首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Forests in the Ozark Mountains of northern Arkansas recently experienced a widespread oak decline event. Armillaria, a root rot fungus, has been associated with other oak decline events and may have been an important contributing factor to tree mortality in this event. Although Armillaria has been identified from the Ozark Mountains in Missouri, it has never been investigated in the Arkansas Ozarks. Molecular diagnostic techniques were used in this study to identify species of Armillaria present on roots removed from dead trees of two common oak species, northern red oak, Quercus rubra L., and white oak, Q. alba L., from three geographic areas and on three topographic positions – ridges, south‐ and west‐facing benches. Armillaria(A. mellea, A. gallica or A. tabescens) was identified from 31% of root samples taken from 102 trees in seven of nine sample plots. Armillaria mellea, occurred most often (20 samples, both oak species on seven plots) followed by A. gallica (10 samples, northern red oak only on four plots), and A. tabescens occurred twice (on northern red oak in a single plot). Thus, all three Armillaria species occurred on northern red oaks while A. mellea was the only species recovered from white oaks. Results varied by topographic position with samples from tree roots on ridges having the fewest positive identifications, one of 29. West‐facing benches had the highest positive samples with 20 of 41 testing positive and trees on south‐facing benches were intermediate with 11 of 32 samples from infected trees. This study documents the occurrence of three species of Armillaria in the Arkansas Ozarks and their association with oak mortality resulting from an oak decline event coupled with a red oak borer, Enaphalodes rufulus, outbreak. Further, it documents some potential variation in host/pathogen combinations and forest site conditions.  相似文献   

2.
Many oak decline events have been reported within the past century in the eastern U.S., and important causal factors often differ among them. Coincident with a recent decline event in upland oak-dominant forests of Arkansas, Missouri, and Oklahoma was an unexpected outbreak of a native cerambycid beetle, Enaphalodes rufulus (Haldeman), the red oak borer. A large range in estimates of oak mortality throughout affected forests was presumably due to variation in species composition, where oak-dominant areas experienced the greatest mortality. We chose eight sites across the Ozark and Ouachita National Forests of Arkansas, similar both topographically and by oak dominance, to determine if other stand or tree characteristics were important factors in variation of E. rufulus infestations across these forests. At each site, we sampled ∼125 dead, declining or healthy host Quercus rubra L., northern red oak. We created an estimate of the E. rufulus population level at each site during the recent outbreak using counts of dated larval gallery scars within a subset (n = 120) of all Q. rubra sampled (n = 976). We used classification tree partitioning to determine host tree characteristics that differed among dead, declining, and healthy Q. rubra. We also used classification tree partitioning, followed by logistic regression to determine stand characteristics that varied significantly among high, moderate and low infestation stands as well as between forests. Models indicated that trees which died were smallest, grew the least during the borer outbreak, and were apparently suppressed. These dying trees were likely poor competitors for resources, allowing neighboring survivors to experience a growth release during the E. rufulus outbreak. Larval survivorship was higher in trees which died, though larval densities were not greatest within these trees, which suggests that resistance in these individuals was compromised. At the stand level, differences between forests were apparently more important than those due to borer infestation. E. rufulus populations were higher at sites with lower Q. rubra basal area. This reduced basal area was likely a result of greater Q. rubra mortality at these sites during the borer outbreak in the early 2000s.  相似文献   

3.
Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica) form mixed-evergreen forests along the northern California coast. This study measured tree mortality over a gradient of disease in three time periods. Direct measurements of current mortality were taken during 2004, representing a point-in-time estimate of present and ongoing mortality. Past stand conditions, c. 1994, were estimated using a stand reconstruction technique. Future stand conditions, c. 2014, were calculated by assuming that, given a lack of host resistance, live trees showing signs of the disease in 2004 would die. Results indicate that coast live oaks died at a rate of 4.4–5.5% year−1 between 1994 and 2004 in highly impacted sites, compared with a background rate of 0.49% year−1, a ten-fold increase in mortality. From 2004 to 2014, mortality rates in the same sites were 0.8–2.6% year−1. Over the entire period, in highly impacted sites, a 59–70% loss of coast live oak basal area was predicted, and coast live oak decreased from 60% to 40% of total stand basal area, while bay laurel increased from 22% to 37%. Future stand structures will likely have greater proportions of bay laurel relative to coast live oak.  相似文献   

4.
Studies within and outside the U.S. indicate recurring oak (Quercus spp.) regeneration problems. In deciduous forests of the eastern U.S., a prevailing explanation for this trend is fire suppression leading to high competitor abundance and low understory light. In response, prescribed fire is increasingly used as a management tool to remedy these conditions and encourage future oak establishment and growth. Within eastern Kentucky, we implemented single and repeated (3×) prescribed fires over a 6-yr period (2002–2007). Pre- and post-burn, we quantified canopy cover and oak seedling survival and growth compared to other woody seedlings deemed potential competitors, primarily red maple (Acer rubrum L.) and sassafras (Sassafras albidum (Nutt.) Nees.). Burning temporarily decreased canopy cover 3–10%, but cover rebounded the subsequent growing season. Repeated burning ultimately produced canopy cover about 6% lower than sites unburned and burned once, suggesting a cumulative effect on understory light. Red maple exhibited low survival (∼40%) following single and repeated burns, but growth remained similar to unburned seedlings. Burning had little impact on sassafras survival and led to total height and basal diameters 2× greater than unburned seedlings. A single burn had no impact on red oak (Erythrobalanus spp.) survival and increased height and basal diameters 25–30%, but this positive growth response was driven by seedlings on several plots which experienced high burn temperatures and consequently high overstory mortality. White oaks (Leucobalanus spp.), however, exhibited twice as high mortality compared to those unburned, with no change in growth parameters. Repeated burning negatively impacted survival and growth of both oak groups compared to unburned seedlings. With both burn regimes, oaks with smaller pre-burn basal diameters exhibited the lowest post-burn survival. Thus, despite the ability of prescribed burns to temporarily increase understory light and reduce red maple survival, neither single or repeated burns placed oaks in an improved competitive position. These findings result from a combination of highly variable yet interdependent factors including the (1) life history traits of oaks compared to their co-occurring competitors, (2) pre-burn stature of pre-existing oak seedlings, and (3) variability in fire temperature and effects on understory light.  相似文献   

5.
Although oaks (Quercus spp.) have historically dominated many forests in eastern North America, forest composition is changing due to anthropogenic impacts on disturbance regimes. Silvicultural practices, such as partial harvesting, are one component of management to promote oak regeneration. From 2007 to 2009 our research examined nest-site selection and nesting success for a guild of five canopy songbirds in upland mixed-oak forests in southeastern Ohio, USA. We monitored >700 nests across three state forests in both open canopy shelterwood stands harvested to approximately 50% stocking, and closed-canopy mature second-growth. Habitat attributes, including topography, canopy structure, and floristics, were measured at nest sites and random plots ?100 m from nests representing microhabitat available within the territory. Canopy songbirds selected specific topographic microclimates: Eastern Wood-pewees (Contopus virens) nested on xeric ridgetops, Blue-gray Gnatcachers (Polioptila caerulea) favored valleys, and Cerulean Warblers (Dendroica cerulea) preferred productive northeast-facing slopes. Nest sites differed among species in terms of concealment, nest support, topographic position on the slope, and basal area of trees >38 cm dbh. Four of the five focal species selected Quercus alba as the nest substrate more than twice as much as available, and three species avoided Quercus rubra. Daily survival rates of nests were negatively associated with basal area of red oak species (both Quercus velutina and Q. rubra) for several species individually and across the canopy-nesting guild. Additional factors related to success included time of season for Eastern Wood-pewees, nest age for Cerulean Warblers, and concealment and size of the support branch for Scarlet Tanagers (Piranga olivacea). In the long-term management for oak regeneration could benefit canopy songbirds, but our results indicate that white oaks, especially Q. alba, may be preferable to red oak species.  相似文献   

6.
Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here we focused on declining Persian oaks(Quercus brantii Lindl.var.persica(Jaub and Spach)Zohary)in the Zagros Mountains of western Iran,representing the most important tree species of this region.We selected trees with contrasting crown dieback,from healthy to severely defoliated,to investigate the relationships between canopy dieback and leaf morphology,water content and pigments.We also measured esterase and peroxidase,as enzymatic antioxidants and indicators of contrasting genotypes.Trees showing moderate to severe defoliation showed higher leaf mass area(LMA),reduced relative water content(RWC),and lower stomatal density(SD).Increasing LMA indicates a more sclerophyllic structure,according to drier conditions.We did not find significant differences in leaf pigments(chlorophyll a and b,and carotenoids)among crown dieback classes,suggesting that Persian oak trees are able to maintain accurate photochemical efficiency,while reduced RWC and SD suggest hydraulic limitations.Our results do not provide a consistent pattern as regards enzymatic antioxidant defense in Persian oak.Morphological leaf traits would be important drivers of future adaptive evolution in Persian oak,leading to smaller and thicker leaves,which have fitness benefits in dry environments.Nonetheless,drought responses may be critically affecting carbon uptake,as photosynthetic compounds are less effectively used in leaves with higher sclerophylly.  相似文献   

7.
We studied the relationships among 5-year radial (diameter and basal area) growth of red oak (genus Quercus, subgenus Erythrobalanus) crop trees and predictor variables representing individual tree vigor, distance-dependant competition measures, and distance-independent competition measures. The red oaks we examined are representative of the commercially and ecologically important oak species of the bottomland hardwood forests of the southeastern US. The crown class score, a quantitative measure of crown class and tree vigor, performed best in accounting for the variability in tree diameter growth. Plot-level variables failed to account for a significant proportion of the variability in tree radial growth. The basal area of the first-order neighbors that were taller than the crop trees and located within 2.4 times the mean overstory crown radius had the highest negative correlation with crop tree 5-year radial growth. Red oaks were a major part of these competitors and likely exerted the greatest competitive pressure. However, crop tree radial growth was positively associated with the basal area of the red oaks which were indirect (second order) neighbors and which were taller than the crop trees. It is possible that indirect neighbors do not compete with the crop trees, but they likely compete with the direct competitors of the crop trees, thus having an indirect positive influence on crop tree growth. Such reasoning is consistent with previously observed spatial dependence up to four times the mean overstory crown radius. The findings may have implications for thinning hardwoods stands and crop tree management in that foresters need to take into account (1) oak intra-genus competition, (2) the negative competitive effect of direct neighbors, and (3) the potentially positive effect of the indirect neighbors, the competitors’ competitors.  相似文献   

8.
Following the severe drought in 1999–2000 there was a widespread outbreak of oak decline in the Ozark Highlands. Over 400,000 ha of dead and dying oak trees were observed by the USDA Forest Service in this region. Although oak forests that are dead can be easily interpreted from air photos or classified from satellite images, it is difficult to detect dying trees that are still green but will die back or recover in the following years. In this study, we applied a normalized difference water index (NDWI) to map the continuous forest dynamics related to oak decline. The Landsat TM image in 1992 and the ETM+ image in 2000 were processed to calculate the differential NDWI which revealed moisture variation primarily caused by the drought and the associated red oak borers. A simple thresholding method was used to map oak dying back, recovery and non-change areas in the study area. The died-back areas were extracted from the modified land use/land cover maps created by the Missouri Resource Assessment Partnership (MoRAP). The forest dynamics map was compared with the online FIA database in which tree species at randomly selected sites were recorded in 1989 and 2003. The overall accuracy of forest dynamics mapping with remote sensing imagery was 75.95%. The user's accuracy of dying/recovery area mapping was also high although the producer's accuracy is questionable because of the limitation in ground data collection. The continuous dying/recovery map in this study could provide valuable information on the prediction of oak decline and evaluation of damage when another period of environmental stresses occurs.  相似文献   

9.
Oaks’ decline in vitality is attributed to a complex process that involves interactions of several factors leading to increased trees’ mortality. This study investigates the structure of trunk wood of oaks with reference to its physiological role in hydraulic conductivity. On the basis of the crown condition, the oaks were classified into three health groups: healthy trees, declining trees and dead trees. Anatomical traits of wood, such as annual ring width, vessel density, vessel diameter of earlywood and theoretical hydraulic conductivity, were measured and calculated. The narrowest annual rings formed by the cambium were observed in dead oaks. These trees were also characterized by the smallest diameter of earlywood vessels, not only in the period of occurrence of dieback symptoms, but also during their whole life. It is suggested that the formation of narrow annual rings and earlywood vessels of small diameter increases susceptibility of a tree to decay. A reduced vessel diameter implies changes in hydraulic conductivity of oak trunks and thus impairs the water transport, which affects the health of trees. The process of oak decline is considered to have characteristics of natural selection and leads to the elimination of the weakest trees.  相似文献   

10.
Recurrent problems with regeneration of oaks (Quercus spp.) have been documented across a wide range of ecosystems. In oak-dominated forests of the central and Appalachian hardwood regions of the United States, a lack of competitive oak regeneration has been tied, in part, to fire suppression in these landscapes, and managers throughout the region are using prescribed fire to address this concern. To examine fire effects on oak regeneration, researchers have generally relied on inventories or population studies of existing seedlings. These studies are valuable but do not permit examination of the role of fire in enhancing the establishment and growth of new oak seedlings stemming from oak mast events. In this study, white (Quercus alba) and chestnut oak (Quercus prinus) acorn mast crops serendipitously occurred in year three (fall 2005) of a landscape-scale prescribed fire experiment. We examined establishment, survival, height and diameter of new seedlings on sites on the Cumberland Plateau in eastern Kentucky. Treatments were fire exclusion, a single prescribed fire (1x-burn; 2003), and repeated prescribed fire (3x-burn; 2003, 2004, and after acorn drop in 2006), all conducted in late spring. Initial densities of newly established chestnut and white oak seedlings were statistically similar across treatments (P = 0.42), despite fires on the 3x-burn site having occurred after acorns were on the ground. Oak seedling density was significantly predicted by oak basal area on all sites (R2 = 0.12–0.46), except for chestnut oak on fire-excluded sites (R2 = 0.04). Litter depth was less on 3x-burn sites compared to 1x-burn and fire-excluded sites, whereas canopy openness was greater on both burn treatments compared to fire-excluded sites. Seedling mortality was generally higher on fire-excluded sites compared to burn sites, especially for white oak. Oak seedling mortality in the first two growing seasons was significantly predicted by initial litter depth and open sky, with greater litter depth and lower percent open sky leading to higher mortality. In the third growing season none of the measured variables predicted chestnut oak seedling survival; for white oak, percent open sky remained a significant predictor of mortality. Initially, seedlings on the fire-excluded sites had similar height but smaller diameter; after three growing seasons there were few differences in seedling height or diameter among treatments. Our findings suggest a potential role for prescribed fire in establishing forest floor and light conditions that may enhance the success of new oak germinants, although different responses among species may suggest the need to target management for individual oak species.  相似文献   

11.
Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988–2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 ± 4.6% (range = 1.5–17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1–5 cm dbh, elephant-herbivory in stems 5–10 cm dbh, and other natural causes in stems >10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2–3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.  相似文献   

12.
We present a detailed account of a dieback episode in tropical rain forest. The dieback episode took place from 1977 to 1989 within a 0.5 ha long-term demography plot monitored for stem growth and mortality from 1975 to 2005. In total 770 m2 of rain forest was affected causing 13 trees >10 cm diameter at breast height (dbh) to die, and others to sicken. The dead trees came from four families, though 14 families were represented in the area. Trees of the family Elaeocarpaceae suffered significantly higher mortality. Larger trees were significantly more likely to die than small trees, but smaller trees were more likely to recover. Recruitment to >10 cm dbh size class after dieback was greater in areas that had been affected, and in 2005 stem density and basal area were higher than in 1977, before the dieback episode started. There were no significant trends in biodiversity change between affected and non-affected parts of the plot. Dieback may have dramatic effects at onset but over the medium term its impact appears to be less serious. Longer term monitoring will permit re-evaluation of this observation in the future.  相似文献   

13.
We monitored the decomposition of mixed leaf litter (Quercus spp., Carya spp., and Pinusechinata) in a Missouri Ozark forest eight years after experimental harvest. Leaf litter mass losses and changes in carbon chemistry (extractive, acid soluble, and acid insoluble fractions) were measured over 32 months in field incubations to determine the effects of litter composition and stand manipulation on decomposition and nitrogen (N) concentration in the remaining litter. The decay (k) rate over this period ranged between 0.39 (±0.010) and 0.51 (±0.002) year−1 for oak, oak–hickory, and oak–pine litter. There were significant main effects of stand manipulation (p = 0.03) and litter type (p < 0.01) on decay. Mass losses of oak and oak–hickory litter were 7% (p = 0.02) and 4% (p = 0.04) higher on harvested stands than controls, respectively. Mass loss of oak–hickory litter was 3% faster than oak–pine (p = 0.03) and 6% faster than oak (p = 0.02) litter on control stands, whereas the oak–hickory litter mass loss was 5% higher than oak litter on harvested stands (p = 0.01). The decay (k) rate had a linear relationship with initial leaf litter nitrogen content and lignin-to-N ratio. The nitrogen concentration in remaining litter had a nonlinear relationship to cumulative mass loss suggesting an exogenous source of N. In summary, this study demonstrated significant effects of timber harvest and litter mixtures on decomposition and N dynamics in a managed Missouri Ozark forest.  相似文献   

14.
The expansion of spruce-dominated forestry in Southern Sweden during the twentieth century has led to a considerable amount of oak (Quercus robur L.) woodlands being converted into stands dominated by planted spruce. The thinning of spruces around oak trees is currently done in Sweden to improve local diversity of insects, oak growing conditions and eventually decrease their mortality. To evaluate the effect of these treatments, we dendrochronologically studied growth of old (100–200 years old) oaks subjected to thinning of different intensity at nine locations in southern Sweden, and compared them to oaks located in nearby pastures. The overall pattern suggests that commonly adopted thinning intensities do not significantly affect oak growth. Oak growth was positively related to oak age and negatively to the amount of dead oak crown. Analyses of correlations between oak growth and summer drought conditions, as reflected by location-specific chronologies of the Monthly Drought Code (MDC), indicated that older trees exhibited generally negative correlations, whereas the correlation remained generally positive for the younger trees, both inside and outside forest stands. We propose that removal of spruces should be primarily done around older and healthier-looking trees.  相似文献   

15.
The Pioneer Forest encompasses more than 60,000 ha in the Ozark Highlands of Missouri, USA and has been managed using single-tree selection since the early 1950s. This paper quantifies the influence of tree size and competitive position, stand density, species composition, and site quality on ten-year (1992-2002) diameter increment within oak (Quercus spp.) and shortleaf pine (Pinus echinata Mill.) stands on the Pioneer Forest. An individual-tree model was developed for each species using mixed-effects regression and 290 inventory plots. Model efficiency (R2) ranged from 0.26 to 0.57 and fit was generally better for oak species. Basal area in larger trees (BAL) and tree diameter were significant predictors for all species and crown competition factor improved prediction for shortleaf pine and hickory (Carya spp.). Effect of species composition and site quality on diameter growth was not consistent across species. Models were evaluated using a subset of data not included in model fitting and the effect of single tree and standwise (1, 3, or 5 sample trees) calibration on model predictions were evaluated. Inclusion of random effects through calibration improved model prediction for all species and fit was best following single tree and 3 tree calibration.  相似文献   

16.
Midwestern savannas historically covered >10 M ha in central North America, but are now rare due to agricultural conversion and anthropogenic modifications to disturbance regimes - particularly fire suppression. Throughout this range, Midwestern savannas are characterized by scattered overstory trees; however, with fire suppression, these systems are invaded by non-savanna trees. Restoration of encroached savannas involves removal of invading trees, yet little is known about the impacts of encroachment or encroachment removal on the relict savanna overstory trees, which define these systems. Here, we use tree ring analysis to investigate savanna tree growth rates in encroached, non-encroached, and experimentally restored Midwestern oak savannas in central Iowa. We found that woody encroachment led to pronounced declines in growth rate (ring width) of relict overstory white oak (Quercus alba), relative to Q. alba trees in competition-free, open-grown conditions, or in an encroachment-free remnant woodland. To further understand effects of encroachment removal on relict Q. alba savanna trees, we conducted a large-scale restoration experiment, where encroaching trees were mechanically removed from four encroached savannas, with an additional four savannas retained as encroached controls. Restoration led to elevated tree growth rates, with these changes generally persistent through 7 years post-restoration (2003-2009). Over the course of this post-restoration study period, ring width, basal area increment, and relative basal area increased by 49%, 59%, and 55%, respectively, in trees from restored sites, relative to trees from encroached, control sites. These results suggest that woody encroachment has strong influence on overstory savanna trees, through increased competitive dynamics; however, woody encroachment removal may help to restore relict savanna tree growth rates, even after prolonged periods of encroachment (>40 years). To restore the oak savannas at our sites, and perhaps elsewhere, we advocate a three step process: (1) mechanical woody encroachment removal, (2) maintenance of the encroachment-free state through prescribed fire, and (3) promotion of a diverse understory layer, characteristic of oak savanna in our region. While promoting oak regeneration will be important for the long-term maintenance of these sites as oak savanna, relict savanna trees appear responsive to restoration and should maintain overstory conditions through the near-term.  相似文献   

17.
Sudden oak death, caused by Phytophthora ramorum, is widely established in mesic forests of coastal central and northern California. In 2000, we placed 18 plots in two Marin County sites to monitor disease progression in coast live oaks (Quercus agrifolia), California black oaks (Q. kelloggii), and tanoaks (Lithocarpus densiflorus), the species that are most consistently killed by the pathogen in these areas. Through early 2008, the numbers of newly infected trees increased for all species. The infection rate for trees that were asymptomatic in 2000 was 5.0% y−1 for coast live oaks, 4.1% y−1 for black oaks and 10.0% y−1 for tanoaks. Mortality rates were 3.1% y−1 for coast live oaks, 2.4% y−1 for black oaks, and 5.4% y−1 for tanoaks. Mortality not attributed to P. ramorum was 0.54% y−1 for coast live oaks, and 0.75% y−1 for tanoaks. Weibull survival models of trees that were asymptomatic in 2000 provided overall median survival times of 13.7 y for coast live oaks, 13.8 y for black oaks, and 8.8 y for tanoaks. Survival of infected (bleeding) trees declined to 9.7 y for coast live oaks, 6.2 y for black oaks, and 5.8 y for tanoaks. Ambrosia beetle attacks on bleeding trees further reduced modeled survival times by 65–80%, reaffirming the earlier finding that beetle attacks on bleeding cankers considerably reduce survival. Across all plots, the modeled time for 90% of trees that were asymptomatic in 2000 to become infected is 36.5 y for coast live oaks and 15.4 y for tanoaks. There was a trend toward higher infection rates as tree diameter increased. Greater than 90% of living coast live oaks that failed during the study had extensive beetle tunneling at the site of the break. Disease intensity in coast live oaks at the plot level was positively associated with bay laurel (Umbellularia californica) basal area and negatively associated with Pacific madrone (Arbutus menziesii) basal area. This study demonstrates the use of survival modeling to characterize the effects of epidemic disease on different species and to project the future of forests infected with tree pathogens.  相似文献   

18.
In the 1970s, public opposition to clearcut harvesting in hardwood forests of the eastern United States led forest managers and scientists to consider alternative practices that retain a low-density overstory forest cover. From 1979 to 1984, a form of clearcut-with-reserves harvesting was applied in 80-year-old Appalachian mixed-hardwoods to create four experimental stands with two-aged structures. The residual stand basal area averaged 5.3 m2/ha, comprising an average of 36 reserve trees/ha. The reserve trees were evenly distributed throughout the stand, initially with considerable space between their crowns, thus providing the sunlight and seedbed conditions needed to recruit desirable shade-intolerant reproduction after harvest. This study examined the response of the 100-year-old reserve trees and the development of the 20-year-old natural reproduction located in their immediate vicinity.Diameter at breast height (Dbh), height, and relative position were recorded for all reproduction ≥2.5 cm within transects adjacent to northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) reserve trees. Each transect was divided into five zones, which represented positions relative to the reserve tree crown edge, and basal area was computed for each of three shade tolerance classes within each zone. A repeated measures ANOVA was used to compare basal area of reproduction by tolerance classes and zone. In general, basal area of reproduction, particularly that of shade-intolerant species, increased with distance from the reserve tree. Regression analyses also indicated that dbh and height of reproduction was positively related to distance from the reserve trees. Although height growth of reserve trees was similar for both species, northern red oak exhibited significantly greater dbh and crown radial growth than yellow-poplar.The results indicated that reserve trees influence the growth rate and species composition of reproduction in their immediate vicinity. Basal area of reproduction increased from 10.1 to 17.7 m2/ha with increasing distance from the reserve trees. Basal area of intolerant species more than doubled along the same gradient. Basal area of reproduction in the two-age stands was 30–40% less than that observed in even-aged stands on similar growing sites, but the reduction was offset by growth of the reserve trees. The surface area covered by the reserve tree crowns increased approximately 88% for northern red oak and 44% for yellow-poplar. Since the sphere of influence of reserve trees increases over time, forest managers must consider their long-term impact on reproduction when prescribing clearcut-with-reserves harvests and other practices that involve retaining trees for many years.  相似文献   

19.
Oak mortality is often associated with a complex of decline factors. We describe the morphological and physiological responses of coast live oak, Quercus agrifolia Née, in California to an invasive insect, the goldspotted oak borer (GSOB), Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), and evaluate drought as a potential inciting factor. Morphological traits of 356 trees were assessed and physiological traits of 70 of these were monitored intensively over one growing season. Morphological characteristics of tree health included crown thinning and dieback; bole staining resulting from larval feeding; density of GSOB adult exit holes; and holes caused by woodpecker feeding. These characteristics were used to rank GSOB infestation/injury into four classes, and taken together, they explained 87% of the variation in a principal component analysis. Drought stress on various size/age and infestation classes of Q. agrifolia was measured by assessing branchlet pre-dawn and solar noon xylem water potential, leaf cell turgor potential, and water use efficiency over one growing season. Both morphological and physiological traits were highly variable in mature and old growth trees. Early summer plant water status (branchlet xylem water potential and water use efficiency) was similar between uninfested and newly colonized trees, suggesting that GSOB are not pre-selecting drought-stressed Q. agrifolia for oviposition. By late summer, leaf water and cell turgor potentials were lower in infested than in uninfested mature trees, suggesting that GSOB infestation causes drought stress in these trees. Among the tree size/age classes, infested old growth trees exhibited the greatest change in water use efficiency over the growing season, and showed greater morphological injury symptoms of decline than infested mature trees. Morphological attributes of decline in Q. agrifolia associated with GSOB were correlated weakly with increasing physiological drought stress among infestation classes of trees. We propose that the collection of morphological responses of Q. agrifolia to GSOB described here can be used to monitor the future expansion of the GSOB distribution as well as the GSOB-induced decline of Q. agrifolia in California.  相似文献   

20.
Little information is available comparing historic and modern sand savannas, and how remnants respond to restored fire. We compared short- and long-term effects of restored fire on the Tefft Savanna, a 197 ha eastern sand savanna in northwest Indiana that had undergone three decades of fire protection. U.S. Public Land Survey data from Tefft in 1833 indicate black and white oak barrens, and pin oak savanna, with trees averaging 50 stems/ha and 4 m2/ha basal area. We used ordination and a digital elevation model to assess topographic distribution of tree species in 1986. In 1986, we also compared initial effects of high- and low-intensity dormant season fire on woody vegetation among nine blocks containing black oak, white oak, and pin oak stands. Twenty years later, we compared the same blocks, all of which had been burned three times per decade with low-intensity fires. In 1986, black oak, white oak and pin oak occurred across a gradient of decreasing elevation and slope. At that time, unburned black oak and white oak stands averaged >400 stems/ha and about 10 m2/ha basal area, and their smaller size classes contained non-oak woody vegetation that apparently had invaded with fire exclusion. After initial burns, black oak and white oak stands receiving high-intensity fire averaged <200 stems/ha and had significantly lower oak canopy cover and basal area than unburned stands. Stands receiving low-intensity fire had intermediate oak canopy cover, with basal area similar to unburned stands. Pin oak stands were more fire-resistant, apparently because spring flooding often reduced fire effects. Density, cover and basal area of non-oak tree species were much lower than oaks, and were not reduced by initial burning. Repeated low-intensity burning over 20 years tended to maintain structure caused by initial fires. However, it reduced lower size class stem densities, promoted post-fire sprouting into the shrub layer, and allowed oak basal area to increase in larger size classes. Time since fire regulated shrub layer structure on a 4-year cycle. Density and cover of trees and shrubs returned to pre-burn conditions by the second and fourth growing seasons after fire, respectively, with non-oak tree species exceeding pre-burn cover and density by the fourth season. These results suggest that high-intensity fire is more important than repeated low-intensity burning in structuring and restoring eastern sand savanna, and that non-oak tree species, once established, may be resistant to low-intensity fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号