首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Timo Pukkala 《林业研究》2018,29(2):261-272
Forest management in several boreal countries is strongly focused on conifers because they are more productive,the technical quality of their stems is better,and their wood fibers are longer as compared to broadleaves.Favoring conifers in forest management leads to simple forest structures with low resilience and diversity.Such forests are risky in the face of climate change and fluctuating timber prices.Climate change increases the vitality of many forest pests and pathogens such as Heterobasidion spp.and Ips typographus L.which attack mainly spruce.Wind damages are also increasing because of a shorter period of frozen soil to provide a firm anchorage against storms.Wind-thrown trees serve as starting points for bark beetle outbreaks.Increasing the proportion of broadleaved species might alleviate some of these problems.This study predicts the long-term(150 years) consequences of current conifer-oriented forest management in two forest areas,and compared this management with silvicultural strategies that promote mixed forests and broadleaved species.The results show that,in the absence of damages,conifer-oriented forestry would lead to 5–10% higher timber yields and carbon sequestration.The somewhat lower carbon sequestration of broadleaved forests was counteracted by their higher albedo(reflectance).Mixed and broadleafforests were better providers of recreational amenities.Species diversity was much higher in mixed stand and broadleaf-oriented silviculture at stand and forest levels.The analysis indicates that conifer-oriented forest management produces rather small and uncertain economic benefits at a high cost in resilience and diversity.  相似文献   

3.
木麻黄无性系造林 ,林分密度管理 ,低效林改造 ,抚育间伐技术 ,更新技术等是影响木麻黄防护林持续经营的主要因素。实施生态系统管理 ,采取营造木麻黄混交林、林木施肥等营林技术措施是木麻黄防护林持续经营的主要途径  相似文献   

4.
Timber and biodiversity are considered two antagonistic ecosystem services (ES), largely influenced by silviculture and site ecological conditions. In order to address the trade-offs between these two ES over time, we performed a retrospective study at compartment level in the Pinus sylvestris forests of the Spanish Central Mountain System. Archival data from Management Plans for eight forests with contrasting silvicultural systems (uniform shelterwood system, group shelterwood system, irregular shelterwood system,) and three different site quality classes were analysed. Timber production was assessed through stand volume, harvested timber volume and a stand volume index. Biodiversity was examined through structural diversity (Gini index, Shannon tree size diversity index, Simpson’s reciprocal index and evenness index, all applied to diameter classes) and the abundance of large living trees. For all silvicultural systems investigated, stand volume and harvested timber volume have grown since the beginning of the management plans (beginning of the twentieth century in some forests). The largest yields of timber corresponded to the best quality sites with more intensive silvicultural treatments (uniform and group shelterwood systems). The uniform shelterwood system showed lower figures for structural diversity, though not always significant. The best site qualities maintained notable structural diversity values, even under the most intensive management system. The application of the different management systems over decades has revealed a synergy between timber production and structural diversity, particularly in those systems maintaining more than one age class, although results are conditioned by forest harvesting history. The interaction between historical silvicultural treatment and site quality has been identified as an important source of information to understand forest dynamics and functioning of ES provision.  相似文献   

5.
In this article, we compared the structure, composition, and diversity of trees, shrubs and saplings, seedlings and herbaceous species of community- and government-managed forests in the lowlands of eastern Nepal. Results suggest that among the trees, the community forest was dominated by a single species, Shorea robusta. However, Shorea robusta and Terminalia myriocarpa were codominant in the government forest. Tree density and basal area were higher in the government forest, but shrub/sapling density and basal area were higher in the community forest, suggesting a positive effect of community management on tree regeneration. Overstory species assemblages showed an obvious compositional difference between the forests, but understory species assemblages were less obvious. Plot-level tree and shrub/sapling species richness was higher in the government forest than the community forest. However, seedling-herbaceous species richness was higher in the community forest. The dominance of Shorea robusta trees in the community forest suggests that people involved in managing forests may be more interested in a limited number of economically valuable species while removing less important trees. Such preferential management practices may increase resource heterogeneity within a forest and maintain species diversity in the understory. Thus, community participation in forest management should be encouraged, with guided management techniques and exercises, to achieve maximum forest recovery, provide sustainable ecosystem services, and maintain forest diversity.  相似文献   

6.
《林业研究》2021,32(4)
Forest management may have significant effects on forest connectivity and natural population sizes.Harvesting old-growth single trees may also change natural patterns of genetic variation and spatial genetic structure.This study evaluated the impacts of forest management using a silvicultural system of seed trees on the genetic diversity and spatial genetic structure of Eremanthus erythropappus(DC.)MacLeish.A complete survey of 275 trees on four plots was undertaken out to compare the genetic variation of a managed stand with an unmanaged stand.We genotyped all adult and juvenile individuals 60 months after the management and compared the genetic diversity and the spatial genetic structure parameters.Genetic diversity was considered high because of an efficient gene flow between stands.There were no genetic differences between stands and no evidence of inbreeding.Genetic clustering identified a single population(K=1),indicating no genetic differentiation between managed and unmanaged stands.Adult and juvenile individuals of the unmanaged stand were more geographically structured than individuals from the managed one.There was a tendency of coancestry among juveniles at the first class of distance of the managed stand,suggesting a drift of genetic structure possibly caused by management.Understanding early responses to management on genetic diversity and stand structure is a first step to ensuring the effectiveness of conservation practices of tree species.The sustainability of forest management of E.erythropappus on genetic diversity,and more accurately,on spatial genetic structure needs evaluation over time to promote effective conservation of the population size and genetic variability.  相似文献   

7.
In temperate and boreal mixedwood forests of eastern North America, partial disturbances such as insect outbreaks and gap dynamics result in the development of irregular forest structures. From a forest ecosystem management perspective, management of these forests should therefore include silvicultural regimes that incorporate medium- to high-retention harvesting. We present 12-year results of a field experiment undertaken to evaluate the effects of variable retention harvesting on stand structure, recruitment, and mortality. Treatments were gap harvesting (GAP), diameter-limit harvesting (DL), careful logging (CL), and careful logging followed by scarification (CL + SCAR), and an unharvested control. Although post-harvest basal area in the GAP treatment was significantly lower than that of controls, it maintained a diameter distribution profile and densities of balsam fir regeneration similar to those of pre-harvest conditions. Lower retention treatments (DL, CL, and CL + SCAR) tended to favor regeneration of pioneer, shade-intolerant species. Except for black spruce (for which mortality was highest in DL), stem mortality was similar among harvesting treatments. From an ecosystem management perspective, this study suggests that gap harvesting can maintain, in the short term, forest stand composition and structure similar to unharvested forests, and could be used where management objectives include the maintenance of late successional forest conditions.  相似文献   

8.
Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (<1 adult tree ha−1) or may be locally rare. In the Brazilian Amazon, many of the most highly valued timber species occur at extremely low densities yet are intensively harvested with little regard for impacts on population structures and dynamics. These include big-leaf mahogany (Swietenia macrophylla), ipê (Tabebuia serratifolia and Tabebuia impetiginosa), jatobá (Hymenaea courbaril), and freijó cinza (Cordia goeldiana). Brazilian forest regulations prohibit harvests of species that meet the legal definition of rare – fewer than three trees per 100 ha – but treat all species populations exceeding this density threshold equally. In this paper we simulate logging impacts on a group of timber species occurring at low densities that are widely distributed across eastern and southern Amazonia, based on field data collected at four research sites since 1997, asking: under current Brazilian forest legislation, what are the prospects for second harvests on 30-year cutting cycles given observed population structures, growth, and mortality rates? Ecologically ‘rare’ species constitute majorities in commercial species assemblages in all but one of the seven large-scale inventories we analyzed from sites spanning the Amazon (range 49–100% of total commercial species). Although densities of only six of 37 study species populations met the Brazilian legal definition of a rare species, timber stocks of five of the six timber species declined substantially at all sites between first and second harvests in simulations based on legally allowable harvest intensities. Reducing species-level harvest intensity by increasing minimum felling diameters or increasing seed tree retention levels improved prospects for second harvests of those populations with a relatively high proportion of submerchantable stems, but did not dramatically improve projections for populations with relatively flat diameter distributions. We argue that restrictions on logging very low-density timber tree populations, such as the current Brazilian standard, provide inadequate minimum protection for vulnerable species. Population declines, even if reduced-impact logging (RIL) is eventually adopted uniformly, can be anticipated for a large pool of high-value timber species unless harvest intensities are adapted to timber species population ecology, and silvicultural treatments are adopted to remedy poor natural stocking in logged stands.  相似文献   

9.
Green-tree retention systems are an important management component of variable retention harvests in temperate zone coniferous forests. Residual live trees (“legacy trees”) provide mature forest habitat, increase structural diversity, and provide continuity in the regenerating stand. This study was designed to test the hypotheses that, at up to 8 years after harvest, abundance and species diversity of communities of (i) understory plants and (ii) forest-floor small mammals, and (iii) relative habitat use by mule deer (Odocoileus hemionus), will decline with decreasing levels of tree retention. Communities of plants and forest floor small mammals were sampled in replicated clearcut, single seed-tree, group seed-tree, patch cut, and uncut forest sites in mixed Douglas-fir (Pseudotsuga menziesii)—lodgepole pine (Pinus contorta) forest in southern British Columbia, Canada from 2000 to 2003 (5–8 years post-harvest). Habitat use by mule deer was measured during summer and winter periods each year from 1999 to 2003 in these same sites.  相似文献   

10.
Current silvicultural treatments in beech forests are aimed at achieving thick logs without discoloured hardwood. Therefore intensive thinning is applied already in younger stands with the objective of large-sized trunks at an age of 100 years. However, this approach bears the risk that dead wood structures and broken trees are completely removed from the forest. The impact of three different silvicultural management intensity levels on wood-inhabiting fungi over decades was investigated in a large beech forest (>10,000 ha) in southern Germany in 69 sampling plots: A Intensive Thinning and Logging with high-value trees, B Conservation-Oriented Logging with integration of special structures such as dead wood and broken trees and C Strict Forest Reserves with no logging for 30 years. The analysis of community showed marked differences in the fungus species composition of the three treatments, independent of stand age. The relative frequencies of species between treatments were statistically different. Indicator species for naturalness were more abundant at sites with low silvicultural management intensity. Fomes fomentarius, the most common fungus in virgin forests and strict forest reserves, is almost missing in forests with high-management intensity. The species richness seemed to be lower where intensive thinning was applied (P = 0.051). Species characteristic for coarse woody debris were associated to low management intensity, whereas species with a significant preference for stumps became more frequent with increasing management intensity. A total amount of dead wood higher than 60 m3/ha was found to enable significantly higher numbers of species indicators of naturalness (P = 0.013). In conclusion, when applying intensive silvicultural treatment, the role of dead wood needs to be actively considered in order to maintain the natural biocoenosis of beech forests.  相似文献   

11.
The importance of structural complexity in forest ecosystems for ecosystem diversity has been widely acknowledged. Tree microhabitat structures as indicators of biodiversity, however, have only seldom been the focus of diversity research although their occurrence is highly correlated with the abundance of forest species and ecosystem functions. In this study, microhabitat structures in Douglas-fir (Pseudotsuga menziesii) forests were defined and their frequency and abundance in natural stands and stands of varying active management histories and stand ages was compared. Indicator microhabitat structures for natural forests were determined and the relationship of the abundance of microhabitat structures with tree diameter of Douglas-fir trees was analysed.  相似文献   

12.
We focused our attention on quantifying the factor complex of forest regeneration in 423 mature and old stands with contrasting environmental conditions. We recorded the microhabitat selection of tree recruits, the frequency of tree seedlings, and evaluated the drivers of sapling abundance and diversity. The majority of forest regeneration was established on undisturbed forest floor. Dead wood was a frequent substrate in spruce-(co)dominated forests. Seedling frequency within a stand was related to the site-type specific productivity gradient of stands—pine seedlings were common in low-productivity and spruce in high-productivity boreal forests. Seedlings of temperate broad-leaved trees dominated in productive boreonemoral forests, except for oak, which showed a uniform distribution of abundance in all forest site-types. Sapling abundance was dictated by forest site-type, and facilitated by stand diversity, variability in stand closure, lying dead wood, abundant moss, and a thick organic layer. Only in boreal forests was sapling abundance suppressed by the abundant spruce and younger trees. Upon considering the relationship between sapling abundance and species richness, sapling diversity was dependent on forest site-type, suppressed by stand density and dead wood (old gap) abundance, and facilitated by stand diversity. In addition, boreonemoral stands, competition from herbs, and facilitation by mosses occurred. The observed pattern of tree recruitment points to the importance of top-down effects of the overstory, competing or facilitating interactions with forest floor vegetation, and availability of regeneration microhabitats, which in complex make their ecology comparable with forest herbs. Natural forest regeneration can be enhanced if silvicultural methods support mixed stands and enhance field layer diversity. Oak can provide the universal tree species to improve stand structure over a wide range of habitats.  相似文献   

13.
Forest ecosystem management, based partly on a greater understanding of natural disturbance regimes, has many variations but is generally considered the most promising approach to accommodating biodiversity concerns in managed forested regions. Using the Lake Duparquet Forest in the southeastern Canadian boreal forest as an example, we demonstrate an approach that attempts to integrate forest and stand-level scales in biodiversity maintenance. The concept of cohorts is used to integrate stand age, composition and structure into broad successional or stand development phases. Mean forest age (MFA), because it partly incorporates historic variability of the regional fire cycle, is used as a target fire cycle. At the landscape level, forest composition and cohort objectives are derived from regional natural disturbance history, ecosystem classification, stand dynamics and a negative exponential age distribution based on a 140 year fire cycle. The resulting multi-cohort structure provides a framework for maintaining the landscape in a semi-natural age structure and composition. At the stand level, the approach relies on diversifying interventions, using both even-aged and uneven-aged silviculture to reflect natural stand dynamics, control the passage (“fluxes”) between forest types of different cohorts and maintain forest-level objectives. Partial and selective harvesting is intended to create the structural and compositional characteristics of mid- to late-successional forest types and, as such, offers an alternative to increasing rotation lengths to maintain ecosystem diversity associated with over-mature and old-growth forests. The approach does not however supplant the necessity for complementary strategies for maintaining biodiversity such as the creation of reserves to protect rare, old or simply natural ecosystems. The emphasis on maintaining the cohort structure and forest type diversity contrasts significantly with current even-aged management in the Canadian boreal forest and has implications for stand-level interventions, notably in necessitating a greater diversification of silvicultural practices including more uneven-aged harvesting regimes. The approach also presents a number of operational challenges and potentially higher risks associated with multiply stand entries, partial cutting and longer intervals between final harvests. There is a need for translating the conceptual model into a more quantitative silvicultural framework. Silvicultural trials have been established to evaluate stand-level responses to treatments and operational aspects of the approach.  相似文献   

14.
我国主要森林生态系统类型降水截留规律的数量分析   总被引:92,自引:0,他引:92  
温远光  刘世荣 《林业科学》1995,31(4):289-298
通过对大量林林生态系统水文生态功能研究资料的分析,从林冠层、枯枝落叶层和土壤三个森林水文生态功能的发挥最主要的层次出发,比较分析了我国主要森林生态系统类型的降水截留规律。  相似文献   

15.
How to quantify forest management intensity in Central European forests   总被引:1,自引:0,他引:1  
Existing approaches for the assessment of forest management intensity lack a widely accepted, purely quantitative measure for ranking a set of forest stands along a gradient of management intensity. We have developed a silvicultural management intensity indicator (SMI) which combines three main characteristics of a given stand: tree species, stand age and aboveground, living and dead wooden biomass. Data on these three factors are used as input to represent the risk of stand loss, which is a function of tree species and stand age, and stand density, which is a function of the silvicultural regime, stand age and tree species. Consequently, the indicator consists of a risk component (SMIr) and a density component (SMId). We used SMI to rank traditional management of the main Central European tree species: Norway spruce (Picea abies [Karst.] L.), European beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.), and oak (Quercus robur L. and Quercus petraea L.). By analysing SMI over their whole rotation period, we found the following ranking of management intensity: oak<beech<pine?spruce. Additionally, we quantified the SMI of actual research plots of the German Biodiversity exploratories, which represent unmanaged and managed forest stands including conifer forests cultivated outside their natural range. SMI not only successfully separate managed from unmanaged forests, but also reflected the variability of forest management and stand properties across the entire sample and within the different management groups. We suggest using SMI to quantify silvicultual management intensity of stands differing in species composition, age, silvicultural system (even-aged vs. uneven-aged), thinning grade and stages of stand conversion from one stand type into another. Using SMI may facilitate the assessment of the impact of forest management intensity on biodiversity in temperate forests.  相似文献   

16.
Climate change resulting from increased concentrations of atmospheric carbon dioxide ([CO2]) is expected to result in warmer temperatures and changed precipitation regimes during this century. In the northwestern U.S., these changes will likely decrease snowpack, cause earlier snowmelt, increase summer evapotranspiration, and increase the frequency and severity of droughts. Elevated [CO2] and warmer temperatures may have positive effects on growth and productivity where there is adequate moisture or growth is currently limited by cold. However, the effects of climate change are generally expected to reduce growth and survival, predispose forests to disturbance by wildfire, insects, and disease; and ultimately change forest structure and composition at the landscape scale. Substantial warming will likely decrease winter chilling resulting in delayed bud burst, and adversely affect flowering and seed germination for some species. The extent of these effects will depend on the magnitude of climate change, the abilities of individual trees to acclimate, and for tree populations to adapt in situ, or to migrate to suitable habitats. These coping mechanisms may be insufficient to maintain optimal fitness of tree populations to rapidly changing climate. Physiological responses to climatic stresses are relatively well-understood at the organ or whole-plant scale but not at the stand or landscape scale. In particular, the interactive effects of multiple stressors is not well known. Genetic and silvicultural approaches to increase adaptive capacities and to decrease climate-related vulnerabilities of forests can be based on ecophysiological knowledge. Effective approaches to climate adaptation will likely include assisted migration of species and populations, and density management. Use of these approaches to increase forest resistance and resilience at the landscape scale requires a better understanding of species adaptations, within-species genetic variation, and the mitigating effects of silvicultural treatments.  相似文献   

17.
Major changes in Mediterranean forests have occurred in recent decades, mainly as a result of the abandonment of traditional activities and population decline in rural areas. In this study, we analyzed the short-term (11-year) evolution of forests in the region of Catalonia (NE Spain) and the role of management, by comparing seven biodiversity indicators estimated from 7,664 plots from the Second and Third Spanish National Forest Inventory. We evaluated the changes in unmanaged and managed stands with different silvicultural treatments, and considered the effect of stand density and land ownership on these dynamics. We found a general naturalization and maturation of forests and an increase in all of the biodiversity indicators investigated during the study period, with the increments being greater in unmanaged than in managed plots. Some types of silvicultural treatments, such as selection cutting or thinning, were shown to be compatible with an increase in the analyzed indicators, and thus were more adequate for a multifunctional management that considers forest production together with the maintenance or improvement of the diversity of forest communities. The increases in shrub species richness and in the number of large-diameter trees after silvicultural treatments were more prominent in dense stands. Private lands presented greater short-term increases than public forests in all biodiversity indicators, except for large-diameter trees. From these results, we concluded that the application of silvicultural treatments can be a key tool to shape and maintain diverse and healthy forest structures in the context of socioeconomic and environmental changes in the Mediterranean region, which may induce potentially excessive densification and homogenization of some forest stands and landscapes.  相似文献   

18.
Silviculture to maintain old-growth forest attributes appears to be an oxymoron since the late developmental phases of forest dynamics, described by the term old-growth, represent forests that have not experienced human intervention or timber removal for a long time. In the past, silvicultural systems applied to old-growth aimed to convert it into simplified, more productive regrowth forests substantially different in structure and composition. Now it is recognised that the maintenance of biodiversity associated with structural and functional complexity of late forest development successional stages cannot rely solely on old-growth forests in reserves. Therefore, in managed forests, silvicultural systems able to develop or maintain old-growth forest attributes are being sought. The degree to which old-growth attributes are maintained or developed is called “old-growthness”. In this paper, we discuss silvicultural approaches that promote or maintain structural attributes of old-growth forests at the forest stand level in (a) current old-growth forests managed for timber production to retain structural elements, (b) current old-growth forests requiring regular, minor disturbances to maintain their structure, and (c) regrowth and secondary forests to restore old-growth structural attributes. While the functions of different elements of forest structure, such as coarse woody debris, large veteran trees, etc., have been described in principle, our knowledge about the quantity and distribution, in time and space, of these elements required to meet certain management objectives is rather limited for most ecosystems. The risks and operational constraints associated with managing for structural attributes create further complexity, which cannot be addressed adequately through the use of traditional silvicultural approaches. Silvicultural systems used in the retention and restoration of old-growthness can, and need, to employ a variety of approaches for managing spatial and temporal structural complexity. We present examples of silvicultural options that have been applied in creative experiments and forestry practice over the last two decades. However, these largely comprise only short-term responses, which are often accompanied by increased risks and disturbance. Much research and monitoring is required still to develop and optimise new silvicultural systems for old-growthness for a wide variety of forest ecosystem types.  相似文献   

19.
Despite expanding interest in ecosystem service research over the past three decades, in-depth understanding of the contribution of forests and trees to food production and livelihoods remains limited. This review synthesizes the current evidence base examining the contribution of forest and trees to agricultural production and livelihoods in the tropics, where production often occurs within complex land use mosaics that are increasingly subjected to concomitant climatic and anthropogenic pressures. Using systematic review methodology we found 74 studies investigating the effect of forest or tree-based ecosystem service provision on a range of outcomes such as crop yield, biomass, soil fertility, and income. Our findings suggest that when incorporating forests and trees within an appropriate and contextualized natural resource management strategy, there is potential to maintain, and in some cases, enhance yields comparable to solely monoculture systems. Furthermore, this review has illustrated the potential of achieving net livelihood gains through integrating trees on farms, providing rural farmers with additional income sources, and greater resilience strategies to adapt to market or climatic shocks. However, we also identify significant gaps in the current knowledge that demonstrate a need for larger-scale, longer term research to better understand the contribution of forest and trees within the broader landscape and their associated impacts on livelihoods and food production systems.  相似文献   

20.
Abstract

In this study, I defined a gap as a small opening formed in a forest canopy (area < 0.1 ha) and tried to synthesize gap-disturbance regimes of primary mature stands in different forest types of Japan, such as warm temperate evergreen broad-leaved (4 stands in 3 localities), cool temperate deciduous broad-leaved (10 in 5) and subalpine evergreen coniferous (3 in 1) forests. Mean percentage of the total gap area within the total forested area (percentage gap area) in each forest type was 17.0% in warm temperate (number of surveyed gaps was 161), 13.8% in cool temperate (278 gaps), and 8.0% in subalpine (100 gaps) forests. Mean gap density (ha-1) and mean gap size (m2) were 19.5 and 77.1 in warm temperate, 16.4 and 92.0 in cool temperate, and 19.1 and 41.9 in subalpine forests, respectively. These figures indicate that gap density is not substantially different among the forest types, but the mean gap size of subalpine forests is smaller than the other two, resulting in lower percentage gap area of this forest type. The gap size distributions were similar among the forest types; smaller gaps were much more frequent than larger ones, and gaps > 400 rrr were rare in warm temperate and cool temperate forests. In subalpine forests gaps > 200 m2 were rare. Gaps formed by multiple gapmakers comprised 19.9% of all gaps in warm temperate, 9.9% in cool temperate, and 44.9% in subalpine forests, which implies that gap formation by simultaneous tree fall or gap enlargement is more frequent in subalpine forests. Canopy trees died less often by uprooting in every forest type; dominant mode for the death of canopy trees was by leaving standing-dead or with broken trunks in every forest type. Since typhoons are obviously a chief agent of forest disturbance in Japan, frequency or magnitude of typhoon disturbance may influence these differences in the gap-disturbance regimes. In addition to the disturbance, tree architectures seem to affect some of these differences; narrower crown size of conifers compared with broad-leaved trees is considered one major cause for smaller gap size of the conifer forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号