首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

2.
Traditional harvesting practices frequently result in simplification of the structure and composition within managed forest stands in comparison to their natural counterparts. In particular, loss of heterogeneity within stands may pose a problem for maintaining biodiversity in perpetuity. In this study, we survey breeding bird diversity and abundance in response to different spatial harvesting patterns in mature red pine forests located on the Chippewa National Forest of northern Minnesota, USA. Treatments are designed to increase structural complexity over time and include three overstory manipulations (dispersed retention, aggregate retention with small gaps, and aggregate retention with large gaps), one understory manipulation (brush removal), and controls (no harvesting, and/or no brush removal). In 2003, the first breeding season following the harvest, we found little difference in bird community composition between control and treatment stands. In 2005, the third breeding season following harvest, avian abundance, richness, and diversity were all greater within treatments. Species associated with edge, shrub, and early successional habitats generally show positive response to treatments (e.g. Chestnut-sided Warbler [Dendroica pensylvanica], Mourning Warbler [Oporornis philadelphia], Chipping Sparrow [Spizella passerine]), as do some species associated with mature forest (e.g., Pine Warbler [Dendroica pinus], Rose-breasted Grosbeak [Pheucticus ludovicianus]). Ovenbirds (Seiurus aurocapilla) and Black-throated Green Warblers (Dendroica virens) were more abundant in control stands. There are, as of yet, no discernable differences in avian community composition among the three overstory treatments or between the single understory treatment and the understory control, but differences are expected as the treatments diversify due to understory development. While overstory retention harvests provide habitat for a diverse and abundant bird community, the temporal divergence in avian community composition that we observed between treatment and control stands reveals the importance of uncut, mature red pine forest as a component of a biodiverse landscape.  相似文献   

3.
The aim of this study was to evaluate the influence of forest structure (mainly resulting from human uses) and forest type (the identity of the dominant tree species) on biodiversity. We determined the diversity of two taxonomical groups: the understory vegetation and the edaphic carabid beetle fauna. We selected eight types of forest ecosystems (five replicates or stands per forest type): pine (Pinus sylvestris) plantations of three age classes (10, 40 and 80 years since reforestation), an old-growth relict natural pine forest, and four types of oak (Quercus pyrenaica) stands: mature forests with livestock grazing and firewood extraction, mature forests where uses have been abandoned, “dehesa” ecosystems and shrubby oak ecosystems. The results obtained by a global PCA analysis indicated that both tree size and dominant species influenced the ordination of the 40 forest stands. In general, carabids were more sensitive to changes in forest heterogeneity and responded more clearly to the analysed structural variables than the understory vegetation, although the species richness of both groups was significantly correlated and higher in case of oak forests. Pine forest ecosystems were characterised by the lowest species richness for both taxonomical groups, the lowest plant diversity and by the lowest coefficients of variation and, consequently, low structural heterogeneity. As a result, it was very difficult to discriminate the effects of the spatial heterogeneity and the dominant tree species on biodiversity.  相似文献   

4.
Understory plants are important components of forests because they are responsible for the majority of the vascular plant diversity of forest ecosystems. The richness and composition of understory communities are closely related to the tree layer diversity, structure and composition. The aim of this study was to examine the understory diversity of Anatolian black pine (Pinus nigra Arnold subsp. pallasiana (Lamb.) Holmboe)-dominated forests on the Kazda?? Mountains of West Turkey. To describe the overstory structure and composition in a numerically and quantitatively well-defined manner, cumulative abundance profiles (CAPs) of the tree species were used. The resemblance of the sampling plots was classified into five stand types assessing the CAP through the Fuzzy C-Means clustering method. A permutational multivariate analysis of variance (PERMANOVA) was performed to test the variance of the community ecological distance between the five stand types, and the results showed significant differences in these clusters. Many shade-tolerant plants were associated with the mixed stands of Anatolian black pine–Kazda?? fir. The composition of the herb and shrub layer could not be explained by the environmental variables but by differences in the overstory structure of the stands. Pure or nearly pure Anatolian Black pine stands were more diverse than mixed oak–Anatolian black pine and Kazda?? fir–Anatolian black pine stands. However, although dense and young pure Anatolian black pine stands had the most diverse plant species in the shrub layer, they were ranked third in terms of the herb layer diversity. The Anatolian black pine–Kazda?? fir mixed stands had the lowest herb and shrub layer diversity. These results allow us to comprehend the relationship between the overstory structure and composition, and the understory diversity. Understanding this relationship is important for the conservation of understory plant diversity in the management of forest ecosystems.  相似文献   

5.
6.
Nutrient dynamics of an Aleppo pine (Pinus halepensis, Mill.) ecosystem located in the Kassandra peninsula, Central Macedonia, Northern Greece, were studied using a chronosequence approach. The nutrient composition of the Aleppo pine trees, the understory evergreen broadleaves and forest floor in adjacent stands of 23, 48, 70 and over 100 years old was determined to estimate postfire nutrient losses. The concentration of nutrients in the Aleppo pine trees, except of Ca, was reduced with increasing stand age. Ca was the most abundant nutrient in the aboveground vegetation and in forest litter, followed by N, K, Mg and P. The accumulation of nutrients in the aboveground biomass was positively related to stand age. For younger stands nutrient accumulation was considerably larger in the understory vegetation as compared to the pines, due to substantial enhancement of the understory biomass and the number of understory species present. In middle-aged stands, however, nutrient accumulation in the understory and overstory vegetation reached a balance. In addition, considerable quantities of nutrients have been accumulated in the forest floor particularly in stands of 48 years old. Therefore, any destruction during the period of maximum nutrient accumulation in the forest floor will cause degradation of the ecosystem. It is postulated that the competition for nutrients between overstory and understory vegetation may be as important as competition in soil. Forest management practices leading to the direct conversion of the understory biomass into littermass would be of great significance for the sustainability of the Aleppo pine ecosystem.  相似文献   

7.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

8.
We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.  相似文献   

9.
The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural plantation forests.We studied effects of stand age, forest fragmentation, and soil and canopy conditions on species richness and abundance of four species groups in the understory of post-arable oak plantations in southern Sweden: herbaceous forest specialists, habitat generalists and open-land species, and woody species.The group of forest specialists may approach the richness of continuously forested sites after 60-80 years in non-fragmented plantations, but many forest species were sensitive to habitat fragmentation. Open-land species richness decreased during succession, while the richness of woody species and of generalists remained stable, and was not affected by fragmentation. Abundance of generalists gradually decreased in non-fragmented plantations, probably due to competition from colonizing forest specialists. Soil pH in post-arable stands remained consistently higher than in continuously forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species.For successful recovery of a rich understory, we suggest that post-arable plantations should be established on loamy soils of intermediate to high pH proximate to older forest with source populations, and that a continuous overstory canopy cover of 70-80% is maintained by regular light thinnings and promotion of a shrub layer.  相似文献   

10.
Non-coniferous vegetation, including herbs, shrubs, and broad-leaved trees, makes a vital contribution to ecosystem function and diversity in Pacific Northwest conifer forests. However, forest management has largely been indifferent or detrimental to shrubs and trees that have low commercial value, in spite of a paradigm shift towards more holistic management in recent decades. Forest management practices that are detrimental to broad-leaved trees and shrubs are likely to decrease habitat diversity for wildlife, but the number of species that may be affected has not previously been enumerated. I reviewed life history accounts for forest-dwelling vertebrate wildlife species and derived a list of 78 species in Oregon and Washington that are associated with non-coniferous vegetation. The diversity of direct and indirect food resources provided was the primary functional basis for associations of most species with non-coniferous vegetation. Thus, a diversity of herbs and broad-leaved trees and shrubs provides the foundation for food webs that contribute to diversity at multiple trophic levels in Pacific Northwest conifer forests. Given the number of species associated with non-coniferous vegetation in conifer-dominated forests, maintaining habitats that support diverse plant communities, particularly broad-leaved trees and shrubs, will be an important component of management strategies intended to foster biodiversity. Silvicultural practices such as modified planting densities, and pre-commercial and commercial thinning, can be used to control stand density in order to favor the development of understory herbs, shrubs, and a diversity of tree species within managed stands. Allowing shrubs and hardwood trees to develop and persist in early seral stands by curtailing vegetation control also would benefit many species associated with non-coniferous vegetation.  相似文献   

11.
Currently, information about the effect of forest management on biodiversity of subtropical plantation forests in Asia is quite limited. In this study, we compared the spider community structures and guild compositions of subtropical Cryptomeria japonica plantation forests receiving different degree of thinning (0, 25 and 50 %) in central Taiwan. The ground spider diversities and environmental variables were sampled/measured once every 3 months for 1 year before thinning and 2 years after thinning. Results showed that before thinning spider compositions did not differ significantly among three plantation forest types. Two years after thinning, spider species and family compositions of three plantation forest types differed significantly. In all three plantation forest types, the spider composition differed from year to year, indicating existence of temporal variations in spider diversity. Ground hunters (increased 200–600 % in thinned forests), sheet web weavers (increased 50–300 % in thinned forests) and space web weavers (decreased 30–50 % in thinned forests) were the major contributors of the observed spider composition differences among plantation forests receiving different treatments. The stands receiving thinning treatments also had higher illumination, litter decomposition rate, temperature and understory vegetation density. Thinning treatments might have changed the structures of understory vegetation and canopy cover and consequently resulted in abundance and diversity changes of these guilds. Moreover, the heterogeneity in understory vegetation recovery rate and temporal variation of spider composition might further generate spider diversity variations in subtropical forests receiving different degree of thinning.  相似文献   

12.
Recovery of biomass and biodiversity of forest understory vegetation after fire disturbance has been widely studied; however, how this relationship changes and what are the determinants at different post-fire stages in larch boreal forests are still unclear. We investigated a chronosequence of 81 understory plots in larch boreal forests that were disturbed by fires in 1987 (S5), 1992 (S4), 1996 (S3), 2002 (S2), or 2007 (S1). Analysis of variance was conducted to test the differences of biodiversity and biomass among various post-fire stages. Different regression models were used to fit the relationship between biomass and biodiversity, while factors influencing this relationship were identified by boosted regression tree analysis. Results showed that total understory biomass increased from 2.51?t?ha?1 in S1 to 8.47?t?ha?1 in S3 and declined to 5?t?ha?1 in S5. Similar dynamics were also found between species richness and species diversity. Positive linear correlations linked biomass and biodiversity throughout most of the post-fire periods. Slope and stand density were the two most important factors influencing the secondary succession of understory vegetation after fire. Geographical factors and overstory competition determine the orientation of vegetation recovery, and the impacts of climate on vegetation are muted after fire disturbances.  相似文献   

13.
ABSTRACT

Forest rehabilitation is when a desired tree species is planted in degraded forests or lands. Rehabilitation by planting a single tree species is a common way to restore exploited forests to maintain ecological processes. We compared woody and herbaceous understory vegetation between forests rehabilitated by mahogany (N = 12) or teak (N = 12) planted from 1941 until 2003 in Yogyakarta, Indonesia. Understory vegetation of these areas was compared with that of three native forests. Species richness, species diversity, density of plants and proportion of native plants did not differ between the rehabilitated areas and the native forest. Recently rehabilitated areas were different from the native forests while 41–74 yr after rehabilitation, characteristics of understory vegetation approached those of native forest. We described species composition using ordination, and found it to differ between areas rehabilitated with teak and with mahogany and, particularly, between the rehabilitated areas and the native forests. Time since rehabilitation and tree species planted were important for the species composition of understory vegetation. We conclude that the selection of species for rehabilitation and letting rehabilitated areas mature are important for understory development and species diversity.  相似文献   

14.
15.
We compared the structure of the arboreal layer and the diversity and species composition of the understory vegetation of three types of mature forest communities: oak (Quercus pyrenaica) and beech (Fagus sylvatica) forests and Scots pine (Pinus sylvestris) plantations. Our main aim was to determine whether differences in these variables existed and were due to the identity of the dominant tree species. We selected four stands or replicates per forest type located geographically close and with relatively similar conditions. We found no differences in the arboreal structure of oak and beech forests, which were characterised by great variability in tree size, while in case of plantations, this variability was lower at both the intra-stand (estimated by the coefficient of variation) and inter-stand (i.e. the four replicates harboured trees of similar sizes) scales. However, the highest variability in the canopy layer of natural forests was not consistently linked to greater understory species richness. Indeed, the lowest plant species richness was found in beech forests, while oak forests harboured the highest value at either the sampling unit (per m2) or stand scales. The greatest negative correlation between plant diversity and the environmental variables measured was found for litter depth, which was the highest in beech forests. The results obtained by the CCA indicated that the four replicates of each forest type clustered together, due to the presence of characteristic species. We concluded that pine plantations did not approach the environmental conditions of native forests, as plantations were characterised by singular understory species composition and low arboreal layer variability, compared to natural woodlands.  相似文献   

16.
Plantation forests comprise an important part of the forested areas in European countries. Intensive forestry management and short-rotation cycles of plantation forests reduce habitat diversity and change the composition of invertebrate assemblages, mainly by reducing the number of habitat specialist species. Here, we analysed the effect of vegetation structure, amount of dead organic matter (DOM) and plantation age on spider functional diversity and assemblage structure in short-rotation plantations of native silver poplar in Hungary. Three stages, representing young plantations, 6- to 10-year-old stands (five stands), middle-aged plantations, aged between 23 and 26 years (five stands) and mature, 35- to 37-year-old forests at commercial maturity (five stands) were sampled. Each sample consisted of the data of ten pitfall traps. Traps were installed 5 m from each other in a 2 × 5 grid. Functional diversity was positively related to vegetation structure. High functional diversity indicates a higher number of available niches and potential resources. The abundance of moist habitat species and forest specialist species was positively correlated with DOM. Furthermore, moist habitat species were also related to vegetation structure. The most important environmental parameters affecting spiders were factors attributed to trees (litter and DOM), understory vegetation structure and, to a lesser extent, forest age. Different-aged stands may be similar in terms of species composition of their spider fauna if they comprise the same habitat structural patterns. Our study emphasises that the simple habitat structure of plantation forests has a negative effect on spider communities.  相似文献   

17.
In many second-rotation Pinus radiata forest planta-tions, there has been a steady trend towards wider tree spacing and an increased rate of application of P fertiliser. Under these regimes, the potential for understory growth is expected to in-crease through increased light and greater nutrient resources. Therefore, understory vegetation could become a more signifi-cant component of P cycling in P. radiata forests than under closely-spaced stands. Studies have shown that growth rates and survival of trees is reduced in the presence of understory vegeta-tion due to the competition of understory vegetation with trees. Other studies have suggested that understory vegetation might have beneficial effects on nutrient cycling and conservation within forest stands. This review discusses the significance of understory vegetation in radiata pine forest stands, especially their role in enhancing or reducing P availability to forest trees.  相似文献   

18.
Currently, the aim of modern forest management is not only timber production but also the protection of biodiversity. The initial effects of clear-cut logging on forest understory vegetation, soil and the diversity of litter beetles have been studied. We examined unstudied effects of clear-cutting disturbance on understory vascular plant species abundance, forest soils, and understory vegetation nutrients as well as beetle diversity one year after clear-cutting. Substantial changes in the prominence values and above-ground mass of forest-related vascular plant and moss species were detected. Clear-cuttings resulted in fast appearance of new light-loving plant species. The significant decrease in understory plant biomass influenced the reduction of nutrient pools in clear-cut areas after one year. The clear-cut logging negatively influenced the richness of species and the number of individuals of stenobiontic forest-related beetles in the forest litter. However, forest clear-cuttings were beneficial for eurytopic and open land species.  相似文献   

19.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

20.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号