首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Large cavity-nesting birds depend on large-diameter trees for suitable nest sites. The increased spatial extent of commercial timber harvesting is modifying forest structure across the land base and may thus compromise the availability of large trees at the landscape scale. In this study, our objectives were to (1) characterize the availability of large living and dead trees in old-growth stands dominated by different tree species and surficial deposits that encompass the range of natural cover types of eastern Québec's boreal forest; (2) analyze the distribution of trees among decay-classes; and (3) compare the availability of large trees in unharvested, remnant, and harvested stands for the entire range of decay-classes. A total of 116 line transects were distributed across unharvested forests, remnant linear forests, and cutblocks in cutover areas. Unharvested forest stands (black spruce [Picea mariana], balsam fir [Abies balsamea]–black spruce, balsam fir–white spruce [Picea glauca] and balsam fir) reflected a gradient of balsam fir dominance. The remnant forests selected were isolated for 5–15 years. Analyses were performed at two diameter cut-off values. Trees with DBH ≥20 cm were considered for availability of total trees whereas trees with DBH ≥30 cm were considered for availability of large trees. Forest stands comprised high proportions of standing dead trees (33% of all stems, 8% were large dead stems). Availability of total and large standing trees increased with the dominance of balsam fir in stands. Forest stands located on thick surficial deposits showed higher densities of large dead trees for every stand type suggesting a higher productivity on those sites. Availability of stems according to decay-classes showed a dome-shaped distribution with higher densities of snags in intermediate decay stages. However, for large stems, black spruce stands showed a significantly lower availability that was consistent across all decay-classes. In linear remnant forests, pure balsam fir stands were absent. Remnant stands thus showed a much lower availability in large trees when compared with unharvested balsam fir stands. Clearcuts had the lowest densities of dead trees across sampled stands. Current even-aged management practices clearly affect availability and recruitment of large trees, therefore forest-dwelling wildlife relying on these structures for breeding is likely to be affected by large-scale harvesting in coniferous boreal forests.  相似文献   

2.
Dumais D  Prévost M 《Tree physiology》2008,28(8):1221-1229
We investigated ecophysiological and growth responses of short (0.4 to 1.3 m in height) advance regeneration of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea L.) six years after removal of 0, 40, 50, 60 and 100% of the overstory basal area (BA) in two yellow birch-conifer stands. Partial cuts significantly increased stomatal conductance of red spruce only. Light-saturated photosynthesis (leaf-area basis) of both species increased with BA removal, but unlike red spruce, specific leaf area (SLA) of balsam fir decreased with increased cutting intensity. Partial cuts appreciably increased the concentration of N and Ca in red spruce and balsam fir foliage, respectively, and resulted in decreased foliar concentrations of K in red spruce and Mg in balsam fir. The height and lateral growth of both species increased with BA removal, although partial cuts were more beneficial to balsam fir. The data suggest that short advance regeneration of red spruce and balsam fir can coexist under partial overstory conditions, but balsam fir has physiological characteristics and a capacity for morphological adjustment (SLA) that places it at an advantage when in competition with red spruce.  相似文献   

3.
In boreal forests, historical variations in the area disturbed by natural disturbances or harvesting have rarely been compared. We measured temporal and spatial variations in areas affected by severe fires and clearcutting throughout the 20th century in a 57, 332 km2 section of the eastern Canadian boreal forest. We examined the effects of these disturbances on spatio-temporal variations in the abundance of forests >60 years. Natural variability for the abundance of forests >60 years was estimated from simulations of natural disturbance regimes. We also measured compositional and structural differences between three categories of stands originating from relatively recent disturbances (∼50 years; clearcutting, fires, and clearcutting followed by fires), and one category of stands that were undisturbed for at least 200 years. At the regional level, we observed that forests >60 years gradually became scarcer throughout the 20th century due to a gradual expansion of harvested areas, an effect most pronounced in the southern part of the region, where mature and old forest abundance was clearly outside the range of natural variability at the end of the studied period. At the stand level, forest composition and structure differed between stand-origin categories: clearcutting-origin stands contained more balsam fir (Abies balsamea), fire-origin stands more black spruce (Picea mariana), and fire/clearcutting-origin stands more hardwoods (Betula papyrifera and Populus tremuloides). Overall, we estimate that strict forest management targets based on natural disturbance regimes will be difficult to achieve in eastern North-American boreal forests, most notably because contemporary disturbance rates, including both clearcutting and fire, have gradually become higher than the fire rates observed during the preindustrial period.  相似文献   

4.
We evaluated the potential of tree-ring techniques for the reconstruction of recent and past seasonal activity of introduced white-tailed deer in a boreal environment of eastern Canada. Hoof scrape scars on balsam fir stems and trampling scars on roots were used to reconstruct deer activity during the winter and snow-free seasons, respectively. Tree damage showed that there was continuous deer activity in the north-central part of Anticosti Island since the mid-1960s. High scrape scars along tree stems (3–3.5 m from the ground) indicate that 1975, 1976, 1981, 1983 and 1985 were years of intensive food search by deer on high balsam fir foliage. The annual number of hoof scrape scars was low between 1982 and 1985, when severe defoliation by the spruce budworm, combined with deer browsing, led to high fir sapling mortality, food depletion, degradation of the winter shelter forests and a decrease in deer activity. The lowest scrape scars 50 cm above ground correspond to the mean height of the residual snowpack in the shelter forest at springtime, when deer start searching for food in nearby open sites and use logging roads, where dead and bonsai-like fir predominate due to overbrowsing. The trampling scar age frequency distribution from two sites indicated that deer activity during the snow-free season started synchronously in the late 1960s. In response to degradation of winter shelter forests, deer may have moved from the southern part to the north-central part of the island and other sectors to survive. Deer-induced tree damage and tree-ring techniques can thus be used to reconstruct past seasonal activity of white-tailed deer.  相似文献   

5.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

6.
Aspen and balsam poplar regeneration from root suckers were assessed in boreal mixedwood forests nine years after logging in a variable retention experiment (EMEND Project—Ecosystem Management Emulating Natural Disturbance) located north of Peace River, Alberta, Canada. Five levels of retention of mature trees (2%, 10%, 20%, 50% or 75% of the original basal area) were applied in stands dominated by aspen, white spruce or mixtures of the two species. Basal area of aspen (or that of aspen plus balsam poplar combined) prior to logging strongly influenced sucker density of aspen (or aspen + balsam poplar combined) and in some cases their growth. Nine years after harvest there was a decline in sucker density and volume ha−1 with increasing retention levels of aspen (or both poplars combined); sucker density declined by 50% when only 20% of the original basal area was left in the stand. Retaining mature spruce trees in the stand had little influence on the number of suckers but did affect their total volume ha−1. Thus, we suggest that by knowing stand aspen and balsam poplar density prior to logging and varying levels of retention of aspen and balsam poplar or conifers at harvest, the density of Populus regeneration can be predicted by managers, thereby allowing them to create a range of mixedwood conditions.  相似文献   

7.
In the future it may become common practice to return wood-ash to forest ecosystems in order to replenish nutrients removed when brash has been extracted as a source of bioenergy. Wood-ash contains most of the nutrients that are present in the brash before its removal and burning, with the important exception of nitrogen (N). In the present paper we report measurements of CO2 emissions and net N mineralisation in the humus layer and the upper 5 cm of mineral soil 12 years after the application of wood-ash to two study sites, representing different tree species, climatic conditions and N deposition histories. We hypothesized that application of wood-ash would increase both carbon (C) and net N mineralisation rates at Torup, an N-rich site with Norway spruce (Picea abies (L.) Karst.) in the south, whereas the net N mineralisation rates would not be affected at Vindeln, an N-poor site with Scots pine (Pinus sylvestris L.) in the north, where a possible N-limitation would restrict any N mineralisation. The treatments, comprising additions of 0, 1, 3 or 6 Mg of granulated wood-ash ha−1, were applied in a randomised block design, replicated three times. Wood-ash from the same batch was used for all treatments at both sites. All factors were measured under laboratory conditions with controlled temperature and moisture levels. The potential CO2 emissions (kg ha−1 year−1 of CO2–C) at Torup were significantly higher in the 3 and 6 Mg ha−1 treatments than in the control treatment, and the highest application resulted in an extra loss of 0.5 Mg ha−1 of soil C annually as compared to the control. No such differences were detected at Vindeln. The results suggest that wood-ash application can deplete soil organic C at locations with similar characteristics (N-rich soil, spruce dominated, warm climate) as at Torup in this study.  相似文献   

8.
Silvicultural treatments creating large canopy openings failed to restore regeneration of balsam fir (Abies balsamea (L.) Mill.) due to browsing pressure from white-tailed deer (Odocoileus virginianus Zimmermann). Consequently, we tested two alternative silvicultural treatments aimed at improving balsam fir establishment on Anticosti Island (Québec, Canada). In 1998 and 1999, we set up shelterwood seed cutting using three harvest intensities (0, 25 and 40% of basal area) and strip clearcutting with scarification using three different strip widths (15, 30 and 45 m), both with fenced and unfenced regeneration plots, in balsam fir stands. After 8 years, shelterwood seed cutting did not allow the establishment of new balsam fir seedlings, nor the development of unbrowsed balsam fir seedlings. In the strip clearcutting, deer browsing suppressed growth of palatable species in all strip widths. This favoured the development of unpalatable species, especially white spruce (Picea glauca (Moench) Voss). Our study demonstrates that the use of silvicultural treatments alone is unlikely to restore balsam fir regeneration on Anticosti Island, as long as the deer population remains higher than 20 deer/km2.  相似文献   

9.
Hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) is an economically damaging defoliator that undergoes periodic outbreaks in Newfoundland, Canada. It defoliates and causes extensive tree mortality to its primary host, balsam fir (Abies balsamea [L.] Mill.). We quantified tree survival using data from permanent sample plots (PSPs) and growth reduction or release using dendrochronology, and related these impacts to defoliation severity determined from annual aerial defoliation survey data. Such impact relationships are necessary as a fundamental input to a Decision Support System. Growth and survival of balsam fir, black spruce (Picea mariana (Mill.) B.S.P.) and white birch (Betula papyrifera Marsh.) were assessed from 1996 to 2008 in 48 Newfoundland Forest Service PSPs, selected based on four classes of defoliation severity. Two years of severe (71-100%) defoliation resulted in almost complete mortality for balsam fir, 10 years after defoliation, whereas survival was 70-80% for black spruce and white birch. Lower defoliation severity (1-2 years of moderate (31-70%) or 1 year of severe) resulted in approximately 60% survival for balsam fir and no reduction in survival for black spruce and white birch. Maximum growth reduction of balsam fir was 10-15% with 1 year of moderate-severe defoliation, 35-40% with 2 years of moderate defoliation, and about 50% with 2 years of severe defoliation. Growth recovered to pre-defoliation rates 5 years after defoliation ceased in all severity classes. Growth reduction and recovery of black spruce were more variable and lower than for balsam fir, and white birch exhibited only minor (<10%) growth reduction during the defoliation year or 1 year after defoliation. Control measures should focus on avoiding severe defoliation for two consecutive years.  相似文献   

10.
Nitrogen (N) and phosphorus (P) and N:P ratio in terrestrial plants and the patterns at a large geographical scale are an important issue in ecological stoichiometry. In particular, it is essential to know that for a single species, how the N:P stoichiometry varies with climatic factors in the context of global warming. Our analysis was based on a data set including 2583 observations at 441 sites on nutritional status of Norway spruce (Picea abies L.) located in European counties (including Austria, Belgium, Bulgaria, Czech Rep., Finland, Germany, Ireland, Italy, Lithuania, Norway, Slovak Rep., Slovenia, United Kingdom). Our objectives are to demonstrate how leaf N and P concentration and N:P ratio in Norway spruce vary with altitude (ALT), latitude (LAT), longitude (LON), mean annual temperature (MAT) and mean annual precipitation (MAP) across Europe. The results showed that for 1-year-old needles of Norway spruce, the N and P concentration were 13.28 mg g−1, 1.41 mg g−1 and the N:P ratio was 9.76. Leaf N displayed a convex curve pattern with increasing MAT and decreasing LAT from the boreal Europe to the Mediterranean area. The N concentration and N:P generally reached peak at about 7 °C in MAT or 53° N in LAT. The N:P ratio varied non-linearly with LAT and MAP, but linearly with MAT. Leaf N concentration and N:P ratio decreased linearly with increasing ALT in temperate European area. Across Europe, that the patterns of leaf N and N:P ratio were mainly driven by climate-related geochemistry and plant physiology, but also greatly impacted by anthropogenic N deposition.  相似文献   

11.
The broom rusts of balsam fir and black spruce occur sporadically throughout the island of Newfoundland, but they are not a serious threat to the forests. The incidence and intensity of the rusts vary, but no tree mortality can be attributed to the diseases. The average number of brooms per tree was higher in black spruce than in balsam fir. Also, more brooms occurred on brandies than on tree trunks. Height and diameter growth was less in infected trees than in uninfected trees of both the species.  相似文献   

12.
Over the last two centuries, logging has caused major, but unquantified, compositional and structural changes in the southern portion of the North American boreal forest. In this study, we used a series of old forest inventory maps coupled with a new dendrochronological approach for analyzing timber floating histories in order to document the long-term transformation (1820–2000) of a southern boreal landscape (117 000 ha) in eastern Quebec, Canada, in response to logging practices. Landscape exploitation became increasingly severe throughout this time period. During the ninetieth century (1820–1900) of limited industrial capacity, selective logging targeted pine and spruce trees and excluded balsam fir, a much abundant species of the forest landscape. Logging intensity increased during the first half of the twentieth century, and targeted all conifer species including balsam fir. After 1975, dramatic changes occurred over the landscape in relation to clear-cutting practices, plantations, and salvage logging, which promoted the proliferation of regenerating areas and extensive plantations of the previously uncommon black spruce. Overall, logging disturbance resulted in an inversion in the forest matrix, from conifer to mixed and deciduous, and from old to regenerating stands, thus creating significant consequences on forest sustainability. If biodiversity conservation and sustainable forestry are to be management goals in such a heavily exploited forested landscape, then restoration strategies should be implemented in order to stop the divergence of the forests from their preindustrial conditions.  相似文献   

13.
We examined changes in standing dead tree (snag) density and biomass with time following harvest across a chronosequence of balsam fir (Abies balsamea) dominated boreal forests in western Newfoundland, Canada. Current snag management practices in Newfoundland recommend a minimum of 10 snags/ha on the post-harvest landscape. Snags declined significantly in the first two decades of the chronosequence. The rapid rate of decline in snag density which occurred immediately post harvest was likely attributable to windfall and domestic harvest for firewood. A second rapid rate of snag density decline occurred 10–15 years post harvest which potentially reflected the average lifespan of snags in western Newfoundland. Average snag densities approximated the minimum management goal during the period from 15 to 60 years since harvest (YSH). However, 53–60% of sites sampled in the 15–60 YSH period contained <10 snags/ha. Snag densities then increased with forest age, again reaching high levels 81–100 YSH which were comparable to the density at the beginning of the chronosequence. Achieving the goal of 10 snags/ha on all post-harvest sites in western Newfoundland, especially between 15 and 60 YSH, will require changes to current forest management practices.  相似文献   

14.
Black spruce (Picea mariana (Mill.) B.S.P.) is the dominant tree species in the Canadian province of Québec’s boreal ecosystem, particularly in the black spruce-feathermoss (BSFM) domain (between the 49th and the 52nd parallels). While black spruce is generally well adapted to regenerate after wildfires, regeneration failure can sometimes occur, resulting in the irreversible conversion of closed-crown BSFM to open black spruce-lichen woodlands (OW). With OWs representing approximately 7% (1.6 M ha) of Québec’s BSFM domain, the afforestation of OWs carries significant theoretical potential for carbon (C) sequestration, which has not yet been evaluated. The main objectives of the study were then: (i) to estimate the theoretical C balance of OW afforestation within the closed-crown BSFM domain in Québec’s boreal forest; (ii) to calculate, using the life cycle analysis (LCA) method, all the GHG emissions related to black spruce OW afforestation in the closed-crown BSFM domain of Québec. The CO2FIX v. 3.1 model was used to calculate the biological C balance between the baseline (natural OW of site index 9 at age 50) and afforestation (black spruce plantation of site index 6 at age 25) scenarios, using the best estimates available for all five recommended C compartments (aboveground biomass, belowground biomass, litter, deadwood, and soil). The simulation revealed a biological C balance of 77.0 t C ha−1, 70 years following afforestation, for an average net sequestration rate of 1.1 t C ha−1 year−1. Biological C balance only turns positive after 27 years. When integrating the uncertainties related to both the plantation growth yield and the wildfire disturbance, the average sequestration rate varies between 0.2 and 1.9 t C ha−1 year−1. GHG emissions are 1.3 t CO2 equiv. ha−1 for all afforestation-related operations, which is less than 0.5% of the biological C balance after 70 years. Thus, GHG emissions do not significantly affect the net C balance of the afforestation project simulated. Several recommendations are made, mostly centered on the factors influencing the growth rate of carbon stocks and the impact of natural disturbances, to minimize the range of uncertainties associated to the sequestration potential and maximize the mitigation benefits of an OW afforestation project.  相似文献   

15.
This study describes and compares (i) the diameter distribution of black spruce (Picea mariana (Mill.) B.S.P.) and balsam fir (Abies balsamea (L.) Mill.) within mixed black-spruce/balsam-fir stands, and (ii) the diamter distribution of black spruce within pure stands, at various stages of stand development. Employing relative-frequency diameter-class data from 128 0.081-ha semi-permanent sample plots located in natural mixed (57 plots) and pure (71 plots) stand types of central insular Newfoundland, 1st, 2nd, 3rd and 4th-order polynomial functions were used to describe stand structure at various species heights. The Chi-square statistic was used to compare distributions within and between stand types by height class. Results indicated that both species within mixed stands, and black spruce within both stand types, had similar distribution trends, i.e., initially reverse J-shaped or positively-skewed unimodal distributions progressing to a semi-bimodal or positively skewed mound-shaped distribution. Black spruce occupied a slightly greater proportion of the larger diameter classes, whereas balsam fir occupied a slightly greater proportion of the smaller diameter classes, indicating a semi-stratified structure.  相似文献   

16.
17.
For two Scots pine (Pinus sylvestris) ecosystems in S Germany with different atmospheric N deposition (Pfaffenwinkel, intermediate N deposition; Pustert, large N deposition), the supply with phosphorus (P) has been monitored for unfertilized and fertilized plots over more than four decades by foliar analysis (1964–2007). Additionally, topsoil concentrations and stocks of total P and plant-available P (citric-acid-extractable phosphate) were quantified in 10-year intervals (1982/1984, 1994, 2004). At both sites, fertilization experiments, including the variants control, NPKMgCa + lime, PKMgCa + lime + introduction of lupine, corresponding to an addition of 75 and 90 kg ha−1 P in Pustert and Pfaffenwinkel, respectively had been established in 1964. Our study revealed different trends of the P nutritional status for the pines at the two sites during the recent four decades: At Pustert, elevated atmospheric N deposition together with small topsoil P pools resulted in significant deterioration of Scots pine P nutrition and in an increasingly unbalanced N/P nutrition. At Pfaffenwinkel a trend of improved P nutrition from 1964 to 1991 was replaced by an opposite trend in the most recent 15 years. For our study sites, which are characterized by acidic soils with thick O layers, the forest floor stock of citric-acid-extractable phosphate showed a strong and significant correlation with the P concentration in current-year pine foliage, and thus was an appropriate variable to predict the P nutritional status of the stands. Total P stocks as well as the concentrations of total P in the forest floor or in the mineral topsoil were poorly correlated with pine foliar P concentrations and thus inappropriate predictors of P nutrition. P fertilization in the 1960s sustainably improved the P nutritional status of the stands. At Pfaffenwinkel, foliar P concentrations and topsoil stocks of citric-acid-extractable phosphate were increased at the fertilized plots relative to the control plots even 40 years after fertilization; at Pustert, foliar P concentrations were increased for about 20 years.  相似文献   

18.
Disturbance patterns are strongly coupled with forest composition and structure, and patterns change through time in response to shifts in climate, anthropogenic impacts and other factors. Knowledge of the natural disturbance patterns for establishing baseline conditions for a forest type or ecosystem facilitates change detection for other elements of the biophysical system important to management and conservation. Dendrochronological reconstructions from old-growth forest remnants throughout northeastern North America document average decadal rates of disturbance of 5%–<10% over the last 150–300 years. Relatively frequent, low severity disturbance characterized by small gaps representing canopy openings made by 1–3 trees prevail in these forests dominated by varying mixtures of late-successional tree species. Few studies, though, have explicitly characterized differences related to composition or topographic setting in old-growth landscapes. We addressed this by comparing the temporal and spatial disturbance patterns reconstructed from tree rings at two spatial resolutions (0.5 ha and 200 m2). Sites were selected to assess the influence of topography (slope) and cover type in stands where red spruce (Picea rubens Sarg) and balsam fir (Abies balsamea L. Mill) were key components. Low rates of disturbance (average <10% per decade) and small gap sizes (≤30 m2) prevailed in all stands during the decades from 1850–1980. Episodic pulses of disturbance, of nearly moderate intensity in some stands, opened ca. 20–30% of the canopy area and were associated with wind events and/or insect outbreaks that differentially affected stands. We found no significant difference in the average temporal rates of disturbance related to cover type or topography in 0.5-ha plots. However, the influence of these factors was evident in comparisons of gap areas estimated for 200-m2 plot sections. At this resolution, the largest canopy openings (≥100 m2) occurred most frequently in slope sites, enabling pulses of canopy accession for Betula alleghaniensis (Britton). Whereas the smallest canopy openings (≤30 m2) dominated softwood stands, favoring red spruce, balsam fir and other shade-tolerant species throughout the forest. The variable effects of common disturbance agents, regardless of topographic position and/or cover types, points to the important role of biological legacies determining stand structure and composition on subsequent disturbance events and long-term patterns.  相似文献   

19.
Canopy litterfall is a significant pathway for return of nutrients and carbon (C) to the soil in forest ecosystems. Litterfall was studied in five even-aged stands of Norway spruce, Sitka spruce, Douglas-fir, European beech and common oak at three different locations in Denmark; two sandy sites, Ulborg and Lindet in Jutland, and one loamy site, Frederiksborg on Zealand. Litterfall was collected during three years from 1994 to 1996 in all five species and during six years from 1994 to 1999 in Norway spruce, Sitka spruce and European beech. The average total litterfall was in the range of 3200–3700 kg ha−1 yr−1 and did not differ significantly among tree species. There were no significant differences in total litterfall among sites during the short period, but during the longer period the richer site Frederiksborg had significantly higher total and foliar litterfall amounts compared to the more nutrient-poor sites Lindet and Ulborg. There were close relationships between foliar and total litterfall suggesting that foliar litterfall can be reliably estimated from total litterfall. Beech and oak bud scale litter was significantly related to foliar litterfall. The amount of branch and twig litter was significantly higher in oak than in other tree species. The average foliar litterfall was well related to the annual volume increment. The relationship differed markedly from previously reported relationships based on global litterfall data suggesting that such relationships are better evaluated at the regional level. Nutrient concentrations and fluxes in foliar litterfall were not significantly different among the five tree species. However, there was a significant effect of site on most nutrient concentrations of the three litterfall fractions, and foliar fluxes of P, Ca and Mn were all significantly highest at Frederiksborg and lowest at Ulborg. The similarity in litterfall inputs to the forest floor under these five tree species suggested that previous reports of large variability in forest floor accumulation should primarily be attributed to differences in litter decomposition.  相似文献   

20.
For the protection and promotion of biodiversity in forest edges and interiors, forest edge management practices are put forward like the creation of gradual forest edges (i.e., edges with a gradual increase of vegetation height from open area to forest, e.g., by means of a fringe, a belt, and a mantle). In this study, we tested the mitigating effect of gradual forest edges on the atmospheric deposition of inorganic nitrogen (N) and the potentially acidifying pollutants SO42−, NO3, and NH4+ (N + S). We conducted field experiments at three exposed forest edges in Flanders and the Netherlands and compared throughfall deposition at steep edges (i.e., edges with an abrupt transition from open area to forest) and at adjacent gradual edges. Along transects perpendicular to the edges, during three months in both winter and summer, throughfall deposition of Cl, SO42−, NO3, and NH4+ was monitored in the forest between 0 and 64 m from the edges and in the gradual edge vegetation. At the smoothest and best fitting gradual edge, the extra N + S throughfall deposition the forest received due to edge effects was lower than at the adjacent steep edge, with on average 80 and 100% in winter and summer, respectively. This was due to a halving of the depth of edge influence and an almost full reduction of the magnitude of edge influence. This decrease in throughfall deposition in the forest was not compensated by the additional throughfall deposition on the gradual edge vegetation itself, resulting in a final decrease in throughfall deposition in the forest edge by 60% in winter and 74% in summer. While this result confirms that gradual edges can mitigate edge effects on atmospheric deposition, the results of the other sites indicate the importance of size and shape of the gradual edge vegetation in mitigating edge effects on deposition: due to insufficient height (‘size’) or inadequate shape of the gradual edge vegetation, only small or insignificant decreases in throughfall deposition were observed. Hence, for mitigating edge effects on N + S and N deposition, our results support the recommendation of creating gradual edges at forests with poorly developed, abrupt edges, but it stresses the importance of a thorough consideration of the shape and size of the gradual edge vegetation in the design and management of gradual forest edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号