首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Crop residue and fertilizer management practices alter some soil properties, but the magnitude of change depends on soil type and climatic conditions. Field experiments with mainly barley (and canola, wheat, triticale, or pea in a few years) under conventional tillage were conducted from 1983 to 2009 at Breton (Gray Luvisol (Typic Haplocryalf) loam) and Ellerslie (Black Chernozem (Albic Argicryoll) clay loam), Alberta, Canada, to determine the effects of straw management (straw removed (S Rem) and straw retained (S Ret)) and N fertilizer rate (0, 25, 50, and 75 kg N ha−1) on total organic C (TOC) and N (TON), light fraction organic C (LFOC), and N (LFON) in the 0–7.5 and 7.5–15 cm, pH in the 0–7.5, 7.5–15, and 15–20 cm and extractable P, ammonium-N, and nitrate-N in the 0–15, 15–30, 30–60, and 60–90 cm soil layers. The S Ret and N fertilizer treatments usually had higher mass of TOC, TON, LFOC, and LFON in soil at Breton, but only of LFOC and LFON in soil at Ellerslie compared with the corresponding S Rem and zero-N control treatments. The responses of soil organic C and N to management practices were more pronounced for N fertilization than straw management. There were significant correlations among most soil organic C or N fractions, especially at Breton. Linear regressions between crop residue C or N input, or rate of fertilizer N applied and soil organic C or N were significant in most cases at Breton, but only for LFOC and LFON at Ellerslie. At Breton, compared with zero-N rate, the C sequestration efficiency of additional crop residue C input was 5.8%, 20.1%, and 20.4% in S Ret and 17.2%, 28.0%, and 30.1% in S Rem treatments at the 25, 50, and 75 kg N ha−1 rates, respectively. The effects of crop residue management and N fertilization on chemical properties were generally similar for both contrasting soil types. There was no effect of crop residue management on soil pH, extractable P and residual nitrate-N. Extractable P and pH in the top 0–15 cm soil decreased significantly with N application in both soil types. Residual nitrate-N (though quite low in Breton soil) increased with application of N and also indicated some downward movement in the soil profile up to 90 cm depth in Ellerslie soil. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, straw retention and N application improved organic C and N in soil, and generally differences were more pronounced for light fraction than total organic C and N, and between the most extreme treatments (S Rem0 vs. S Ret75). Application of N fertilizer reduced extractable P and pH in the surface soil, and showed accumulation and downward leaching of nitrate-N in the soil profile.  相似文献   

2.
For bacterial inoculants to be effective in soil remediation, the bacterial strain must be capable of overcoming any negative effects of soil minerals on cellular processes. One class of minerals commonly encountered by soil bacteria is clays. Thus, the effect of commonly occurring clay minerals in soils on starvation, survival and 2-hydroxypyridine catabolism by Arthrobacter crystallopoietes was evaluated. Stationary phase A. crystallopoietes cells were suspended in 0.03M, pH7.0, phosphate buffer containing no clay or amended with 0.2% (wt/vol) montmorillonite, sodium montmorillonite or kaolinite. Marked effects of clay minerals on both survival rates and catabolic rates of 2-hydroxypyridine were noted. For example, after 14 weeks starvation, 4.6% of the initial cell population was viable with no clay present, compared to 0.8% (montmorillonite), 22.1% (kaolinite) and 54.1% (sodium montmorillonite) in the presence of the clay minerals. Acclimated and nonacclimated cell populations were used to evaluate 2-hydroxypyridine catabolism. Induction of 2-hydroxypyridine metabolism occurred in the unacclimated cells following starvation. Differential impact of the clay minerals on unacclimated cells was detected. Montmorillonite enhanced the capacity for induction of 2-hydroxypyridine catabolism and its decomposition rate after 0–3 days starvation. For acclimated cells, clay did not affect the metabolic activity prior to starvation, but the presence of clay resulted in increased activity during starvation. For example, after 3 days starvation, a nearly two fold increase in metabolism was detected in the presence of clay minerals. These data suggest that some clay minerals in soil alter the survival time and metabolic activity of soil-amended bacteria, thereby affecting the potential for bioremediation success. Received: 1 March 1996  相似文献   

3.
The study examined the influence of compost and mineral fertilizer application on the content and stability of soil organic carbon (SOC). Soil samples collected from a long-term field experiment were separated into macroaggregate, microaggregate, and silt + clay fractions by wet-sieving. The experiment involved seven treatments: compost, half-compost N plus half-fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and control. The 18-year application of compost increased SOC by 70.7–121.7%, and mineral fertilizer increased by 5.4–25.5%, with no significant difference between control soil and initial soil. The C mineralization rate (rate per unit dry mass) in microaggregates was 1.52–2.87 mg C kg−1 day−1, significantly lower than in macroaggregate and silt + clay fractions (P < 0.05). Specific C mineralization rate (rate per unit SOC) in silt + clay fraction amounted to 0.48–0.87 mg C g−1 SOC day−1 and was higher than in macroaggregates and microaggregates. Our data indicate that SOC in microaggregates is more stable than in macroaggregate and silt + clay fractions. Compost and mineral fertilizer application increased C mineralization rate in all aggregates compared with control. However, compost application significantly decreased specific C mineralization rate in microaggregate and silt + clay fractions by 2.6–28.2% and 21.9–25.0%, respectively (P < 0.05). By contrast, fertilizer NPK application did not affect specific C mineralization rate in microaggregates but significantly increased that in silt + clay fractions. Carbon sequestration in compost-amended soil was therefore due to improving SOC stability in microaggregate and silt + clay fractions. In contrast, fertilizer NPK application enhanced SOC with low stability in macroaggregate and silt + clay fractions.  相似文献   

4.
Background, aim, and scope  Heavy metal (HM) mobility in soil depends on the HM species in it. Therefore, knowledge of the HM speciation in soil allows the prediction of HM impact on the environment. HM speciation in soil depends on the metal chemical origin, soil texture, and other factors such as the origin and level of soil contamination. Recently, the problem of organic waste utilization is of great importance as the amount of this recyclable material is continually increasing. One of the possible ways of recycling is the use of processed organic wastes for agricultural needs. In this research, aerobically composted sewage sludge was used, the utilization of which is of essential importance. But one of the most serious restrictions is HM transfer from such material to the soil. Therefore, a prediction of HM mobility in soil and its migration in the environment is an important issue when using sewage sludge compost (SSC) in agriculture. Zn, Cu, and Pb speciation was performed according to the modified methodology of Tessier et al. (Anal Chem 51:844–851, 1979) in two different (sandy and clay) soils with background HM amounts and in soil samples amended with aerobically digested SSC to find out the predominant species of the investigated HM and to predict their potential availability. Materials and methods  The modified method of sequential extraction initially proposed by Tessier et al. (Anal Chem 51:844–851, 1979) is designed for HM speciation into five species where HM mobility decreases in the order: F1—exchangeable HM (extracted with 1 M MgCl2 at an initial pH of 7 and room temperature), F2—carbonate-bound HM (extracted with 1 M CH3COONa buffered to pH 5 at room temperature), F3—Fe/Mn oxide-bound HM (extracted with 0.04 M NH2OH·HCl at an initial pH of 2 at 96°C), F4—organic matter-complexed or sulfide-bound HM (extracted with 0.02 M HNO3 and 30% (v/v) H2O2 at a ratio of 1:1 and an initial pH of 2 at 85°C), and F5—the residual HM (digested with HNO3, HF, and HCl mixture). After digestion, HM amounts in solution were determined by atomic absorption spectrometry (AAS ‘Hitachi’). Mixtures of uncontaminated soils of different textures (clay and sandy) with SSC in ratios 20:1, 10:1, and 5:1 were used to simulate the land application with SSC. During a period of 7 weeks, changes in Zn, Cu, and Pb content within species were investigated and compared weekly in soil–SSC mixtures with their speciation in pure soil and in the SSC. Results  Results in the SSC showed that more HM were found as mobile species compared to the soils, and in sandy soil, more were found in the mobile species than in clay soil. But the HM speciation strongly depended on the metal chemical origin. According to the potential availability, HM ranked in the following order: Zn>Pb>Cu. Zinc generally occurred in the mobile species (F1 and F3), especially in sandy soils amended with SSC, and changes of the Zn speciation were insignificant at the end of the experiment. Pb transfer to insoluble compounds (F5) was evident in the SSC–soil mixtures. This confirms that Pb is extremely immobile in the soil. However, the observed increase of Pb amounts in the mobile species (F1 and F2) during the course of experiment shows a critical trend of Pb mobilization under anthropogenic influence. Copper in the soil–SSC mixtures had a trend to form compounds of low mobility, such as organic complexes and sulfides (F4) and nonsoluble compounds (residual fraction F5). Initially, the amounts of mobile Cu species (F1 and F2) increased in the soils amended with SSC, probably due to the influence of SSC of anthropogenic origin with lower pH and high organic matter content, but Cu mobility decreased nearly to the initial level again after 3–4 weeks. Hence, the soil has a great specific adsorption capacity to immobilize Cu of anthropogenic origin. Discussion  Zn mobility and environmental impact was greater than that seen for Cu and Pb, while mobility of both Cu and Pb was similar, but variable depending on soil texture and contamination level. The effect on the shift of HM mobility and potential availability was greater in sandy SSC-amended soils than in clay soils and increased with an increasing amount of SSC. Conclusions  Usage of SSC for land fertilization should be strictly regulated, especially regarding Pb amounts. Recommendations and perspectives  The influence of SSC on Cu and Zn mobility and potential availability was more significant only in the case of sandy soil with a higher SSC ratio. Nevertheless, this waste product of anthropogenic origin increased Pb mobility in all cases in spite of only moderate Pb mobility in SSC itself. Therefore, aerobic processing of sewage sludge must be strictly regulated, especially regarding Pb amounts, and SSC ratios must be in control regarding HM amounts when using it for on-land application.  相似文献   

5.
This study assessed the impact of compost on the hydraulic properties of three soils (sandy loam, clay loam and diesel‐contaminated sandy loam) with relatively poor physical quality typical of brownfield sites. Soils were amended with two composts at 750 t/ha. Samples were also collected from a clay‐capped brownfield site, previously amended with 250, 500 or 750 t/ha of compost. Water‐release characteristics and saturated hydraulic conductivity were determined for all soils and physical quality indicators derived. Unsaturated flow in field profiles after compost application with two depths of incorporation and two indigenous subsoils was simulated using Hydrus‐1D. Compost generally increased water retention. Hydraulic conductivity tended to decrease following compost application in sandy loam but increased in clay and clay loam, where compost addition resulted in a larger dominant pore size. Although compost improved physical quality indicators, they remained suboptimum in clay and clay loam soil, which exhibited poor aeration, and in the contaminated sandy loam, where available water capacity was limited, possibly due to changes in wettability. Increasing application rates in the field enhanced water retention at low potentials and hydraulic conductivity near saturation but did not alter physical quality indicators. Numerical simulation indicated that the 500 t/ha application resulted in the best soil moisture regime. Increasing the depth of incorporation in the clay cap improved drainage and reduced waterlogging, but incorporation in more permeable subsoil resulted in prolonged dry conditions to greater depths.  相似文献   

6.
Previous studies have shown that carbon (C) mineralization in saline or sodic soils is affected by various factors including organic C content, salt concentration and water content in saline soils and soil structure in sodic soils, but there is little information about which soil properties control carbon dioxide (CO2) emission from saline-sodic soils. In this study, eight field-collected saline–sodic soils, varying in electrical conductivity (ECe, a measure of salinity, ranging from 3 to 262 dS m−1) and sodium adsorption ratio (SARe, a measure of sodicity, ranging from 11 to 62), were left unamended or amended with mature wheat or vetch residues (2% w/w). Carbon dioxide release was measured over 42 days at constant temperature and soil water content. Cumulative respiration expressed per gram SOC increased in the following order: unamended soil<soil amended with wheat residues (C/N ratio 122)<soil with vetch residue (C/N ratio 18). Cumulative respiration was significantly (p < 0.05) negatively correlated with ECe but not with SARe. Our results show that the response to ECe and SARe of the microbial community activated by addition of organic C does not differ from that of the less active microbial community in unamended soils and that salinity is the main influential factor for C mineralization in saline–sodic soils.  相似文献   

7.
为了探讨紫云英与不同比例化肥减施下,土壤纳米颗粒中黏粒矿物的组成与转化,以湖南省南县长期紫云英还田(MV)与100%、80%、60% 和40%(F100、F80、F60和F40)4个比例化肥配施的长期定位试验为对象,将土壤分为4个粒级(>2 000、2 000 ~ 450、450 ~ 100、100 ~ 25 nm)的颗粒,研究黏粒矿物在不同粒级颗粒中的分布特征和转化规律。结果表明,①土壤颗粒由>2 000 nm减小至100 ~ 25 nm,2 000 ~ 450和450 ~ 100 nm颗粒中伊利石的相对含量降低8% ~ 11%,100 ~ 25 nm颗粒中1.4 nm过渡矿物和蛭石极少甚至消失,游离铁和非晶质氧化铁的含量增加,在100~ 25 nm颗粒中最高。②紫云英与化肥减施下,化肥配施量80% 前后矿物的转化出现明显差异。化肥从100% 降至80%,高岭石的相对含量增加,增幅为14.1% ~ 51.2%,而伊利石的相对含量降低,降幅为3.6% ~ 11.7%;继续降低化肥配施量,高岭石的相对含量却降低,降幅为13.7% ~ 28.8%,而伊利石的相对含量增加,增幅为2.6% ~ 18.5%。③紫云英还田下随着化肥配施量的降低,游离铁的含量无明显变化规律,而非晶质铁的含量在所有粒径中均先显著提高后降低,在MV+F80处理100~ 25 nm颗粒中达到最高为9.45 g/kg。综上,紫云英配施减量化肥与土壤颗粒中高岭石、伊利石和非晶质铁转化有明显关系,以化肥减施20% 处理影响效果最显著。  相似文献   

8.
The aim was to study the influence of soil properties on the leaching of nitrate, phosphate and organic matter (OM) following the application of sewage sludge to contrasting soils. Seventy agricultural soils from different parts of Spain were amended with sewage sludge (50 t dry weight ha−1), and a controlled column study was developed. After 2, 4 and 6 months of incubation, distilled water, equivalent to an autumn rainfall event of 25 l m−2 in Mediterranean environments, was applied and leachates collected and analysed: pH, electrical conductivity (EC), chemical oxygen demand (COD), phosphate and nitrate. The mean values of pH in the leachates after 2, 4 and 6 months were similar and close to the neutrality. The highest concentrations for the rest of the parameters analysed were found after 2 months of incubation and diminished for 4 and 6 months, especially COD. Soil pH and texture were the most relevant soil properties controlling the leaching of the analysed parameters. The OM mineralization seemed to be enhanced at high values of soil pH, thus increasing the nitrate and reducing the COD leaching. However, phosphate levels were reduced at high values of soil pH. In addition, leaching was promoted in sandy soils. Other soil properties influenced phosphate leaching being the equivalent calcium carbonate soil content as the most relevant. Soil organic carbon was negatively related to the EC and nitrate concentration in the leachates but resulting in a weak contribution compared with soil pH and texture. Concerns about nitrate pollution have been confirmed.  相似文献   

9.
Effects of local green manure (GM) and lime on soil productivity in a low-input agricultural system were evaluated by growing three successive crops of sweet corn (Zea mays) on an acid Oxisol (Typic acrorthox, Togitogiga series) in Western Samoa. The soil was amended with coral lime at 0, 5, and 10Mgha–1 and with cowpea GM at 0, 7.5, and 15Mgha–1. Commercial NPK fertilizers at 50kgha–1 each of N, P, and K were included for comparison. The amendments were applied only once prior to planting of the first crop. Response parameters measured included nutrient composition of leaves at tasseling and grain yield of each crop, and selected soil chemical properties at each planting. Yields of the first crop were nearly tripled with GM additions and doubled with lime additions. Such yield increases were caused mainly by better K nutrition and to a lesser extent by enhanced P nutrition. Yields of subsequent crops were much lower than those of the first, and the declines were much steeper for the GM treatments than for the lime treatments. Thus, the enhancement effect on K nutrition did not last beyond one crop. Poor growth of the second and third crops was caused by K deficiency; probably coupled with Mn toxicity. Significant yield reductions were found when Mn-to-K ratios in leaves exceeded 0.010. As for effects on soil, soil pH was increased significantly by lime but only slightly by GM. Given the variable charge property of this Oxisol, each unit pH increase corresponds to a cation exchange capacity (CEC) increase of 5cmolckg–1. Having greater CEC, the amended soil retained K more effectively, thereby causing yield increases, especially of the first corn crop, which required at least 0.75cmolckg–1 of exchangeable soil K or 7% of CEC for adequate growth. Received: 15 April 1996  相似文献   

10.
Net carbon dioxide (CO2) emission from soils is controlled by the input rate of organic material and the rate of decomposition which in turn are affected by temperature, moisture and soil factors. While the relationships between CO2 emission and soil factors are well-studied in non-salt-affected soils, little is known about soil properties controlling CO2 emission from salt-affected soils. To close this knowledge gap, non-salt-affected and salt-affected soils (0-0.30 m) were collected from two agricultural regions: in India (irrigation induced salinity) and in Australia (salinity associated with ground water or non-ground water associated salinity). A subset (50 Indian and 70 Australian soils) covering the range of electrical conductivity (EC) and sodium adsorption ratio (SAR) in each region was used in a laboratory incubation experiment. The soils were left unamended or amended with mature wheat residues (2% w/w) and CO2 release was measured over 120 days at constant temperature and soil water content. Residues were added to overcome carbon limitation for soil respiration. For the unamended soils, separation in multidimensional scaling plots was a function of differences in soil texture (clay, sand), SOC pools (particulate organic carbon (POC) and humus-C) and also EC. Cumulative CO2-C emission from unamended and amended soils was related to soil properties by stepwise regression models. Cumulative CO2-C emission was negatively correlated with EC in saline soils (R2 = 0.50, p < 0.05) from both regions. In the unamended non-salt-affected soils, cumulative CO2-C emission was significantly positively related to the content of POC for the Indian soils and negatively related to clay content for the Australian soils. In the wheat residue amended soils, cumulative CO2-C emission had positive relationship with POC and humus-C but a negative correlation with EC for both Indian and Australian soils. SAR was negatively related (β = −0.66, p < 0.05) with cumulative CO2-C emission only for the unamended saline-sodic soils of Australia. Cumulative CO2-C emission was significantly negatively correlated with bulk density in amended soils from both regions. The study showed that in salt-affected soils, EC was the main factor influencing for soil respiration but the content of POC, humus-C and clay were also influential with the magnitude of influence depending on whether the soils were salt affected or not.  相似文献   

11.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

12.
The objective of this study was to evaluate plant-available N pools and the role of N management index (NMI) in the surface (0–20 cm) of a fluvo-aquic soil after 18 years of fertilization treatments under a wheat–maize cropping system in the North China Plain. The experiment included seven treatments: (1) NPK, balanced application of chemical fertilizer NPK; (2) OM, application of organic manure; (3) 1/2OMN, application of half organic manure plus chemical fertilizer NPK; (4) NP, application of chemical fertilizer NP; (5) PK, application of chemical fertilizer PK; (6) NK, application of chemical fertilizer NK; and (7) CK, unfertilized control. Total organic N (TON), microbial biomass N (MBN), labile N (LN), inorganic N (ION, including ammonium (NH4+)–N and nitrate (NO3)–N) contents, net ammonification rate (NAR), net nitrification rate (NNR), net N mineralization rate (NNMR), and NMI in the fertilized treatments were higher than in the unfertilized treatment. Application of chemical fertilizer N (NPK, NP, and NK) increased ION in soils, compared with application of organic N or control. Nitrate N prevailed over exchangeable NH4+–N in all treatments. Nitrogen storage of the OM- and 1/2OMN-treated soils increased by 50.0% and 24.3%, respectively, over the NPK-treated soil, which had 5.4–22.5% more N than NP-, PK-, and NK-treated soils. The MBN, LN, and ION accounted for 1.7–2.4%, 25.7–34.2%, and 1.4–2.9% of TON, respectively, in different fertilization treatments. The surface soils (0–20-cm layer) in all treatments mineralized 43.6–152.9 kg N ha–1 year–1 for crop growth. Microbial biomass N was probably the better predictor of N mineralization, as it was correlated significantly (P < 0.01) with NNMR. The OM and 1/2OMN treatments were not an optimal option for farmers when the crop yield and labor cost were taken into consideration but an optimal option for increasing soil N supply capacity and N sequestration in soil. The NPK treatment showed the highest crop yields and increased soil N fractions through crop residues and exudates input, and thus, it may be considered as a sustainable system in the North China Plain.  相似文献   

13.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

14.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

15.
Fixation and defixation of ammonium in soils: a review   总被引:2,自引:0,他引:2  
Fixed NH4+ (NH4+ f) and fixation and defixation of NH4+ in soils have been the subject of a number of investigations with conflicting results. The results vary because of differences in methodology, soil type, mineralogical composition, and agro-climatic conditions. Most investigators have determined NH4+ f using strong oxidizing agents (KOBr or KOH) to remove organic N and the remaining NH4+ f does not necessarily reflect the fraction that is truly available to plants. The content of native NH4+ f in different soils is related to parent material, texture, clay content, clay mineral composition, potassium status of the soil and K saturation of the interlayers of 2:1 clay minerals, and moisture conditions. Evaluation of the literature shows that the NH4+ f-N content amounts to 10–90 mg kg−1 in coarse-textured soils (e.g., diluvial sand, red sandstone, granite), 60–270 mg kg−1 in medium-textured soils (loess, marsh, alluvial sediment, basalt) and 90–460 mg kg−1 in fine-textured soils (limestone, clay stone). Variable results on plant availability of NH4+ f are mainly due to the fact that some investigators distinguished between native and recently fixed NH4+ while others did not. Recently fixed NH4+ is available to plants to a greater degree than the native NH4+ f, and soil microflora play an important role in the defixation process. The temporal changes in the content of recently fixed NH4+ suggest that it is actively involved in N dynamics during a crop growth season. The amounts of NH4+ defixed during a growing season varied greatly within the groups of silty (20–200 kg NH4+-N ha−1 30 cm−1) as well as clayey (40–188 kg NH4+-N ha−1 30 cm−1) soils. The pool of recently fixed NH4+ may therefore be considered in fertilizer management programs for increasing N use efficiency and reducing N losses from soils.  相似文献   

16.
Rice hulls and sawdust are commonly used to compost poultry manure in several countries. We studied the effects of these two bulking agents and different sizes of compost particles on the release of N and P from poultry manure composts. Five composts, produced with a 2:1 and 1:1 ratio of sawdust or rice hulls to poultry manure and 1:1:1 of all three materials, were separated into fractions >10, 5–10, 1–5, and <1 mm. The >10-mm fraction was less than 1.5% and was not further analyzed. In all other fractions, pH, electrical conductivity, organic C, lignin, cellulose, and total N, P, Ca, K, and Si were determined and related to N and P release in 16-week incubations of a sandy soil amended with 40 g kg−1 of each fraction. Nitrogen release with composts containing sawdust was higher than with rice hull composts (114–189 vs. 78–127 mg kg−1 at week 16), and this was highly correlated with TN (1.9–3.7% vs. 1.4–2.7%) and negatively with pH (5.5–6.2 vs. 6.7–6.9). Extractable P was very high (85–340 mg kg−1 at week 16), and the highest values were associated with the composts with more proportion of poultry manure. An increase in stability with decreasing particle size was apparent from the gradient of N and P dynamics: from net P release and an exponential pattern of net N mineralization with the coarsest fraction to net P retention and a linear pattern of N mineralization with the smallest one. Despite its higher fertilizer value, the 5- to 10-mm fraction posed the highest environmental risk due to elevated P release over time.  相似文献   

17.
The influence of 15 annual applications of composted (CM) or stockpiled (SM) beef feedlot manure with straw (ST) or wood-chip (WD) bedding on electrical conductivity (EC), soluble cations and anions (Na, K, Ca, Mg, SO4-S, Cl), sodium adsorption ratio (SAR), potassium adsorption ratio (PAR), and pH of a clay loam soil (0–15 cm) in southern Alberta was examined in an irrigated barley silage cropping system. Manure type (CM versus SM) had a significant effect on certain soil salinity parameters. Calcium, Mg, Na, K, and SO4-S were significantly (p ≤ 0.05) greater for SM- than CM-amended soils for certain bedding materials and rates. Electrical conductivity, concentration of soluble cations and anions (Na, K, SO4-S, Cl), SAR, PAR, and pH in the surface soil were greater for ST than WD bedding. Two exceptions were Ca and Mg, where soil concentrations were generally greater for WD than ST. Salinity parameters were greater with increased application rate, and greater for amended than unamended soils. Overall, bedding had considerably more significant effects on soil salinity parameters compared to manure type. Wood-chip bedding may be a management tool for feedlots to lower EC, soluble cations and anions, and pH of surface soils.  相似文献   

18.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

19.
 We studied the influence of soil compaction in a loamy sand soil on C and N mineralization and nitrification of soil organic matter and added crop residues. Samples of unamended soil, and soil amended with leek residues, at six bulk densities ranging from 1.2 to 1.6 Mg m–3 and 75% field capacity, were incubated. In the unamended soil, bulk density within the range studied did not influence any measure of microbial activity significantly. A small (but insignificant) decrease in nitrification rate at the highest bulk density was the only evidence for possible effects of compaction on microbial activity. In the amended soil the amounts of mineralized N at the end of the incubation were equal at all bulk densities, but first-order N mineralization rates tended to increase with increasing compaction, although the increase was not significant. Nitrification in the amended soils was more affected by compaction, and NO3 -N contents after 3 weeks of incubation at bulk densities of 1.5 and 1.6 Mg m–3 were significantly lower (by about 8% and 16% of total added N, respectively), than those of the less compacted treatments. The C mineralization rate was strongly depressed at a bulk density of 1.6 Mg m–3, compared with the other treatments. The depression of C mineralization in compacted soils can lead to higher organic matter accumulation. Since N mineralization was not affected by compaction (within the range used here) the accumulated organic matter would have had higher C : N ratios than in the uncompacted soils, and hence would have been of a lower quality. In general, increasing soil compaction in this soil, starting at a bulk density of 1.5 Mg m–3, will affect some microbially driven processes. Received: 10 June 1999  相似文献   

20.
Secondary salinity effects on soil microbial biomass   总被引:2,自引:0,他引:2  
Secondary soil salinilization is a big problem in irrigated agriculture. We have studied the effects of irrigation-induced salinity on microbial biomass of soil under traditional cotton (Gossypium hirsutum L.) monoculture in Sayhunobod district of the Syr-Darya province of northwest Uzbekistan. Composite samples were randomly collected at 0–30 cm depth from weakly saline (2.3 ± 0.3 dS m−1), moderately saline (5.6 ± 0.6 dS m−1), and strongly saline (7.1 ± 0.6 dS m−1) replicated fields, 2-mm sieved, and analyzed for pH, electrical conductivity, total C, organic C (COrg), and extractable C, total N and P, and exchangeable ions (Ca2+, Mg2+, K+, Na+, Cl, and CO32−), microbial biomass (Cmic). The Na+ and Cl concentrations were 36-80% higher in strongly saline compared to weakly saline soil. The COrg concentration was decreased by 10% and CExt by 40% by increasing soil salinity, whereas decrease in Cmic ranged from 18-42% and the percentage of COrg present as Cmic from 8% to 26%. We conclude that irrigation-induced secondary salinity significantly affects soil chemical properties and the size of soil microflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号