处理下分别增加了15% 和 43%,全氮含量分别增加了43% 和45%,差异均达到显著水平(P 0.05)。氮素在黑土上主要积累在253 m 微团聚体中,达到0.73~1.21 g/kg,在红壤上主要积累在2 m 微团聚体中,达到0.46~0.98 g/kg。与NPK相比,NPKM 处理下黑土和红壤 250~2000 m大团聚体中氮素贡献率均显著提高,分别增加了4.3% 和 5.1%。与NPK相比,NPKM 和 NPKS 处理下,红壤 253 m 微团聚体中氮贡献率分别降低了5.9% 和 9.7%,而黑土除大团聚体外的各级团聚体氮贡献率均没有显著变化。可见,不同土壤类型对施肥响应不同, 主要是253 m 微团聚体中氮素的响应不同,化肥配施有机肥可提高土壤250~2000 m 大团聚体中氮的贡献率,进而增加土壤对作物的氮素供给能力,是有助于提高土壤肥力和生产力的农业生产可持续性施肥模式。  相似文献   

14.
【目的】探明不同保护性耕作措施对黄土高原旱作土壤不同粒级复合体中有机氮含量与分配的影响,可对评价耕作措施的效果提供科学依据。【方法】基于黄土高原旱区14年的长期定位试验,采用Bremner法, 对传统耕作(T)、免耕(NT)、秸秆覆盖(TS)及免耕+秸秆覆盖(NTS)四种耕作措施条件下不同土壤粒级复合体中的有机氮含量和分配进行了研究。【结果】保护性耕作方式均增加了2~10 μm粒级土壤复合体的比例,增幅为20.0%~31.7%;降低了0~2 μm粒级土壤复合体在土壤中所占的比例,降幅为27.6%~31.0%。在所有耕作措施下,耕层土壤中不同粒级复合体所占的比例为10~50 μm>2~10 μm>0~2 μm>50~100 μm>100 μm。保护性耕作方式均明显提高了耕层0~2 μm粒级土壤复合体中氨基糖氮的含量,增幅在46.9%~107.1%,降低了单位质量0~2 μm粒级土壤复合体中的NH+4-N含量,降幅在14.8%~27.0%;明显提高了耕层单位质量2~10 μm粒级土壤复合体中酸解总氮、氨基酸氮和氨基糖氮的含量,增幅分别为8.2%~14.3%、16.2%~31.5%和154.9%~184.3%;降低了单位质量2~10 μm粒级土壤复合体中NH+ 4-N的含量,降幅为28.7%~46.6%。传统耕作(T)条件下,与各粒级土壤复合体相结合的有机氮量顺序为10~50 μm>0~2 μm>2~10 μm>50~100 μm>100 μm以上,而保护性耕作条件下,与各粒级土壤复合体相结合的有机氮量顺序为10~50 μm>2~10 μm>0~2 μm>50~100 μm>100 μm以上;与传统耕作相比,保护性耕作措施显著地增加了耕层土壤中酸解总氮、氨基酸氮、氨基糖氮的含量,增幅分别为6.6%~20.4%、89.0%~113.0%和11.9%~31.6%,降低了NH+4-N的含量。【结论】与传统耕作(T)处理相比,保护性耕作(NT、TS、NTS)措施明显提高了土壤2~10 μm粒级复合体的比例,降低了0~2 μm粒级复合体的比例;增加了耕层土壤中酸解氮总氮、氨基糖态氮和氨基酸态氮的含量,降低了NH+ 4-N的含量。土壤中以氨基酸态氮占优势地位,其它形态的有机氮无明显分布规律。  相似文献   

15.
  【目的】  黔西南烤烟还原糖(RS)和总糖(TS)含量过高是影响其品质的两个重要原因。我们研究了该地区土壤养分对烟叶总糖和还原糖的贡献,为通过施肥提高黔西南烟区的烤烟质量提供理论依据。  【方法】  选取黔西南州晴隆、普安、兴仁、兴义、贞丰和安龙6个县(市)烟草种植集中连片区,确定典型烟田,采集土壤样品和对应的烤后烟叶样品,测定土壤大、中、微量养分含量以及烟叶总糖和还原糖含量,并对两者之间的关系进行相关分析、逐步回归分析和通径分析。  【结果】  黔西南州烟叶的总糖和还原糖含量总体偏高;植烟区土壤酸碱性处于中性至弱碱性,土壤有机质、碱解氮、交换性钙、交换性镁、有效铁和有效锰含量丰富,速效钾、有效磷、有效铜、有效锌、有效硼和有效钼含量适宜,但存在空间分布不均问题。烟叶总糖和还原糖与土壤养分显著相关,其中,烟叶总糖与土壤速效钾(AK)、有效锌(Zn)和有效硼(B)呈极显著负相关,与土壤有效钼(Mo)呈极显著正相关;烟叶还原糖与土壤速效钾(AK)呈极显著负相关,与土壤有效锌(Zn)和有效硼(B)呈显著负相关,与有效铜(Cu)呈极显著正相关,与有效锰(Mn)呈显著正相关。烟叶总糖和还原糖与土壤养分的回归方程分别为TS=31.69?1.78Zn+17.05Mo+1.09Cu+0.003Mg?0.01AK和RS=25.12?0.01AK+1.39Cu+6.91Mo。土壤速效钾、有效铜、有效锌、有效钼和交换性镁为影响烟叶总糖含量的重要指标,土壤速效钾、有效铜和有效钼是影响烟叶还原糖含量的重要指标。通径分析表明,土壤养分含量对烟叶糖含量既有正面(促进)也有负面(制约)作用。  【结论】  对黔西南州烟叶糖含量贡献较大的土壤养分是速效钾、有效镁、有效铜、有效锌和有效钼。在速效钾和有效锌相对丰富的情况下,土壤速效钾含量和有效锌含量会抑制烤后烟叶总糖、还原糖含量的积累,而有效镁、有效铜和有效钼会增加烤后烟叶的总糖和还原糖含量。  相似文献   

16.
土层置换犁消除豆田残留除草剂药害的效果   总被引:6,自引:1,他引:5  
为探索消除豆田残留除草剂对后作药害的新途径,本研究采用生物鉴定的方法,以甜菜为指示植物查明了豆田残留除草剂主要分布在0~10 cm土层中,向下层逐渐减少,20 cm以下土层为安全土层。自主设计的土层置换犁实现了将0~20 cm土层和20~40 cm土层位置转换,即所谓的土层置换。应用该犁在有残留除草剂污染的豆茬上实施土层置换改土作业后,连续2年调查作物产量结果显示,土层置换区比对照区甜菜、马铃薯等作物长势好、杂草数量少;改土后种植甜菜,第1年、第2年分别比未改土的对照增产468.9%和805.7%;种植马铃薯分别增产177.1%和31.0%;种植玉米(第2年)增产2.0%。种植连作大豆(第2年)增产6.5%。同时在未受到残留除草剂污染的土壤上实施土层置换作业后,第1年种植马铃薯和甜菜分别比对照减产3.1%和5.6%、第2年种植马铃薯和玉米,分别增产27.0%和5.2%。研究结果可为修复残留除草剂污染土壤、消除作物连作障碍和促进种植业结构提供技术支撑。  相似文献   

17.
The variation in the root diameter of field-grown crops was directly measured under a microscope by manually removing soil particles from roots without washing the roots. The frequency of the root diameter at the mode (about 10 μm, mainly of root hairs) was higher in wheat and maize (about 60%) than in soybean and sugar beet (about 30%), and it was the lowest in potato (21%). The diameter of 88 to 97% of the roots larger than 20 μm ranged from 21 to 160 μm. The finer the roots, the higher was the frequency, except for potato roots in which the frequency of roots with a diameter of 21 to 40, 41 to 80, and 81 to 160 μm was about 30%. Since fine roots and root hairs account for the largest proportion of the crop root system, they should appropriately be quantified whenever morphological and physiological aspects of roots are analyzed.  相似文献   

18.
Wheat bran contains good quality protein, but given its location inside aleurone cells, this protein has restricted digestibility. The aim of this work was to liberate and solubilize wheat bran proteins via cell wall degradation by using carbohydrate‐hydrolyzing and proteolytic enzymes without causing extensive protein hydrolysis. Bran incubated with water (without added enzymes) for 16 h increased the solubilized organic nitrogen content from 14.0 to 42.8%. Enzymes with solely carbohydrate‐hydrolyzing activity increased the water‐soluble pentosan and reducing sugar contents but did not significantly increase protein solubilization or protein release from the aleurone cells. Enzymes with proteolytic activity significantly increased the solubilization of protein to 58.2% already at 4 h. Significant protein hydrolysis was detected with a high dosage of protease. However, based on light microscopy, the enzymatic treatment mainly modified the proteins in the subaleurone layer, and it was less effective on proteins inside the aleurone cells. With optimized protease treatment (3 h, 35°C, and 550 nkat/g), effective protein solubilization (>48%) without extensive protein hydrolysis (free amino nitrogen content <45 mg/L) was achieved. In conclusion, intensive solubilization of proteins in the subaleurone layer of wheat bran is possible by using exogenous enzymes with proteolytic activities.  相似文献   

19.
[目的]秸秆残体还田能引起土壤微生物残留物氨基糖的变化,然而不同部位秸秆残体因含碳氮化学组分差异,还田到不同肥力土壤后对氨基糖在团聚体中分配的影响尚不明析.因此,研究添加玉米不同残体对不同肥力棕壤团聚体中氨基糖分配的影响,并利用微生物标识物氨基葡萄糖与胞壁酸比值变化指示棕壤团聚体真菌和细菌群落组成动态变化,对深入阐明秸...  相似文献   

20.
Identifying ‘functional' pools of soil organic matter and understanding their response to tillage remains elusive. We have studied the effect of tillage on the enriched labile fraction, thought to derive from microbes and having an intermediate turnover time. Four soils, each under three regimes, long‐term arable use without tillage (NT), long‐term arable under conventional tillage (CT), and native vegetation (NV), were separated into four aggregate size classes. Particle size fractions of macro‐ (250–2000 μm) and microaggregates (53–250 μm) were isolated by sonication and sieving. Subsequently, densiometric and chemical analyses were made on fine‐silt‐sized (2–20 μm) particles to isolate and identify the enriched labile fraction. Across soils, the amounts of C and N in the particle size fractions were highly variable and were strongly influenced by mineralogy, specifically by the contents of Fe and Al oxides. This evidence indicates that the fractionation procedure cannot be standardized across soils. In one soil, C associated with fine‐silt‐sized particles derived from macroaggregates was 567 g C m?2 under NV, 541 g C m?2 under NT, and 135 g C m?2 under CT, whereas C associated with fine‐silt‐sized particles derived from microaggregates was 552, 1018, 1302 g C m?2 in NV, NT and CT, respectively. These and other data indicate that carbon associated with fine‐silt‐sized particles is not significantly affected by tillage. Its location is simply shifted from macroaggregates to microaggregates with increasing tillage intensity. Natural abundance 13C analyses indicated that the enriched labile fraction was the oldest fraction isolated from both macro‐ and microaggregates. We conclude that the enriched labile fraction is a ‘passive' pool of soil organic matter in the soil and is not derived from microbes nor sensitive to cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号