首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

2.
Stem form is often used as a sawlog assortment criterion and has an important effect on lumber recovery and mechanical properties. Based on 7018 stems collected from the natural stands in 3 regions in eastern Canada, this study quantified the variations in stem form (taper, sweep and eccentricity) for five major commercial softwood species, viz., jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana), white spruce (Picea glauca), red spruce (Picea rubens) and balsam fir (Abies balsamea). The majority of the stems had a diameter at breast height (DBH) ranging from 10 to 32 cm and total tree height from 10 to 20 m. Stem taper and butt taper increased steadily from 0.38 to 1.75 cm/m and from 0.74 to 4.23 cm/m, respectively, with DBH increasing from 8 to 48 cm. Stem sweep and basal sweep ranged from 0.12 to 7.28 cm/m and from 0.12 to 9.85 cm/m, respectively, with mean values of 0.87 and 0.95 cm/m. There were no significant differences in stem sweep and basal sweep between DBH classes and both sweeps distributed over a wide range within DBH classes, species and regions. About 0.77% of the stems and 1.2% of the butt logs had seriously curved shapes (sweep >3.0 cm/m). Eccentricity (ratio of smaller diameter to larger diameter) at the breast height (0.96) was very close to 1. Balsam fir and jack pine had the best and worst stem forms, respectively, while stem forms in black spruce were in-between. Butt logs were most seriously curved in red spruce and most tapered in white spruce. Region C (mainly eastern Quebec and the Atlantic Provinces) produced stems with smaller butt taper, basal sweep and stem sweep and larger eccentricity compared with other regions in eastern Canada. Overall stems in eastern Canada have a good stem form in terms of taper, sweep and eccentricity. The evaluation of stem form provides valuable timber quality information for the wood industry to optimize wood processing as well as for forest managers to define appropriate silvicultural regimes to improve stem form and economic value.  相似文献   

3.
Individual-tree distance independent diameter growth models were developed for black spruce and jack pine plantations. Data used in this study came via stem analysis on 1170 black spruce (Picea mariana [Mill.] B.S.P.) and 800 jack pine (Pinus banksiana Lamb.) trees sampled from 75 stands of 25 even-aged monospecific plantations for each species in the Canadian boreal forest region of northern Ontario. Of the 75 stands, 50 were randomly selected for each species and all trees from these stands were used for model development. Trees from the remaining stands were used for model evaluation.A nonlinear mixed-effects approach was applied in fitting the diameter growth models. The predictive accuracy of the models was improved by including random effects coefficients. Four selection criteria - random, dominant or codominant, tree size close to quadratic mean diameter, and small sized - were evaluated for accuracy in predicting random effects for a new stand using the developed models. Random effects predicted based on trees selected using the random selection criterion provided more accurate diameter predictions than those using trees obtained via other selection criteria for both species. The models developed here are very important to forest managers as the diameters predicted by these models or, their stand-level summaries (i.e., basal area, average diameter), are used as inputs in any forest growth and yield models. In addition, individual-tree diameter growth models can be used to directly forecast changes in diameter distribution of stands.  相似文献   

4.
In this work, empirical ring-based models were developed to predict the distribution of early wood percentage, wood density and fibre length along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. The performance of the ring-based models was also compared for Scots pine and Norway spruce with corresponding disc-based (cross-sectional) models. Moreover, both models were integrated with example simulations by a process-based growth and yield model to analyze how management, such as thinning, affects the growth and wood properties of Scots pine trees over a rotation as an average for the tree stem, but also along the stem.The ring-based models built for annual early wood percentage (explained by ring width), air dry wood density (explained by early wood percentage and cambial age) and fibre length (explained by radial growth percentage and cambial age) predicted reasonably well the wood properties both at an intra-ring level, but also at a cross-sectional level. These predictions were also reasonably well in line with corresponding cross-sectional predictions by the disc-based models (which predicted the properties based on the number of annual rings and diameter at breast height and/or the cross-section being considered and temperature sum). The example simulations also demonstrated that both models predicted slightly lower wood density for dominant trees compared to dominated ones grown in thinned and unthinned Scots pine stands over a rotation. Unlike the disc-based model, the ring-based model predicted, on average, higher early wood percentage in dominant trees than in dominated ones. However, fibre length was not significantly affected when the averages of the whole stems were predicted, and this held true for both ring- and disc-based models.In summary, the incorporation of empirical ring-based wood property models into a process-based growth and yield model, offers a means to study in detail how environmental conditions, forest structure and management affect the quantity and properties of stem wood produced over a rotation. The disc-based wood property models used in this work are based on data with large geographical and genetic variation, and therefore may turn out to be more applicable for predicting future wood and fibre resources at a regional and national level. This kind of integrated use of wood property models with a process-based growth and yield model could help us to evaluate the forest resources under current and changing climate.  相似文献   

5.
LOW  ALAN J. 《Forestry》1964,37(2):179-201
The incidence of compression wood was studied in 24–40-year-oldScots pine plantations. It was found that compression wood distributionin trees depended on type of stem curvature and was associatedwith their attempts to correct stem inclination. Compressionwood volume percentage was not closely related to extent ofstem curvature but was highly correlated with compression woodpercentage in the tree at breast height or 10 feet. There wassignificantly less compression wood near the butt than at higherlevels. In stands examined, compression wood formed 20–40per cent, of the standing volume. The prevailing wind appearedlargely responsible for the initial development of stem inclinationand consequent compression wood formation. Provision of shelterduring establishment should reduce compression wood developmentin second rotation crops.  相似文献   

6.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

7.
In the province of Québec, Canada, the majority of planted jack pine (Pinus banksiana Lamb.) seedlings are produced in rigid wall containers. More than 95% of them exhibit deformations of the root system which may induce stem instability. Studies of the root architecture of planted jack pine have been limited to a 30 cm radius from the stem, as barely any studies have been devoted to naturally regenerated stands. Moreover, only a few researches have focused on temporal evolution of root systems. The aim of the present study was to characterize the architectural, spatial, and temporal development of jack pine roots in natural and planted stands. Study sites were located in the continuous boreal forest of Quebec. The plantation was done in 1987, so that the trees were 15 years old at the time of sampling. Trees from natural stand had regenerated after a fire in 1983 and were 13–16 years old. The root systems of 14 jack pine trees per site were manually excavated up to a <5 mm diameter, without regard to their distance from the stem. The number, length, diameter, and the spatial and temporal development of roots were analyzed according to three scales of root architecture: the root system, axes, and segments. Overall, the numbers and lengths of roots were higher with planted pines. However, naturally regenerated trees displayed a better distribution of their roots around the stem and at depth, combined with more rapid length growth during the first years. In natural stands, all the trees had a taproot and 30% of the main roots originated at a depth of more than 20 cm, and they are regularly distributed around the stems. Planted trees did not present a taproot and 97% of the main roots originated in the first 20 cm beneath the soil surface. Moreover, 50% of root length was located in one-third of the area surrounding the stems, an area that corresponded to the furrow. Finally, the annual development of lateral roots in planted stand displayed a 5-year delay when compared with natural stand, which also affected maximum growth length and development of the branching pattern. Root distribution and temporal development are known to play a major role in the stability of aerial parts. Seedling production methods, container type, site preparation and planting techniques need to be examined in greater detail in order to assess their effect throughout the development of the root system. It is necessary to compare different sylvicultural practices and with natural/planted stands to gain a clearer understanding of this problem.  相似文献   

8.

Rate of growth and wood properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) were investigated in triplet mixtures with lodgepole pine (Pinus contorta Loud.) (Alaskan provenance) and Japanese larch (Larix kaempferi (Lamb.) Carr.), established on nitrogen-deficient, iron pan soils. These ?nursing? mixtures were compared with pure stands of Sitka spruce that had been either regularly or periodically fertilized with nitrogen. Japanese larch promoted a growth rate in Sitka spruce greater than that achieved in the lodgepole pine-nursed spruce and equivalent to the two pure spruce treatments over the duration of the experiment (current age 28 yrs). Growth of regularly fertilized pure Sitka spruce was not significantly greater than that of periodically fertilized pure spruce. Alaskan lodgepole pine controlled branch size on the lower part of the spruce stems more effectively than the other treatments, although this may have been a function of tree size. Branch characteristics of Japanese larch-nursed spruce, however, were similar to those of the pure spruce treatments. Japanese larch caused an imbalance in crown development in the spruce, although it is unclear from the present study whether this will have an influence on stem and wood quality by the end of the rotation. Overall, the evidence from this study suggests that Japanese larch is an effective nurse of Sitka spruce on nitrogen-deficient iron pans, maintaining a rate of growth similar to that of pure Sitka spruce periodically fertilized with nitrogen and higher than that observed in spruce nursed by Alaskan lodgepole pine.  相似文献   

9.
Although partial cross sections from live trees have been utilized in the development of fire history studies, few efforts have been made to examine the effects of this method on the individual trees that were sampled. We examined 115 red pine (Pinus resinosa Ait.), eastern white pine (Pinus strobus L.), and jack pine (Pinus banksiana Lamb.) trees from which partial cross sections had been removed 2 years earlier, and 209 similarly sized neighboring red pine and eastern white pine trees. Two years following the removal of partial cross sections, 22 sampled trees (19%) had died. When compared with neighboring trees, removing a partial cross section did not appear to increase the mortality rate for a given tree (t-test; P = 0.150). However, when we compared the characteristics of the trees with partial cross sections removed, we did observe some trends; i.e., those trees that died were primarily killed by wind-induced breakage at the level of the partial cross section. Almost all stems where partial cross sections were collected from a catface edge or had >30% of the total area removed were more susceptible to stem breakage and experienced an increased likelihood of mortality. While these results suggest that the collection of partial cross sections from live trees may be an effective method for fire-history sampling, the negative impacts of the sampling on individual trees may be reduced by ensuring that samples are collected from the center, rather than the catface edge, and <25% of the total stem area is removed.  相似文献   

10.
One-year old seedlings of trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.) were subject to seven soil temperatures (5, 10, 15, 20, 25, 30 and 35 °C) for 4 months. All aspen seedlings, about 40% of jack pine, 20% of white spruce and black spruce survived the 35 °C treatment. The seedlings were harvested at the end of the fourth month to determine biomass and biomass allocation. It was found that soil temperature, species and interactions between soil temperature and species significantly affected root biomass, foliage biomass, stem biomass and total mass of the seedling. The relationship between biomass and soil temperature was modeled using third-order polynomials. The model showed that the optimum soil temperature for total biomass was 22.4, 19.4, 16.0 and 13.7 °C, respectively, for jack pine, aspen, black spruce and white spruce. The optimum soil temperature was higher for leaf than for root in jack pine, aspen and black spruce, but the trend was the opposite for white spruce. Among the species, aspen was the most sensitive to soil temperature: the maximum total biomass for aspen was about 7 times of the minimum value while the corresponding values were only 2.2, 2.4 and 2.3 times, respectively, for black spruce, jack pine and white spruce. Soil temperature did not significantly affect the shoot/root (S/R) ratio, root mass ratio (RMR), leaf mass ratio (LMR), or stem mass ratio (SMR) (P>0.05) with the exception of black spruce which had much higher S/R ratios at low (5 °C) and high (30 °C) soil temperatures. There were significant differences between species in all the above ratios (P<0.05). Aspen and white spruce had the smallest S/R ratio but highest RMR while black spruce had the highest S/R but lowest RMR. Jack pine had the highest LMR but lowest SMR while aspen had the smallest LMR but highest SMR. Both LMR and SMR were significantly higher for black spruce than for white spruce.  相似文献   

11.
本文研究了多重复干旱循环对1年生北美短叶松(PinusbanksianaLamb.)和黑云杉(Piceamariana[Mil]B.S.D.)苗木的气体交换速率及水分利用效率的影响。结果表面,多重干旱循环对它们的气体交换(Cs,Pn,Tr)有显著影响(P<0.5),而对其水分利用效率(WUE)影响不大(P>0.1)。尽管北美短叶松的气孔对轻度干旱胁迫不如黑云杉敏感,但是它对中度及严重干旱胁迫的敏感程度却高于黑云杉。在轻度及中度干旱胁迫下,北美短叶松的光合作用主要受非气孔因素的影响,而黑云杉则主要受气孔因素的影响。解除干旱胁迫后,黑云杉的气孔敏感性、光合能力及水分利用效率的恢复都要比北美短叶松更快.我们认为,延迟脱水是北美短叶松的主要耐旱机理,而忍耐脱水则是黑云杉重要的耐旱途径。轻度的干旱胁迫锻炼可以帮助北美短叶松在更严重的干旱胁迫下保持固有而较强的耐旱能力。然而,通过多重复干旱循环锻炼后黑云杉在改善耐旱能力的强度方面则大于北美短叶松  相似文献   

12.
North American jack pine (Pinus banksiana Lamb.) stands are generally characterized by an even-aged structure resulting from high intensity fires (HIF). However, non-lethal fires of moderate intensity (MIF), which leave behind surviving trees, have also been reported. The objectives of this study were two-fold: (1) assess the concurrent dynamics of live trees, understory vegetation and different types of coarse woody debris (CWD) during succession after HIF; and (2) document how MIF affects stand structure component dynamics compared to HIF. Stands affected by both HIF and MIF were selected. Tree characteristics and age structure, understory biomass, and CWD volume were assessed. Our results suggest that the structural succession of jack pine stands following HIF comprises three stages: young stands (<48 years), premature and mature stands (58–100 years) and old stands (>118 years). Canopy openness and jack pine density significantly decreased with time since HIF, while black spruce density and CWD volume significantly increased. The highest structural diversity was measured in the premature and mature stands. Compared to HIF, MIF increased mean jack pine basal area, decreased average stand density, delayed the replacement of jack pine by black spruce replacement in the canopy, decreased CWD volume, and significantly increased bryophytes mass. MIF increased the diversity of live trees and generally decreased CWD structural diversity. The study confirms the diversity of natural disturbance magnitude and successional processes thereby initiated. Thereafter, it appeared to be relevant for adjustment of disturbance emulating forest-management systems.  相似文献   

13.
For estimating the amount of carbon (C) in dead wood, conversion factors from raw volume per decay class to dry weight were developed using three different classification systems for the species Norway spruce (Picea abies L. Karst), Scots pine (Pinus sylvestris L.) and birch (Betula pendula Roth and B. pubescens Ehrh) in Sweden. Also the C concentration in dead wood (dry weight) was studied. About 2500 discs were collected from logs in managed forests located on 289 temporary National Forest Inventory (NFI) sample plots and in 11 strips located in preserved forests. The conversion factors were based on an extensive data compilation with a wide representation of different site-, stand-, species- and dead wood properties and were assumed to represent the population of fallen dead wood in Sweden. The density decreased significantly by decay class and the range in density for decay classes was widest for the NFI decay classification system, suggesting this to be the most suitable. The C concentration in dead wood biomass increased with increasing decay class and in average Norway spruce (P. abies) showed a lower C concentration than Scots pine (P. sylvestris). The average dead wood C store of Swedish forests was estimated to 0.85 Mg C/ha.  相似文献   

14.
This study considered the effects of thinning on the development of compression wood in stems of 35-year-old stand of Corsican pine (Pinus nigra L.). Part of the stand had been thinned at 5-yearly intervals and part left unthinned. Twenty trees each from the thinned and unthinned stands were randomly selected and felled. Measurements were made on tree height, stem diameter, stem slenderness and canopy depth. Wood samples were removed from the central part of the main log and cross-sectional measurements made on ring width, basic density and compression wood content. Cross-sectional area of compression wood was found to be three time higher in stems from the unthinned trees in comparison with those from the thinned trees. No significant differences in mean radial ring width or basic density were found between treatments. Correlations indicated that, with increasing in stem diameter, compression wood content increased in the unthinned trees, while a decline in compression was observed in the thinned trees. Tree height was also positively correlated with compression wood content in unthinned trees, while no equivalent relationship was observed in thinned trees. Observations from this study, while not conclusive, suggest that phototropic stimulus may be producing stem inclinations in the unthinned stand as trees compete for space in the canopy, whereas crown competition has been largely eliminated in the thinned stand; and that this is responsible for compression wood levels recorded in this study.  相似文献   

15.
Forest managers are increasingly required to enhance the productivity and profitability of plantation management while simultaneously reducing the negative ecological effects associated with forest operations. NuBalM (from Nutrient Balance Model) is presented here as a decision support tool that has the potential to assist forest managers in meeting these requirements in Pinus radiata D. Don (radiata pine) plantations. NuBalM incorporates nutrient dynamics and allocation into projections of growth, allowing management techniques to be optimised for productivity and nutrient pool retention over single or multiple rotations.NuBalM was developed using data from biomass, nutrient allocation and soil nutrient dynamics studies conducted in New Zealand radiata pine plantations. The capability of NuBalM to predict stem wood mass based on nitrogen supply and demand was tested against data from multiple trial sites established to examine the effects of variations in stocking, thinning and fertilization regimes. NuBalM satisfactorily predicted stem wood masses across a range of stand ages, with the exception of a trial examining ultra-high applications of nitrogen fertilizer. With the exclusion of the data from this trial, the predicted stem wood masses underestimated the observed figures by a mean value of 1.1 ± 1.0 t ha−1 (95% CI, n = 92).The utility of NuBalM as a tool to predict biomass allocation in radiata pine and nitrogen pools in the forest floor and soil was assessed using comprehensive biomass, nutritional and site data collected from two radiata pine trial sites subjected to differences in organic matter removal at site establishment. NuBalM performed acceptably, generating accurate estimates of stem mass (mean overestimate of 5.5 ± 7.4 t ha−1, 95% CI, n = 6) and total above ground biomass (mean overestimate of 3.1 ± 9.6 t ha−1, 95% CI, n = 6). The effects of organic matter removal and fertilization on total nitrogen pools were also predicted with a reasonable degree of accuracy (mean overestimate of 52 ± 53 kg N ha−1, 95% CI, n = 9).From these results we conclude that NuBalM can be utilised to provide projections of productivity and nitrogen pools in radiata pine plantations, and enables the effects of various management practices to be predicted with a reasonable degree of confidence.  相似文献   

16.
In the year 2000, large areas of forest in Sweden, mainly 30-50 year old Pinus sylvestris (L.) stands, were attacked by the fungus Gremmeniella abietina (Lagerb.) Morelet. The aims of this study were to investigate: (i) the relationship between G. abietina-induced tree crown transparency (CT) and P. sylvestris (L.) tree mortality; (ii) the influence of CT levels on stem growth; (iii) the recovery of the crown; and (iv) the association of CT and colonization by Tomicus piniperda (L.). Thirty-five permanent sample plots were established in five P. sylvestris stands (38-46 years old), infested by G. abietina, and 23 plots in four reference stands, not obviously infested.During the 5 years following the attack, the total mortality amounted to 454 trees ha−1 and 7.8 m2 ha−1, on average, in the five infested stands, corresponding to 42% of the trees and 34% of the basal area at the time of the attack. Most of the mortality occurred within 2 years of the attack. The mortality of individual trees (2002-2005) was found to be related to the crown transparency (CT), the position of needle loss within the crown and the tree diameter at breast height. Based on our modeling, the probability of mortality was substantially increased if the initial CT-value was higher than 85%.Growth reductions were detected for individual trees with an initial CT of >c. 40%. In contrast, trees with a low initial CT (<c. 40%) were not affected and even exhibited increased growth. In the five infested stands, the reductions in basal area and volume increment were estimated to be 26-58%, and, 42-73%, respectively, during the five growing seasons after the attacks.The trees in the infested stands that were still alive in spring 2005 had started to recover in terms of CT. Breeding of T. piniperda on the P. sylvestris (L.) stems occurred almost exclusively on stems with a CT > 90%.The data from this study suggest that when a P. sylvestris (L.) stand has been attacked by G. abietina, trees with a CT above 80% should be felled; the remaining trees will have a high probability of survival and resistance to successful breeding by the T. piniperda.  相似文献   

17.
The number of fertile and infertile scales, filled and empty seeds, cone volume, seed efficiency and the incidence of insect and disease damage to seed were evaluated for seven jack pine (Pinus banksiana Lamb) and six black spruce (Picea mariana [Mill.] B.S.P.) seedling seed orchards in northern Ontario, Canada. On average, the seed potential of jack pine and black spruce cones was 50 and 82 seeds, respectively. Cone volume and the number of fertile scales were under strong genetic control and well correlated with one another for both species. Seed efficiency values were high for jack pine (60%) but poor for black spruce (24%). The incidence of seed insect damage was less than 2.5% for both species and nil for seed diseases.  相似文献   

18.
We used an isotopic approach to evaluate the effects of three afforestation methods on the ecophysiology of an Aleppo pine plantation in semiarid Spain. The site preparation methods tested were excavation of planting holes (H), subsoiling (S), and subsoiling with addition of urban solid refuse to soil (S + USR). Five years after plantation establishment, trees in the S + USR treatment were over three times larger than those in the S treatment, and nearly five-fold larger than those planted in holes. Differences in tree biomass per hectare were even greater due to disparities in initial planting density and pine tree mortality among treatments. Pine trees in the S + USR treatment showed higher foliar P concentration, δ13C and δ15N than those in the S or H treatments. Foliar δ15N data proved that trees in the S + USR treatment utilized USR as a source of nitrogen. Foliar δ13C and δ18O data suggest that improved nutrient status differentially stimulated photosynthesis over stomatal conductance in the pine trees of the S + USR treatment, thus enhancing water use efficiency and growth. In the spring of 2002, trees in the S + USR treatment exhibited the most negative predawn water potentials of all the treatments, indicating that the rapid early growth induced by USR accelerated the onset of intense intra-specific competition for water. The results of this study have implications for the establishment and management of Aleppo pine plantations on semiarid soils. Planting seedlings at low density and/or early thinning of pine stands are strongly recommended if fast tree growth is to be maintained beyond the first few years after USR addition to soil. Foliar C, O and N isotope measurements can provide much insight into how resource acquisition by trees is affected by afforestation techniques in pine plantations under dry climatic conditions.  相似文献   

19.
Tolerance of bareroot and container-grown seedlings of black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), and eastern white pine (Pinus strobus L.) to competition from herbaceous vegetation was examined in the first five years after planting on a site in the Great Lakes/St. Lawrence forest of Ontario, Canada. Shoot and root morphological characteristics of various stocktypes were measured before planting and correlated with 5-year survival and growth following control and no control of herbaceous vegetation. For black spruce and jack pine, medium-sized bareroot stocktypes had greater relative 5-year stem volume growth in the presence of herbaceous vegetation than did container stock of either species or large bareroot stock of spruce. Relative volume growth was measured as the ratio of the cumulative stem volume increment in the presence of vegetation (Veg) to that in the absence of vegetation (NoVeg), i.e., the Veg:NoVeg ratio. In white pine, the Veg:NoVeg ratio of volume increment of medium container and large bareroot stocktypes exceeded that of small container and medium bareroot stocktypes. In jack pine, root collar diameter at planting and number of first-order lateral roots were positively correlated with 5-year Veg:NoVeg ratio of volume increment. In white pine, the Veg:NoVeg ratio was also positively correlated with root collar diameter at planting and with root volume. In black spruce, the ratio was not related to pre-plant morphology. Thus, for white pine and jack pine, certain pre-plant morphological features may be useful in forecasting the relative ability of different stocktypes to grow under herbaceous competition conditions in the field.  相似文献   

20.
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomass functions (BFs) and biomass expansion factors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号