首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical, statistically based models were used to describe the growth and development of Eucalyptus nitens plantations for a range of site productivities and the standard biomass and pulp silvicultural regime currently applied in Northern Spain. The results obtained, along with data gathered from a network of 68 plots, 48 trees felled for biomass estimations and 73 trees sampled for foliar area estimation were used to parameterize the 3-PG model for this species in Northern Spain. Most parameters associated with allometric relationships and partitioning (i.e. bark and branch fraction, basic density, age modifier and mortality) were derived from local data, and the remaining parameters were obtained from published studies on E. nitens or default values previously used for E. globulus. The parameterized model was validated with data from three trials measured from age 3 years until age 8-14 years, and performed better than the empirical model in terms of total stand under bark volume, mean diameter at breast height, basal area and foliar biomass. The process-based model was then used to forecast changes in plantations subjected to a clearwood regime, initializing the model at age 3 years, considering 3 prunings, 2 thinnings and lengthening the rotation to 18 years. This integrated regime was able to provide biomass for bioenergy, pulp or fibreboard wood and also solid wood, with thinning operations assisting the financial viability, and was a potentially good alternative for productive sites.  相似文献   

2.
Species richness and species composition of ectomycorrhizal (EM) fungi were compared among rehabilitated mine sites and unmined jarrah forest in southwest Western Australia. Species richness, measured in 50 m × 50 m plots, was high. In the wetter, western region, mean species richness per plot in 16-year-old rehabilitated mine sites (63.7 ± 2.5, n = 3) was similar to that of unmined jarrah forest (63.6 ± 9.6, n = 9). In the drier, eastern region, species richness in 12-year-old rehabilitated mine sites (40.3 ± 2.1, n = 3) approached that of nearby forest (52.4 ± 9.3, n = 9). Species composition was analysed by detrended correspondence analysis. Rehabilitated sites of similar age clustered together in the analysis and species composition was closer to the native jarrah forest in the older rehabilitated plots. In unmined forest, species composition of fungal communities in the wetter, western region was different from communities in the drier, eastern region.  相似文献   

3.
Insect damage to production forests has the potential to reduce financial returns by retarding tree growth and causing mortality, however, long-term realised quantification of these losses is rare. In order to help elucidate economic damage thresholds for making spray decisions we capitalised on a natural outbreak of autumn gum moth, Mnesampela privata, in a 2-year-old Eucalyptus nitens plantation. Following the partial chemical control of this insect outbreak we measured the tree growth variables diameter at breast height over bark and height of five differing tree defoliation classes for 75 months following tree damage. At the end of this period a threshold model was fitted to describe the relationship between tree defoliation and realised tree wood volumes. The model revealed that realised stand wood volume was not significantly affected up until defoliation exceeded 60% and then declined sharply after this defoliation level was reached. Further support for this defoliation threshold was evident from multiple comparisons among defoliation classes that showed 50% defoliated trees did not have significantly different wood volume compared to more lightly defoliated trees, but did have significantly greater wood volume compared to trees that were 72% or more defoliated. To determine if the realised differences in wood volume resulted in differences in yield over a plantation rotation the E. nitens growth model NITGRO was used to on-grow trees to age 15 years for a ‘best case’ (type 1 growth response, constant growth rates from last inventory until harvest) and ‘worst case’ (type 2 growth response, divergent growth rates from last inventory until harvest) scenario. The threshold model was then fitted to the outcomes of both scenarios and the economic consequences of defoliation were clearly dependent on the growth function assumed.  相似文献   

4.
Water stress and fire disturbance can directly impact stand structure, biomass and composition by causing mortality and influencing competitive interactions among trees. However, open eucalypt forests of southwest Australia are highly resilient to fire and drought and may respond differently to increased fire frequency and aridity than forests dominated by non-eucalypt species. We measured the variation in stem density, basal area, stand biomass, sapwood area, leaf area and litterfall across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands along an aridity gradient in southwest Australia that had variable fire histories. Fire frequency was defined as the total number of fires over a ∼30-year period and aridity as the ratio of potential evapotranspiration to annual precipitation. Total stand biomass and sapwood area were predicted from diameter at breast height of individual jarrah and marri trees using allometric equations. Leaf area was estimated using digital cover photography. More arid and frequently burnt stands had higher stem density, especially of smaller trees, which were mainly jarrah. Overall, both standing biomass and leaf area decreased at more arid sites, while sapwood area was largely unaffected by aridity, suggesting that these stands respond to increased water limitation by decreasing their leaf area relative to their sapwood area. Biomass of marri was reduced at more arid and, to a lesser extent, at more frequently burnt stands. However, total stand biomass (jarrah and marri) and leaf area index did not vary with fire frequency, suggesting that less marri biomass (due to slower growth rates, higher mortality or less recruitment) was compensated by an increase in the density of jarrah trees (regeneration). We conclude that increased fire and drought shift tree species composition towards more fire-resistant species and result in denser stands of smaller trees. In contrast, total stand biomass declines with increasing aridity, but has no association with fire frequency.  相似文献   

5.
Eucalyptus plantations occupy almost 20 million ha worldwide and exceed 3.7 million ha in Brazil alone. Improved genetics and silviculture have led to as much as a three-fold increase in productivity in Eucalyptus plantations in Brazil and the large land area occupied by these highly productive ecosystems raises concern over their effect on local water supplies. As part of the Brazil Potential Productivity Project, we measured water use of Eucalyptus grandis × urophylla clones in rainfed and irrigated stands in two plantations differing in productivity. The Aracruz (lower productivity) site is located in the state of Espirito Santo and the Veracel (higher productivity) site in Bahia state. At each plantation, we measured stand water use using homemade sap flow sensors and a calibration curve using the clones and probes we utilized in the study. We also quantified changes in growth, leaf area and water use efficiency (the amount of wood produced per unit of water transpired). Measurements were conducted for 1 year during 2005 at Aracruz and from August through December 2005 at Veracel. Transpiration at both sites was high compared to other studies but annual estimates at Aracruz for the rainfed treatment compared well with a process model calibrated for the Aracruz site (within 10%). Annual water use at Aracruz was 1394 mm in rainfed treatments versus 1779 mm in irrigated treatments and accounted for approximately 67% and 58% of annual precipitation and irrigation inputs respectively. Increased water use in the irrigated stands at Aracruz was associated with higher sapwood area, leaf area index and transpiration per unit leaf area but there was no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency at the Aracruz site was also not influenced by irrigation and was similar to the rainfed treatment. During the period of overlapping measurements, the response to irrigation treatments at the more productive Veracel site was similar to Aracruz. Stand water use at the Veracel site totaled 975 mm and 1102 mm in rainfed and irrigated treatments during the 5-month measurement period respectively. Irrigated stands at Veracel also had higher leaf area with no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency was also unaffected by irrigation at Veracel. Results from this and other studies suggest that improved resource availability does not negatively impact water use efficiency but increased productivity of these plantations is associated with higher water use and should be given consideration during plantation management decision making processes aimed at increasing productivity.  相似文献   

6.
A substantial portion of the carbon (C) fixed by the trees is allocated belowground to ectomycorrhizal (EM) symbionts, but this fraction usually declines after fertilization. The aim of the present study was to estimate the effect of optimal fertilization (including all the necessary nutrients) on the growth of EM fungi in young Norway spruce forests over a three year period. In addition, the amount of carbon sequestered by EM mycelia was estimated using a method based on the difference in δ13C between C3 and C4 plants. Sand-filled ingrowth mesh bags were used to estimate EM growth, and similar bags amended with compost made from maize leaves (a C4 plant) were used to estimate C sequestration. Fertilizers had been applied either every year or every second year since 2002 and the estimates of EM growth started in 2007. The application of fertilizer reduced EM growth to between 0% and 40% of the growth in the control plots at one site (Ebbegärde), while no significant effect was found at the other three sites studied. The effect of the fertilizer was similar in sand-filled and maize-compost-amended mesh bags, but the total production of EM fungi was 3-4 times higher in maize-compost-amended mesh bags. The fertilizer tended to reduce EM growth more when applied every year than when applied every second year. The amount of C sequestered in maize-compost-amended mesh bags collected from unfertilized treatments was estimated to be between 0.2 and 0.7 mg C g sand−1 at Ebbegärde and between 0.2 and 0.5 mg C g sand−1 at Grängshammar. This corresponds to between 300 and 1100 kg C per ha, assuming a similar production in the soil as in the mesh bags. Fertilization at the Ebbegärde site reduced carbon sequestration, which confirmed the results based on estimates of fungal growth (ergosterol levels). A correlation was found between fungal biomass and δ13C in mesh bags amended with maize compost. Based on this, it was estimated that a fungal production of 1 μg ergosterol corresponded to 0.33 mg of sequestered carbon. In conclusion, the effect of the fertilizer on EM growth seemed to be dependent on the effect of the fertilizer on tree growth. Thus, at Ebbegärde, were tree growth was less stimulated by the fertilizer, EM growth was reduced upon fertilization. At other sites, where tree growth was more stimulated, the fertilizer did not influence EM growth. The large amounts of carbon sequestered during the experiment may be a result of fungal residues remaining in the soil after the death of the hyphae.  相似文献   

7.
The purpose of this study was to compare carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests. The study site was located in the lower mountain area of central Taiwan, where both moso bamboo and China fir were rich. In addition, moso bamboo and China fir forests were surveyed on 12 and 19 plantations, respectively. We predicted carbon sequestration based on the allometric model for moso bamboo and China fir forests and compared the relationships between characteristics of bamboo forests and elevation. The results showed that mean diameter at breast height (DBH), culms per hectare and aboveground biomass were not clearly affected by elevation, whereas a negative correlation (R = −0.600, p = 0.039) between mean DBH and stand density was found for moso bamboo forests. Moreover, the aboveground carbon storage was higher for China fir forests than for moso bamboo (99.5 vs. 40.6 Mg ha−1). However, moso bamboo is an uneven-aged stand which is only composed of 1-5-year-old culms, while China fir is an even-aged stand and the age range is from 15 to 54 years, such that, per year, the mean aboveground carbon sequestration is 8.13 ± 2.15 and 3.35 ± 2.02 Mg ha−1 for moso bamboo and China fir, respectively. On the other hand, the mean carbon sequestration of China fir decreases with increasing the age class. Furthermore, the ratio of moso bamboo to China fir is 2.39 and a T-test showed that the aboveground carbon levels were significantly different between these two species; thus, moso bamboo is a species with high potential for carbon sequestration.  相似文献   

8.
The potential benefits of species mixture were investigated using pair-wise comparisons of four timber tree species in northern Viet Nam. Chukrasia tabularis, Canarium album, Michelia mediocris and Eucalyptus urophylla were grown in monocultures and in pair-wise mixtures. The trial was established as a randomized block design with each treatment replicated four times. Volume production gain or loss in mixtures was assessed by calculating a mixture index, which is defined as Relative Yield Total (RYT). At age 48 months, the trial indicated mixed performance with both positive and negative impacts of growing some species in mixtures compared to monocultures. The largest gain was shown in the mixture of a shade-intolerant species, Chukrasia with a more shade-tolerant species, Michelia (47% gain in relative yield), and Eucalyptus with Michelia (45% gain in relative yield) at the first 38 months. The other three mixtures tested, and which were not successful (i.e. had lower relative yields) at 38 months, was the mixture of all shade-intolerant species, including Chukrasia with Canarium, Canarium with Eucalyptus and Chukrasia with Eucalyptus. This suggests that species with different shade tolerances can form complementary pair-wise mixtures, but this changed significantly (P < 0.05) over the following 10 months. At age 48 months the RYT of Chukrasia with Michelia increased by 12%, those of Michelia with Eucalyptus decreased by 20% at 48 months compared to 38 months, suggesting that Eucalyptus should be thinned at around year 5 years. Likewise, the RYT of Michelia with Canarium declined significantly by 23% at 48 months. The RYT of other tested mixtures remained almost unchanged over time.  相似文献   

9.
Forests are key components of the global carbon cycle, with deforestation being an important driver of increased atmospheric carbon dioxide. Temperate old-growth forests have some of the highest above ground stores of carbon of any forest types on Earth. Unlike tropical forests, the ecology of many temperate forests is dominated by episodic disturbance, such as high intensity fire. An exemplar of a particularly carbon dense temperate forest system adapted to infrequent catastrophic fires is the Eucalyptus regnans forests of south eastern Australia. Knowledge of the growth and longevity of old-growth trees is crucial to understanding the carbon balance and fire regimes of these forest systems. In an old-growth E. regnans stand in the Styx Valley in southern Tasmania we used dendrochronological techniques and radiocarbon dating to determine the age and stem growth of E. regnans and Phyllocladus aspleniifolius, an understorey rainforest conifer. Our analysis revealed that an even-aged cohort of E. regnans and P. aspleniifolius established in 1490–1510AD, apparently after a stand-replacing fire. The stem growth rates of E. regnans in the first 100 years were very rapid compared to the co-occurring P. aspleniifolius. That the longevity of E. regnans is >500 years challenges the suggested 350–450 year timeframe proposed for the widely held model of succession from eucalypt to rainforest. These forests not only have the potential to store vast amounts of carbon, but can also maintain these high carbon densities for a long period of time. Estimates of the capacity of these forests to sequester and store carbon should explicitly consider past harvesting and fire regimes and the potential increases in the risk of fire associated with climate change.  相似文献   

10.
We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur,North East India.Estimation of aboveground biomass was determined by harvest method and multiplied with density of tree species.The aboveground biomass was between18.27–21.922 t ha-1and the carbon stock ranged from9.13 to 10.96 t C ha-1across forest stands.Aboveground biomass and carbon stock increased with the increase in tree girth.The rate of carbon sequestration varied from1.4722 to 4.64136 t ha-1year-1among the dominant tree species in forest stands in tropical deciduous forest area.The rate of carbon sequestration depends on species composition,the density of large trees in different girth classes,and anthropogenic disturbances in the present forest ecosystem.Further work is required to identify tree species having the highest potential to sequester CO2 from the atmosphere,which could lead to recommendations for tree plantations in a degraded ecosystem.  相似文献   

11.
We tested the effects of species and spacing of nurse trees on the growth of Hopea odorata, a dipterocarp tree indigenous to Southeast Asia, in a two-storied forest management system in northeast Thailand. Eucalyptus camaldulensis, Acacia auriculiformis, and Senna siamea were planted as nurse trees in 1987 at spacings of 4 m × 8 m, 2 m × 8 m, 4 m × 4 m, and 2 m × 4 m in the Sakaerat Silvicultural Research Station of the Royal Forest Department, Thailand. Seedlings of H. odorata were planted in the nurse tree stands at a uniform spacing of 4 m × 4 m and in control plots (no nurse trees) in 1990. Stem numbers of some nurse trees were thinned by half in 1994. The stem diameter and height of all trees were measured annually until 1995 and again in 2007. The mean annual increment (MAI) in volume was estimated as 8.2–10.1 m3 ha−1 year−1 for E. camaldulensis and 0.9–1.2 m3 ha−1 year−1 for S. siamea, smaller than reported elsewhere. This suggests that the site properties were not suitable for them. The MAI of A. auriculiformis was 7.9–9.8 m3 ha−1 year−1, within the reported range. Survival rates of H. odorata in the S. siamea stands and the control plots decreased rapidly during the first 2 years but then stayed constant from 1992. In contrast, survival rates of H. odorata in the E. camaldulensis and A. auriculiformis stands were initially high (>70%), but then decreased after 1995. Stem diameter, tree height, and stand basal area of H. odorata were large in both the S. siamea stands and the control plots from then. The growth of H. odorata was largest in the 2 m × 8 m S. siamea stands. In contrast, it was restricted in the E. camaldulensis and A. auriculiformis stands owing to strong shading by their canopies. Thinning by 50% tended to facilitate the growth of H. odorata temporarily in the E. camaldulensis and A. auriculiformis stands. The stand basal areas of nurse trees and of H. odorata showed a trade-off. These results suggest that the growth of H. odorata was maximized in the S. siamea stands. We assume, however, that the growth of H. odorata could be improved even in the E. camaldulensis and A. auriculiformis stands by frequent or heavy thinning.  相似文献   

12.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

13.
Cultivation of rubber trees on non-forested land could act as a carbon sink by sequestering carbon in biomass and indirectly in soils. International political and economical interests, following the Kyoto Protocol, require estimates of this carbon sequestration.  相似文献   

14.
The aim of this study was to investigate antioxidant capacity of nine Fabaceae species collected on the mountains of Serbia and Montenegro. Antioxidant assays with various reaction mechanisms were used, including total phenolic content by Folin-Ciocalteu, DPPH radical scavenging capacity, Trolox equivalent antioxidant capacity (TEAC) values by ABTS radical cation and inhibition of liposome peroxidation. The investigated plants exhibited strong antioxidant capacity in all the tested methods, and among them, Lathyrus binatus, Trifolium pannonicum, and Anthyllis aurea were found to be the most active.  相似文献   

15.
Carbon (C) sequestration was studied in managed boreal forest stands and in wood products under current and changing climate in Finland. The C flows were simulated with a gap-type forest model interfaced with a wood product model. Sites in the simulations represented medium fertile southern and northern Finland sites, and stands were pure Scots pine and Norway spruce stands or mixtures of silver and pubescent birch.

Changing climate increased C sequestration clearly in northern Finland, but in southern Finland sequestration even decreased. Temperature is currently the major factor limiting tree growth in northern Finland. In southern Finland, the total average C balance over the 150 year period increased slightly in Scots pine stands and wood products, from 0.78 Mg C ha−1 per year to 0.84 Mg C ha−1 per year, while in birch stands and wood products the increase was larger, from 0.64 Mg C ha−1 per year to 0.92 Mg C ha−1 per year. In Norway spruce stands and wood products, the total average balance decreased substantially, from 0.96 Mg C ha−1 per year to 0.32 Mg C ha−1 per year. In northern Finland, the total average C balance of the 150 year period increased under changing climate, regardless of tree species: in Scots pine stands and wood products from 1.10 Mg C ha−1 per year to 1.42 Mg C ha−1 per year, in Norway spruce stands and wood products from 0.69 Mg C ha−1 per year to 0.99 Mg C ha−1 per year, and in birch stands and wood products from 0.43 Mg C ha−1 per year to 0.60 Mg C ha−1 per year.

C sequestration in unmanaged stands was larger than in managed systems, regardless of climate. However, wood products should be included in C sequestration assessments since 12–55% of the total 45–214 Mg C ha−1 after 150 years' simulation was in products, depending on tree species, climate and location. The largest C flow from managed system back into the atmosphere was from litter, 36–47% of the total flow, from vegetation 22–32%, from soil organic matter 25–30%. Emissions from the production process and burning of discarded products were 1–6% of the total flow, and emissions from landfills less than 1%.  相似文献   


16.
Buruk K  Sokmen A  Aydin F  Erturk M 《Fitoterapia》2006,77(5):388-391
The Eastern Black Sea Region has an extensive flora because of ample rainfall lasting all year. In this study, antimicrobial effects of 74 crude extracts of 22 endemic plants were investigated. Among the 30 active crude extracts, water-insoluble crude extracts from Betula medwediewii, Heracleum platytaenium, Primula longipes, Anthemis cretica ssp. argaea and Centaurea helenioides were the prominent ones with their MIC values.  相似文献   

17.
Terrestrial carbon dynamics have been vastly modified because of changes in atmospheric composition, climate, and land-use. However, few studies provide a complete analysis of the factors and interactions that affect carbon dynamics over a large landscape. This study examines how changes in atmospheric composition (CO2, O3 and N deposition), climate and land-use affected carbon dynamics and sequestration in Mid-Atlantic temperate forests during the 20th century. We modified and applied the PnET-CN model, a well established process-based ecosystem model with a strong foundation of ecosystem knowledge from experimental studies. We validated the model results using the U.S. Forest Inventory and Analysis (FIA) data. Our results suggest that chronic changes in atmospheric chemistry over the past century markedly affected carbon dynamics and sequestration in Mid-Atlantic temperate forests, while climate change only had a minor impact although inter-annual climatic variability had a far more substantial effect. The NPP response to a century of chronic change in atmospheric composition at the regional scale was an increase of 29%, of which, 14% was from elevated CO2, 17% from N deposition, 6% from the interaction between CO2 and N deposition, and minus 8% from tropospheric ozone. Climate change increased NPP by only 4%. Disturbed forests had 6% lower NPP than undisturbed forests after seven decades. Regrowing forests after harvesting and natural disturbances had much greater capacity for sequestering carbon than undisturbed old-growth forests even though the newer forests had slightly lower net primary production (NPP). The modeling results indicated that N deposition was a stronger force than elevated CO2 for increasing NPP and fast turnover tissues, while elevated CO2 favored more sustainable carbon storage and sequestration. The model results are consistent with various experiments and observations and demonstrate a powerful approach to integrate and expand our knowledge of complex interactive effects of multiple environmental changes on forest carbon dynamics.  相似文献   

18.
Voles and shrews are key species in northern forest ecosystems. Thus, it is important to quantify to what extent new forestry practices such as planting of non-native tree species impact these small mammals. In northern Norway stands of coastal subarctic birch forests have increasingly been converted to non-native spruce stands during the last century. This leads to changes in the forest floor vegetation and soil conditions that can be expected to negatively impact the community of ground-dwelling small mammals. In this 10-year trapping study we contrasted seasonal small mammal population abundances in spruce plantations with four birch forest varieties. Six different small mammal species were trapped (in descending order of abundance; common shrew Sorex araneus, red vole Myodes rutilus, field vole Microtus agrestis, grey-sided vole M. rufocanus, pygmy shrew S. minutus and water shrew Neomys fodiens). None of the voles appeared to exhibit temporal dynamics resembling population cycles. The three most numerous species were clearly less abundant in the spruce plantations compared to the other forest types. Autumn abundances were most impacted by spruce plantations, indicating that growth rates in the reproductive season were more influenced than winter declines. Species associated with productive forest habitats (i.e. field vole and common shrew) were most impacted by tree species conversion. Still young spruce plantations inter-mixed with birch trees and the ecotone habitat, sustained small mammal abundances comparable to the native birch forests. This implies that managing spruce plantations to maintain a mix of different tree species and high spatial heterogeneity (i.e. more ecotones), will reduce the negative impacts on the small mammal community. On the contrary, if young spruce plantations, as they age become spruce monocultures covering larger parts of the landscapes than they do presently, the negative effects on small mammal communities may be larger than observed in the present study.  相似文献   

19.
Jovanovic  Tom  Arnold  Roger  Booth  Tevor 《New Forests》2000,19(3):215-226
Climatic conditions within the naturaldistribution of Eucalyptus dunnii were determinedusing interpolated relationships developed forAustralia. Climatic interpolation relationships forAfrica, Central and South America and China as well asAustralia were then used to examine locations where E.dunnii has been successfully grown in trials and todetermine the species' climatic adaptability outsideits natural range. The original climatic profile wasrevised and maps were produced to show climaticallysuitable regions in Australia, China and Central andSouth America.  相似文献   

20.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号