首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

2.
This paper estimates the difference in stand biomass due to shorter and lighter trees in southwest (SW) and southern Amazonia (SA) compared to trees in dense forests in central Amazonia (CA). Forest biomass values used to estimate carbon emissions from deforestation throughout, Brazilian Amazonia will be affected by any differences between CA forests and those in the “arc of deforestation” where clearing activity is concentrated along the southern edge of the Amazon forest. At 12 sites (in the Brazilian states of Amazonas, Acre, Mato Grosso and Pará) 763 trees were felled and measurements were made of total height and of stem diameter. In CA dense forest, trees are taller at any given diameter than those in SW bamboo-dominated open, SW bamboo-free dense forest and SA open forests. Compared to CA, the three forest types in the arc of deforestation occur on more fertile soils, experience a longer dry season and/or are disturbed by climbing bamboos that cause frequent crown damage. Observed relationships between diameter and height were consistent with the argument that allometric scaling exponents vary in forests on different substrates or with different levels of natural disturbance. Using biomass equations based only on diameter, the reductions in stand biomass due to shorter tree height alone were 11.0, 6.2 and 3.6%, respectively, in the three forest types in the arc of deforestation. A prior study had shown these forest types to have less dense wood than CA dense forest. When tree height and wood density effects were considered jointly, total downward corrections to estimates of stand biomass were 39, 22 and 16%, respectively. Downward corrections to biomass in these forests were 76 Mg ha−1 (∼21.5 Mg ha−1 from the height effect alone), 65 Mg ha−1 (18.5 Mg ha−1 from height), and 45 Mg. ha−1 (10.3 Mg ha−1 from height). Hence, biomass stock and carbon emissions are overestimated when allometric relationships from dense forest are applied to SW or SA forest types. Biomass and emissions estimates in Brazil's National Communication under the United Nations Framework Convention on Climate Change require downward corrections for both wood density and tree height.  相似文献   

3.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

4.
Carbon (C) accreditation of forest development projects is one approach for sequestering atmospheric CO2, under the provisions of the Kyoto protocol. The C sequestration potential of reforested mined land is not well known. The purpose of this work was to estimate and compare the ecosystem C content in forests established on surface, coal-mined and non-mined land. We used existing tree, litter, and soil C data for fourteen mined and eight adjacent, non-mined forests in the Midwestern and Appalachian coalfields to determine the C sequestration potential of mined land reclaimed prior to the passage of the Surface Mining Control and Reclamation Act (1977). We developed statistically significant and biologically reasonable models for ecosystem C across the spectrum of site quality and stand age. On average, the highest amount of ecosystem C on mined land was sequestered in pine stands (148 Mg ha−1), followed by hardwood (130 Mg ha−1) and mixed stands (118 Mg ha−1). Non-mined hardwood stands sequestered 210 Mg C ha−1, which was about 62% higher than the average of all mined stands. Our mined land response surface models of C sequestration as a function of site quality and age explained 59, 39, and 36% of the variation of ecosystem C in mixed, pine, and hardwood stands, respectively. In pine and mixed stands, ecosystem C increased exponentially with the increase of site quality, but decreased with age. In mined hardwood stands, ecosystem C increased asymptotically with age, but it was not affected by site quality. At rotation age (60 yr), ecosystem C in mined hardwood stands was less on high quality sites, but similar for low quality sites compared to non-mined hardwood stands. The overall results indicated that the higher the original forest site quality, the less likely C sequestration potential was restored, and the greater the disparity between pre- and post-mining C sequestration stocks.  相似文献   

5.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

6.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

7.
The efficiency with which trees convert photosynthetically active radiation (PAR) to biomass has been shown to be consistent within stands of an individual species, which is useful for estimating biomass production and carbon accumulation. However, radiation use efficiency (?) has rarely been measured in mixed-species forests, and it is unclear how species diversity may affect the consistency of ?, particularly across environmental gradients. We compared aboveground net primary productivity (ANPP), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency (? = ANPP/IPAR) between a mixed deciduous forest and a 50-year-old white pine (Pinus strobus L.) plantation in the southern Appalachian Mountains. Average ANPP was similar in the deciduous forest (11.5 Mg ha−1 y−1) and pine plantation (10.2 Mg ha−1 y−1), while ? was significantly greater in the deciduous forest (1.25 g MJ−1) than in the white pine plantation (0.63 g MJ−1). Our results demonstrate that late-secondary hardwood forests can attain similar ANPP as mature P. strobus plantations in the southern Appalachians, despite substantially less annual IPAR and mineral-nitrogen availability, suggesting greater resource-use efficiency and potential for long-term carbon accumulation in biomass. Along a 260 m elevation gradient within each forest there was not significant variation in ?. Radiation use efficiency may be stable for specific forest types across a range of environmental conditions in the southern Appalachian Mountains, and thus useful for generating estimates of ANPP at the scale of individual watersheds.  相似文献   

8.
To understand the influence of disturbance, age–class structure, and land use on landscape-level carbon (C) budgets during conversion of old-growth forests to managed forests, a spatially explicit, retrospective C budget from 1920 through 2005 was developed for the 2500 ha Oyster River area of Fluxnet-Canada's coastal BC Station. We used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), an inventory-based model, to simulate forest C dynamics. A current (circa 1999) forest inventory for the area was compiled, then overlaid with digitized historic disturbance maps, a 1919 timber cruise map, and a series of historic orthophotographs to generate a GIS coverage of forest cover polygons with unique disturbance histories dating back to 1920. We used the combined data from the historic and current inventory and forest change data to first estimate initial ecosystem C stocks and then to simulate forest dynamics and C budgets for the 86-year period. In 1920, old-growth forest dominated the area and the long-term landscape-level net ecosystem C balance (net biome productivity, NBP) was a small sink (NBP 0.2 Mg C ha−1 year−1). From 1930 to 1945 fires, logging, and slash burning resulted in large losses of biomass C, emissions of C to the atmosphere, and transfers of C from biomass to detritus and wood products (NBP ranged from −3 to −56 Mg C ha−1 year−1). Live biomass C stocks slowly recovered following this period of high disturbance but the area remained a C source until the mid 1950s. From 1960 to 1987 disturbance was minimal and the area was a C sink (NBP ranged from 3 to 6 Mg C ha−1 year−1). As harvest of second-growth forest began in late 1980s, disturbances again dominated the area's C budget, partially offset by ongoing C uptake by biomass in recovering young forests such that the C balance varied from positive to negative depending upon the area disturbed that year (NBP from 6 to −15 Mg C ha−1 year−1). Despite their high productivity, the area's forests are not likely to attain C densities of the landscape prior to industrial logging because the stands will not reach pre-logging ages. Additional work is underway to examine the relative role historic climate variability has had on the landscape-level C budget.  相似文献   

9.
10.
Long-term management impacts on carbon storage in Lake States forests   总被引:2,自引:0,他引:2  
We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of similar ages, providing a unique opportunity to evaluate long-term management impacts on carbon pools in two major North American forest types. Management resulted in total ecosystem carbon pools of 130-137 Mg ha−1 in thinned red pine and 96-177 Mg ha−1 in managed northern hardwoods compared to 195 Mg ha−1 in unmanaged red pine and 224 Mg ha−1 in unmanaged northern hardwoods. Managed stands had smaller tree and deadwood pools than unmanaged stands in both ecosystems, but management had limited impacts on understory, forest floor, and soil carbon pools. Total carbon storage and storage in individual pools varied little across thinning intensities in red pine. In northern hardwoods, selection cuttings stored more carbon than the diameter-limit treatment, and selection cuttings generally had larger tree carbon pools than the shelterwood or diameter-limit treatments. The proportion of total ecosystem carbon stored in mineral soil tended to increase with increasing treatment intensity in both ecosystems, while the proportion of total ecosystem carbon stored in the tree layer typically decreased with increasing treatment intensity. When carbon storage in harvested wood products was added to total ecosystem carbon, selection cuttings and unmanaged stands stored similar levels of carbon in northern hardwoods, but carbon storage in unmanaged stands was higher than that of thinned stands for red pine even after adding harvested wood product carbon to total ecosystem carbon. Our results indicate long-term management decreased on-site carbon storage in red pine and northern hardwood ecosystems, but thinning intensity had little impact on carbon storage in red pine while increasing management intensity greatly reduced carbon storage in northern hardwoods. These findings suggest thinning to produce different stand structures would have limited impacts on carbon storage in red pine, but selection cuttings likely offer the best carbon management options in northern hardwoods.  相似文献   

11.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

12.
Anthropogenic understory fires have affected large areas of tropical forest in recent decades, particularly during severe droughts. Yet, the mechanisms that control fire-induced mortality of tropical trees and lianas remain ambiguous due to the challenges associated with documenting mortality given variation in fire behavior and forest heterogeneity. In a seasonally dry Amazon forest, we conducted a burn experiment to quantify how increasing understory fires alter patterns of stem mortality. From 2004 to 2007, tree and liana mortality was measured in adjacent 50-ha plots that were intact (B0 - control), burned once (B1), and burned annually for 3 years (B3). After 3 years, cumulative tree and liana mortality (≥1 cm dbh) in the B1 (5.8% yr−1) and B3 (7.0% yr−1) plots significantly exceeded mortality in the control (3.2% yr−1). However, these fire-induced mortality rates are substantially lower than those reported from more humid Amazonian forests. Small stems were highly vulnerable to fire-induced death, contrasting with drought-induced mortality (measured in other studies) that increases with tree size. For example, one low-intensity burn killed >50% of stems <10 cm within a year. Independent of stem size, species-specific mortality rates varied substantially from 0% to 17% yr−1 in the control, 0% to 26% yr−1 in B1, and 1% to 23% yr−1 in B3, with several species displaying high variation in their vulnerability to fire-induced mortality. Protium guianense (Burseraceae) exhibited the highest fire-induced mortality rates in B1 and B3, which were 10- and 9-fold greater than the baseline rate. In contrast, Aspidosperma excelsum (Apocynaceae), appeared relatively unaffected by fire (0.3% to 1.0% mortality yr−1 across plots), which may be explained by fenestration that protects the inner concave trunk portions from fire. For stems ≥10 cm, both char height (approximating fire intensity) and number of successive burns were significant predictors of fire-induced mortality, whereas only the number of consecutive annual burns was a strong predictor for stems <10 cm. Three years after the initial burn, 62 ± 26 Mg ha−1 (s.e.) of live biomass, predominantly stems <30 cm, was transferred to the dead biomass pool, compared with 8 ± 3 Mg ha−1 in the control. This biomass loss from fire represents ∼30% of this forest's aboveground live biomass (192 (±3) Mg ha−1; >1 cm DBH). Although forest transition to savanna has been predicted based on future climate scenarios, our results indicate that wildfires from agricultural expansion pose a more immediate threat to the current carbon stocks in Amazonian forests.  相似文献   

13.
The aim was to study the potential for using natural regeneration as a basis for transformation of simply structured conifer plantations into mixed Mediterranean forests. We studied the variation along a rainfall gradient, in the natural regeneration of tree species in the understory of planted 40- to 50-year-old Aleppo pine (Pinus halepensis) forests. The study was conducted within the Mediterranean zone of Israel, which extends from the semiarid northern Negev desert (rainfall ca. 300 mm yr−1) in the south to the humid Upper Galilee in the north (ca 900 mm yr−1). Cover and height, density, and species composition of regenerating trees were measured on south- and north-facing slopes in forest sites of comparable silvicultural history (site preparation methodology, planting density and thinning regime) distributed along the rainfall gradient. Altogether, 12 species of regenerating native broadleaved trees were found in the understory of the various forest sites. Surface cover, density and species richness increased linearly along the entire rainfall gradient, on both north- and south-facing slopes, ranging from zero in the driest forest sites up to 85% cover, 7980 trees ha−1 and 4.5 species per 200 m2, respectively, in the most humid ones. Species composition of regenerating trees was also related to rainfall amount, through changes in the relative importance of species along the rainfall gradient. The effect of topographic aspect on tree regeneration was inconsistent, i.e., the interaction Rainfall × Aspect was significant. Nevertheless, the general trend showed better regeneration on north-facing slopes. Most of the regenerating trees in the understory were small, i.e., less than 100 cm in height, with no clear effect of rainfall amount and topographic aspect on the relative abundance of height classes. Regeneration by Aleppo pine was highly variable among and within the different forest sites and ranged from 0 to 1565 trees ha−1, with no clear relationships with rainfall amount and topographic aspect. In light of our results we propose that the future structure of forests should vary with respect to annual rainfall amount within possible silvicultural scenarios.  相似文献   

14.
The regeneration of Brazil nut trees depends on tree-fall gaps in the forest. However, shifting cultivation fallows also create comparable biotic and abiotic opportunities for the dispersion and establishment of this gap-loving species. At the same time, the ability of Brazil nut trees to resprout enables fallow individuals to survive successive slash-and-burn cycles. Recognizing the importance of shifting cultivation for the food security of forest dwellers, we investigated whether the high level of Brazil nut regeneration found in cultivation fallows could be explained by the resprouting capability of Brazil nut trees, the number of cultivation cycles, past agricultural use and distance to the nearest conspecific productive adults. We found that the Brazil nut tree population density increased from 8.86 trees ha−1 to 13.69 trees ha−1 and 27.09 trees ha−1 at sites after one, two and three or more shifting cultivation cycles, respectively. As a consequence of resprouting, after a certain number of shifting cultivation cycles, the fallows become dominated by Brazil nut trees, and the landholders may decide to preserve them and to exclude enriched sites from future agricultural use. Protected for their extractive value, the secondary forests spontaneously enriched with Brazil nut trees are allowed to develop into nut-producing forests that have reduced chances of conversion into crops or pastures, thus reversing the classical process of Amazon forest degradation.  相似文献   

15.
Stand composition and structure of natural mixed-oak stands of common-oak (Quercus robur L.) and pyrenean-oak (Quercus pyrenaica Willd.) were studied. Diverse compositional and structural elements in early and late successional stand stages were analysed. The study was conducted in north and central Portugal where different natural mixed oak forests types are located. The following mixed-oak forest types involving common-oak and pyrenean-oak were studied: common-oak & other hardwoods; common-oak & cork-oak (Quercus suber L.); ash (Fraxinus angustifolia Vahl) & pyrenean-oak; and pyrenean-oak & madrone (Arbutus unedo L.). Measurements were made in early and late successional stand stages on the different mixed oak forest types. Different stand characteristics and indices were used to describe and compare stand structure and composition. The study showed changes in species diversity and stand structure. Most tree species in mature stands are present in early stages but with higher abundance. Shannon diversity index may change between 0.798 and 1.915. Significant differences on species diversity and abundance were found depending on the forest type and successional stage. Mature mixed-oak forests have high species diversity with an abundance of small to medium tree size species. Species distribution and diameter differentiation indices range from 0.30 to 0.70 and 0.52 to 0.82, respectively, revealing significant structural complexity. The average number of standing and downed dead trees was 265 and 83 trees ha−1 for early and late stage, respectively, with 6.9 and 65.4 m3 ha−1. Higher values of stand diversity index were 41 and 53 in more complex and developed forests. Later stand stages have complex structure, with a wider range of tree diameter distribution and higher degree of irregularity.  相似文献   

16.
Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha−1 in the high forest stand (HF) and 213 Mg ha−1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil.  相似文献   

17.
With increasing CO2 in the atmosphere, there is an urgent need of reliable estimates of biomass and carbon pools in tropical forests, most especially in Africa where there is a serious lack of data. Information on current annual increment (CAI) of carbon biomass resulting from direct field measurements is crucial in this context, to know how forest ecosystems will affect the carbon cycle and also to validate eddy covariance flux measurements. Biomass data were collected from 25 plots of 13 ha spread over the different vegetation types and land uses of a moist evergreen forest of 772,066 ha in Cameroon. With site-specific allometric equations, we estimated biomass and aboveground and belowground carbon pools. We used GIS technology to develop a carbon biomass map of our study area. The CAI was estimated using the growth rates obtained from tree rings analysis. The carbon biomass was on average 264 ± 48 Mg ha−1. This estimate includes aboveground carbon, root carbon and soil organic carbon down to 30 cm depth. This value varied from 231 ± 45 Mg ha−1 of carbon in Agro-Forests to 283 ± 51 Mg ha−1 of carbon in Managed Forests and to 278 ± 56 Mg ha−1 of carbon in National Park. The carbon CAI varied from 2.54 ± 0.65 Mg ha−1 year−1 in Agro-Forests to 2.79 ± 0.72 Mg ha−1 year−1 in Managed Forests and to 2.85 ± 0.72 Mg ha−1 year−1 in National Park. This study provides estimates of biomass, carbon pools and CAI of carbon biomass from a forest landscape in Cameroon as well as an appropriate methodology to estimate these components and the related uncertainty.  相似文献   

18.
Four forest stands each of twenty major forest types in sub-tropical to temperate zones (350 m asl–3100 m asl) of Garhwal Himalaya were studied. The aim of the study was to assess the stem density, tree diversity, biomass and carbon stocks in these forests and make recommendations for forest management based on priorities for biodiversity protection and carbon sequestration. Stem density ranged between 295 and 850 N ha−1, while total biomass ranged from 129 to 533 Mg ha−1. Total carbon storage ranged between 59 and 245 Mg ha−1. The range of Shannon–Wiener diversity index was between 0.28 and 1.75. Most of the conifer-dominated forest types had higher carbon storage than broadleaf-dominated forest types. Protecting conifer-dominated stands, especially those dominated by Abies pindrow and Cedrus deodara, would have the largest impact, per unit area, on reducing carbon emissions from deforestation.  相似文献   

19.
Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0–1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems ≥4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006–2007. Live AGB ranged from 166.3 Mg ha−1 (bootstrapped 95% CI: 144.4,187.0) to 283.2 Mg ha−1 (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64–75%) with limited crown illumination but the largest proportion of the live AGB (68–85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle.  相似文献   

20.
Scolytids have been studied more than any other group of forest insects, but most investigations have been restricted to only a few pest species. This bias hampers our understanding of variation in abundance and pest status. Even the simple question whether the abundance of scolytids can predicted by the same independent variables as their pest status is still a matter of debate. To explore this issue, we estimated their abundance using non-attracting flight-interception traps set in a wide range of forests across Czech Republic, Germany, and France. Pest status was taken from current literature. As independent variables, we considered host range, host abundance, and several traits of the considered species in linear models using generalized least squares with a correlation structure derived from the phylogenetic tree of the beetles. Host range was calculated as the root phylogenetic diversity index. The variation in the abundance across scolytids was well explained by resource-related parameters (R2 = 0.53). In contrast to abundance, the pest status was significantly related to species-specific traits, such as body size and maximum number of generations. However, the explained variance was much lower (R2 = 0.19). Although our analysis showed that abundance and pest score follow different patterns, we stress the importance of monitoring all species using non-selective traps. Considering the increasing global trade and the rapidly changing climate, such a broad ecological monitoring is necessary to detect new interactions and/or invading species that may influence our forests ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号