首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We determined heavy metal, polycyclic aromatic hydrocarbon (PAH), and polychlorinated biphenyl (PCB) concentrations in 18 topsoils of Uberlândia (420,000 inhabitants, Brazil) and in 3 rural topsoils. Concentrations of Al (11—124 g kg—1) and Fe (13—109 g kg—1) are large because of desilification. Concentrations of Cd (0.1—0.5 mg kg—1), Cr (13—72), Cu (6—154), Mn (28—974), Ni (4—29), Pb (3—26), Zn (4—107), the sum of 20 PAHs (=Σ20PAHs:7—390 μg kg—1), and the sum of 14 PCBs (=Σ14PCBs:0.05—1.25) are comparable to or below background concentrations in temperate soils except for Cu at two sites. More than 67% of the metals are strongly bound in Fe oxides and silicates; metals are more bioavailable in the urban than in the rural soils. The most abundant PAHs in the urban soils, on average, are naphthalene (19.0 ± 13.4% of Σ20PAHs) and the benzo(b+j+k)fluoranthenes (11.4 ± 6.7%); the most abundant PCBs are nos. 138 (23.3 ± 11.0% of Σ14PCBs) and 153 (14.3 ± 6.4%). The rural soils contain larger percentages of low molecular PAHs and up to tetra‒chlorinated PCBs than the urban soils. The different pollutant concentrations and patterns in the studied tropical compared with many temperate soils indicate different sources and fate.  相似文献   

2.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

3.
Environmental damages like forest decline in Northern Slovakia could be a result of long-distance transport of pollutants with the dominating north-west winds. On 10 sites, primarily in the northbound upper slopes of west-east oriented mountain ranges in Northern Slovakia, the extent of the heavy metal contamination in soils along a north-south transect was examined. Oi, Oe, Oa, A, and B horizons were sampled and the total concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined. The ranges of heavy metal concentrations in the forest floor were higher than reported for comparable samples from Bavarian soils except for Zn (Cd: 0.65–1.77; Cr: 12–40; Cu: 19–41; Ni: 8–24; Pb: 70–187; Zn: 31–92 mg kg?1), in the mineral soil the concentrations were lower. The depth distribution of the metal concentrations indicated a contamination with Cd, Cr, Cu, Ni, Pb, and Zn. The concentration differences between forest floor and mineral soil tended to be higher at the northern than at the southern sites for Cu, Ni, Pb, and Zn, indicating a long-distance transport from the north. Correlation and principal component analyses of the total metal concentrations revealed three groups: Cu, Pb, and Zn inputs mainly seemed to result from long-distance transport from the north, Cr and Ni inputs additionally from local sources. Cd probably had its origin mainly in local sources. This result was further confirmed by the grouping of the sites when clustered.  相似文献   

4.

Purpose

In soils from serpentinitic areas the natural background of Ni and Cr is so high that the assessment of contamination by comparing metal concentrations with some fixed thresholds may give unreliable results. We therefore sought a quantitative relation between serpentines and Ni and Cr concentrations in uncontaminated soils, evaluated if the approach may help in establishing a baseline, and discussed if additional anthropogenic inputs of Ni and Cr can be realistically individuated in these areas.

Materials and methods

We analysed the total, acid-extractable and exchangeable concentrations of Ni and the total and acid-extractable concentrations of Cr in 66 soil horizons, belonging to 19 poorly developed and uncontaminated Alpine soils. The soils had different amounts of serpentines, depending on the abundance of these minerals in the parent material. We calculated an index of abundance of serpentines in the clay fraction by XRD and related total metal contents to the mineralogical index. We then tested the regressions on potentially contaminated soils, developed on the alluvial plain of the same watershed.

Results and discussion

We found extremely high total concentrations of Ni (up to 1,887 mg kg–1) and Cr (up to 2,218 mg kg–1) in the uncontaminated soils, but only a small proportion was extractable. Total Ni and Cr contents were significantly related to serpentine abundance (r 2?=?0.86 and 0.74, respectively). The regressions indicated that even small amounts of serpentines induced metal contents above 200 mg kg–1, and the 95% confidence limits were 75 and 111 mg kg–1 of Ni and Cr, respectively. When the regressions were tested on the potentially contaminated soils, a good estimate was obtained for Cr, while the Ni concentration was overestimated, probably because of some leaching of this element.

Conclusions

The concentrations of Ni and Cr that can be expected in soils because of the presence of small amounts of serpentines are comparable to the amounts accumulated in the soil because of diffuse contamination and potentially contaminated soils had metal concentrations falling in the range expected from the presence of natural sources. Only in the case of very severe contamination events, the identification of anthropogenic sources adding to the natural background would be feasible.  相似文献   

5.
中国原油污染区重金属空间分布模式及其潜在来源研究   总被引:1,自引:0,他引:1  
Twenty-two soil samples were collected at the subregional scale (50 km2) around Gudao Town, a typical oil-producing region of the Shengli Oilfield in the Yellow River Delta, China to determine the spatial distribution patterns and potential sources of heavy metals in soils of crude oil-polluted regions. The concentrations of total petroleum hydrocaxbons (TPHs) and heavy metals as well as other soil properties were determined and the enrichment factor values were calculated for the heavy metals measured. Principal component analysis (PCA) and cluster analysis (CA) were used to estimate potential sources contributing to the concentrations of heavy metals in the soils. The results revealed that the soils were slightly alkaline (pH = 7.33-8.05) and high in salinity (1.43-41.30 g kg-1), TPHs (0.51 28.40 g kg-1) and organic matter (1.74-31.50 g kg-1). The mean concentrations of the measured heavy metals Cu, Zn, Pb, Cd, Cr, Ni and V were 18.4, 78.2, 20.8, 0.19, 56.6, 26.3 and 62.1 mg kg-1, respectively. Although the concentrations of all the metals measured in this study were not high enough to exceed the national control standards, there was a significant enrichment of Cd in the study area and Zn and Ni were in the category of deficiency to minimal enrichment. The spatial distribution patterns of Cu, Cr, Ni and V were similar and partially affected by oil exploitation and petroleum hydrocarbon spills. Potential sources of Cr, Ni, V and Cu in the soils were both natural sources and petroleum hydrocarbon spills, while Zn, Pb and Cd were probably from anthropogenic sources such as farming activities and traffic.  相似文献   

6.

Blechnum orientale L. is a traditional, medicinal fern found in China. To assess the characteristics of heavy metals and As accumulation, the fronds, roots, and the rooting soils of this fern were sampled from urban, suburban, and rural woodlands across Guangdong Province in southern China. The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn in both the fern and its rooting soils were separately detected by ICP-MS. Contamination levels of woodland rooting soils were also assessed using both a single pollution index and the Nemerow pollution index. Both the metal concentrations and the pollution index showed that soils from urban, suburban, and even rural woodlands were adversely contaminated by As, Cd, Hg, and Pb. Based on transfer factor, B. orientale had good translocation of As, Hg, and Mn, but poor translocation of Cd, Cr, Ni, Cu, Ni, Pb, and Zn from the roots to the fronds. This result suggests that this fern could be an excluder to latter metals. Despite the significantly higher levels of metals in the roots as compared with the fronds, the low bioaccumulation factor suggests that this fern has a weak capacity for metal accumulation.

  相似文献   

7.
Trace metal contamination in soil is of great concern owing to its long persistence in the environment and toxicity to humans and other organisms.Concentrations of six potentially toxic trace metals,Cr,Ni,Cu,As,Cd,and Pb,in urban soils were measured in Dhaka City,Bangladesh.Soils from different land-use types,namely,agricultural field,park,playground,petrol station,metal workshop,brick field,burning sites,disposal sites of household waste,garment waste,electronic waste,and tannery wast,and construction waste demolishing sites,were investigated.The concentration ranges of Cr,Ni,Cu,As,Pb,and Cd in soils were 2.4–1258,8.3–1044,9.7–823,8.7–277,1.8–80,and 13–842 mg kg^-1,respectively.The concentrations of metals were subsequently used to establish hazard quotients(HQs)for the adult population.The metal HQs decreased in the order of As>Cr>Pb>Cd>Ni>Cu.Ingestion was the most vital exposure pathway of studied metals from soils followed by dermal contact and inhalation.The range of pollution load index(PLI)was 0.96–17,indicating severe contamination of soil by trace metals.Considering the comprehensive potential ecological risk(PER),soils from all land-use types showed considerable to very high ecological risks.The findings of this study revealed that in the urban area studied,soils of some land-use types were severely contaminated with trace metals.Thus,it is suggested that more attention should be paid to the potential health risks to the local inhabitants and ecological risk to the surrounding ecosystems.  相似文献   

8.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

9.
Cobalt, Cr, Cu, Fe, Mn, Ni, Pb, Zn and As concentrations in the grain size and elemental normalization using Fe in gravel-free total soil ((Xm/Fe)total sample; Xm = Cu, Pb, Zn, etc.) were used to determine the influence of variable grain size on the concentration of anthropogenic trace metal contaminants in the reclaimed area adjacent to Port Jackson, Sydney, Australia. Trace metal concentrations in soils in reclaimed area are greatly influenced by the heterogeneous nature of the waste materials buried at the site. The confounding effects of variable grain size in soils can be reduced by analyzing the contaminant concentration of the material after removing > 2 mm size in sample. An example from Sydney Harbour is used to demonstrate the comparability between grain size normalized data and elemental normalized data using Fe in soils from reclaimed areas. Results from the current study reveal that the vertical distribution of trace metal concentrations in soils is remarkably similar between the grain size and elemental normalization, using Fe. Normalization methods might be beneficial in overcoming texturally driven variations of contaminant concentrations in soils in the reclaimed or infilled land area.  相似文献   

10.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

11.
贵阳市城区土壤重金属分布特征及污染评价   总被引:12,自引:0,他引:12  
王济  张浩  曾希柏  白玲玉 《土壤》2010,42(6):928-934
调查了贵阳市不同功能区表层土壤中重金属含量及其分布特征,以基线为参比值,采用Hakanson潜在生态危害指数法对重金属的潜在生态风险进行了评价。结果表明,贵阳市城区土壤重金属(Hg、Cd、As、Pb、Cr、Cu、Ni、Zn)主要来源于工业、交通以及燃煤等活动,其平均含量分别为0.108、0.320、20.53、22.17、35.71、64.87、48.65、217.90mg/kg,除Cr外,均显著高于相应基线。工矿区土壤中Pb、Zn含量显著高于其他功能区(p0.05)。Hg和Cd是主要的生态危害因子,其污染已达强生态危害水平,其余均显示为轻微生态危害水平;不同功能区土壤重金属污染均已达强生态危害水平,且污染程度依次是:商务区工矿区文教区居民区城市绿地交通区。  相似文献   

12.
三峡库区土壤重金属背景值研究   总被引:33,自引:1,他引:33  
在大规模、系统采样的基础上,通过不同均值计算方法的比较,提出了三峡库区土壤重金属含量背景值:As为5.835mg·kg^-1,Cd为0.134mg·kg^-1,Cr为78.03mg·kg^-1,Cu为25.00mg·kg^-1,Hg为0.046mg·kg^-1,Ni为29.47mg·kg^-1,Pb为23.88mg·kg^-2,Zn为69.88mg·kg^-1。与全国土壤背景值比较,三峡库区As、Hg背景含量低于全国背景值,Pb、Zn含量略低于全国背景值,Cd、Cr含量高于全国土壤背景值,Cu、Ni含量略高于全国背景值。根据本研究成果进行三峡库区环境质量评价,将能更加真实地反映三峡库区的实际情况,有利于库区土壤环境质量管理。  相似文献   

13.
Depositions originating from a central Slovak Al smelter may increase metal solubility in adjacent soils because they contain F (mainly HF). The reason for fluoro‐mobilization of metals may be the formation of soluble fluoro‐metal complexes or the mobilization of organic matter and subsequent formation of organo‐metal complexes. The objectives of our work were (1) to assess the extent of metal mobilization by fluoride in a Slovak Lithic Eutrochrept affected by the emissions of an Al smelter and (2) to model the dissolved metal species with the help of a chemical equilibrium model (MINEQL+). The O (Moder), A, and B horizons were equilibrated with solutions at F concentrations of 0, 0.9, 2.7, and 9.0 mmol l—1. In the extracts, the concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Zn, dissolved organic carbon (DOC), free and complexed F, and the pH and electrical conductivity (EC) were determined. The heavy metal concentrations in the O horizon (Cd: 0.99, Cr: 18.0, Cu: 44, Ni: 26, Pb: 110, and Zn: 84 mg kg—1) were 2.5 to 9 times larger than those in the A and B horizons. The concentrations of H2O‐soluble F decreased from the O (261 mg kg—1) to the A (103 mg kg—1) and B horizon (92 mg kg—1). In batch experiments increasing addition of F increased the equilibrium concentrations of Al, Cr, Cu, Fe, Ni, Pb, and DOC in all samples, of Cd in the A, and of K in the B horizon. At the same time the concentrations of complexed F and pH increased whereas EC decreased. Chemical equilibrium modelling indicated that the mobilizing effect of F resulted from the formation of fluoro‐Al complexes and organo‐complexes of all other metals.  相似文献   

14.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

15.

Purpose

Heavy metal content in soils could be a consequence of geogenic and different anthropogenic sources. In ancient times, soils in the Mediterranean region were affected by agriculture and viticulture, whereas more recently, industry and traffic might contribute more to their pollution. The aim of the study is to determine the extent of multisource heavy metal pollution in soils within the Koper area.

Materials and methods

Along the northern Adriatic Sea coast, around the port city of Koper/Capodistria, 24 topsoil samples were collected; sets of six samples representing four possible pollution sources: intensive agriculture, viticulture, port activities and industry. The parent material of the soil is mainly derived from the Eocene flysch weathered marls and calcarenites and the soil types are eutric. The chemical composition of the samples was determined by ICP-ES for oxides and several minor elements and by ICP-MS for heavy metals. The mineral composition of the selected samples was checked using X-ray powder diffraction. Different statistical analyses were performed on the normally distributed data.

Results and discussion

The mean concentrations of all samples are: Cr 215 mg kg?1, Ni 81 mg kg?1, Zn 67 mg kg?1, Cu 44 mg kg?1 and Pb and Co 18 mg kg?1. The ANOVA showed significant differences only in CaO, C/TOT, P2O5, Co and Pb between those locations within reach of the different contamination sources. The observed average values of heavy metals are well below Slovenia’s Directive limit for Cu, Pb and Zn, close to but not above it for Co and above the action value for Cr and Ni. According to Igeo, soils from all the sampling locations are uncontaminated with Co, Ni and Pb, and uncontaminated to moderately contaminated with Cu and Zn at one port location, and with Cr at all locations.

Conclusions

The very high Cr and Ni levels could still be geogenic because soils developed on Eocene flysch rocks are enriched in both metals. Cr and Ni are not correlated because of their different levels of sorption and retention in carbonate soils. Cr was retained and concentrated in the sand fraction but Ni has been mobilised in solution. The only serious threat to the environment seems to be an illegal waste dumping area near the port.  相似文献   

16.
工业废弃地多金属污染土壤组合淋洗修复技术研究   总被引:12,自引:0,他引:12  
采用批量淋洗实验方法,对比了采用人工螯合剂乙二胺四乙酸二钠盐(EDTA-Na2)和天然有机酸草酸(oxalic acid,OX)对工业废弃地污染土壤中重金属的去除效果,并采用不同浓度草酸和EDTA组合的两步淋洗法研究多金属污染土壤的最佳淋洗方式。结果表明,EDTA淋洗剂对土壤中Zn、Pb、Cu、Ni去除效果较好,而对Cr去除效果较差,实验条件下,EDTA对金属的去除率并未随着浓度增加而增加;相反,草酸对Cr去除效果较好,且去除率随着淋洗剂浓度的增加而增加,而对Zn、Cu、Ni的去除效果随着淋洗剂浓度增加而降低,对Pb的去除率非常低;采用先以0.20 mol L-1草酸提取2 h,再以0.01 mol L-1EDTA提取2 h的两步淋洗法可以达到对多金属同时去除,且对Zn、Cu、Cr、Ni的去除率明显高于单用草酸和EDTA,总去除率分别为Zn 75.21%、Pb 21.30%、Cu 59.81%、Cr 60.72%和Ni 62.10%,更为有意义的是两步淋洗法对非残渣态金属去除效果分别高达Zn 91.93%、Pb 57.75%、Cu 75.33%、Cr 73.94%、Ni 77.99%。利用不同化学淋洗剂对金属去除能力的差异进行组合的多步淋洗法是一种较为高效的去除工业废弃地污染土壤中重金属的化学淋洗修复方法。  相似文献   

17.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

18.

Purpose

The objectives of this study were (1) to determine the concentrations and background concentrations of Ba, Co, Cr, Mn, and Ni in the urban soils of Talcahuano (Chile); (2) assess the level of contamination in the urban soils based on different pollution indexes; and (3) to identify natural or anthropogenic sources in order to obtain a spatial distribution of the pollutants.

Material and methods

A total of 420 samples were collected from the study area as follows: 140 topsoil samples (TS) (0–10 cm), 140 subsoil samples (SS) (10–20 cm), and 140 deep soil samples (DS) (150 cm). The soils were characterized, and the concentrations of Ba, Co, Cr, Mn, and Ni were analyzed by atomic absorption photospectrometry following aqua regia digestion. Correlations and principal component analysis combined with spatial analysis were implemented in order to distinguish the sources and their classification as geogenic or anthropogenic. Several simple and robust statistical methods were applied to datasets in order to explore their potential in the evaluation of a useful and robust background values. The degree of contamination along with the geoaccumulation index, enrichment factor, and contamination factor were also evaluated.

Results and discussion

The median concentrations obtained for various elements includes Ba 461 mg kg?1, Co 82.7 mg kg?1, Cr 134 mg kg?1, Mn 311 mg kg?1, and Ni 56.1 mg kg?1. In general, the concentrations of Ba, Co, Cr, Mn, and Ni decrease with depth. Correlations and principal component analysis suggest that Cr, Mn, and Ni are contributed by external sources. The spatial distribution of Cr, Mn, and Ni in TS displays a spatial pattern extending along industrial environments and emission sources.

Conclusions

The estimated background values determined with the iterative 2σ-technique includes 536 mg kg?1 for Ba, 95.9 mg kg?1 for Co, 208 mg kg?1 for Cr, 464 mg kg?1 for Mn, and 90.5 mg kg?1 for Ni. The geochemical index, enrichment factor, and the contamination factor register a moderate to considerable contamination in some soil samples.
  相似文献   

19.
Pot experiments were carried out with two soils from long-term field experiments to examine heavy metal distribution in spring wheat. The soils (Luvisol pH 6.5 and Cambisol pH 5.5) were manured with sewage sludge for 18 ys and now show heavy metal contamination. The Cd-, Zn-, Pb- and Cr-contents of the grain were appreciably lower than those of straw. Nickel and Cu levels in the grain, however, exceeded those of the straw. In the unpolluted control the grain was enriched in Zn. Grain with a Cd-content lower than the German guide value was produced only with Cd concentrations of the soil lower than 0.5 mg kg–1 and a pH value greater than 5.7. Higher Ni and Pb contents were found in the chaff than in the straw. Roots were enriched in Cd, Zn, Ni and Cu, as compared with the soil. However, Pb and Cr were hardly taken up by the roots. Liming decreased the Cd-, Zn- and Ni-content in the plant. pH variation was found to have a negligible effect on the uptake of Cu, Pb and Cr.  相似文献   

20.
杭州市城市土壤中重金属、磷和其它元素的特征   总被引:30,自引:0,他引:30  
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals, phosphorus (P) and 8 other elements from topsoil samples collected at 82 locations in Hangzhou City were measured to: a) assess their distribution in urban environments; and b) understand their differentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionation procedure. About 8.5%, 1.2%, 3.6%, 11.0% and 30.3% of the soil samples had Cd, Cr, Cu, Pb, and Zn concentrations, respectively, above their allowable limits for public and private green areas and residential use. However, in commercial and industrial areas, most samples had metal concentrations below their allowable limits. Statistical analyses revealed that the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sources using a hierarchical cluster analysis. Additionally, Cu, Pb, and P showed similar spatial distributions with significant pollution in commercial zones, suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also, Cd, Co, Cr, Ni, Zn, Mn and Fe had the highest concentrations in industrial locations, signifying that industrial activities were the main sources of these seven metals. Moreover, the data highlighted land-use as a major influence on heavy metal concentrations and forms found in topsoils with large proportions of soil Cd, Co, Cr, and Ni found in residual fractions and soil Cu, Pb and Zn mainly as extractable fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号