首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used a landscape fire succession model to estimate the historical range of variability of vegetation and fire in a dry forest landscape (size ca. 7900 km2) where the present-day risk of high severity fire threatens the persistence of older closed canopy forest which may serve as Northern Spotted Owl (Strix occidentalis caurina) habitat. Our results indicated that historically, older forest may have comprised the largest percentage of the landscape (∼35%), followed by early successional forest (∼25%), with about 9% of the landscape in a closed canopy older forest condition. The amount and condition of older forest varied by potential vegetation type and land use allocation type. Vegetation successional stages had fine-grained spatial heterogeneity in patch characteristics, with older forest tending to have the largest patch sizes among the successional stages. Increasing fire severities posed a greater risk to Northern Spotted Owl habitat than increasing fire sizes or frequencies under historical fire regimes. Improved understanding of historical landscape-specific fire and vegetation conditions and their variability can assist forest managers to promote landscape resilience and increases of older forest, in dry forests with restricted amounts of habitat for sensitive species.  相似文献   

2.
3.
We hypothesized that edge density more strongly influences species abundances in more productive environments. To test this hypothesis we collected songbird point count data across broad biophysical gradients and gradients in forest patch edge density in the west and east slopes of the Cascade Mountains of Oregon and Washington, U.S.A., which differ in ecological productivity. We then analyzed bird response (75 species) at both the species and community level to gradients in edge density (m/ha) of open and closed-canopy forest within 1-km radius landscapes. We found that (1) differences in vegetation and structural conditions between open and closed-canopy stands were significantly greater at a highly productive landscape than a landscape with intermediate levels of productivity; (2) more bird species responded to changes in edge density in more productive west-slope Cascade forests than less productive east-side Cascade forests; (3) pooled abundance data from both sites showed that 25 of the 60 most abundant bird species responded significantly to the interaction between forest productivity and changes in landscape-level edge density; and, (4) at the community level, ordinations showed that bird community similarity in the productive west-slope Cascade forests differed across low and high levels of edge density whereas no such differentiation occurred in harsh, east-side Cascade forests. These results provide some of the first evidence supporting the hypothesis that edge effects are more pronounced in productive west-side forests where higher levels of edge density benefit generalist and open-canopy species while negatively influencing closed-canopy species. Consequently, forest management aimed at supporting species diversity will be most effective if tailored to ecosystem productivity.  相似文献   

4.
To examine the relationship between forest succession following fire and the composition of bird communities, we investigated the vegetation structure, bird population density, foraging behavior and guild structure in bamboo grasslands (11 years since the last fire), pine savanna (41 years), pine woodland (58 years), old-growth hemlock forest (never burned), and old-growth spruce forest (never burned) in the Tatachia area of central Taiwan. Canopy height, total foliage cover, tree density, total basal area of tree, total basal area of snags, foliage height diversity, and tree species richness all increased with successional age. However, shrub cover peaked in intermediate successional stages. The vertical profile of foliage cover was more diverse in later successional forests, which had more breeding bird species and ecological guilds. All the breeding bird species recorded in early and intermediate stages were also found distributed in the late successional forests. Because Taiwan has high precipitation and humidity, and most forest fires in Taiwan are caused by human activities, forest fires and large areas of early successional vegetation were probably rare in the mountain areas of Taiwan prior to the arrival of humans. Therefore, bird species have not had enough time to adapt to areas with early or intermediate successional vegetation. Moreover, late successional forests host all the major plant species found in the early and intermediate stages and have higher foliage height diversity index, which was positively correlated with the bird species richness and bird species diversity index in this study. As a result, all breeding bird species and guilds in the area can be found in late successional forests. Efforts for conserving avian diversity in Taiwan should focus on protecting the remaining native old-growth forests.  相似文献   

5.
This review summarizes the current state of knowledge on pine and oak forest dynamics in the mid-montane central Himalayan forest and the ecosystem services associated with these vegetation types. Forest ecosystems play a crucial role in the livelihood of the central Himalayas as well as the adjacent plains, providing a number of tangible and intangible ecosystem services, at each stage of succession. The successional sequence starts from warm temperate grasslands, followed by early successional pine forests, mid-successional pine-oak mixed forests and eventually culminating in a late successional oak community. This successional sequence is considerably influenced by disturbances like fire, grazing, and lopping, which maintain the vegetation types in their current form and can act as potential drivers of change. Fire and grazing in grasslands and pine forests inhibit the successional process by hindering the establishment of pioneer and late successional species, respectively. Potential land-cover changes with forest succession can lead to changes in ecosystem services supply. We found that the number of ecosystem services associated with these vegetation types increase from early to late successional community. Current management approaches fail to include the dynamic nature of vegetation, which is essential for maintenance of ecosystem service supply. In conclusion, the trade-offs between ES of global (biodiversity and carbon) and local importance (fuel wood and fodder) have to be examined carefully in order to have effective conservation and management plans for the region.  相似文献   

6.
热带次生林面积巨大且在热带森林资源中的作用越来越重要,因而拥有巨大的经营潜力和生态功能。次生林演替过程中的主要研究成果如下:土壤贮存的种子对次生林的再生非常重要,光投射的强度增加和温度提高将刺激种子萌芽,而残余植被群落强烈影响次生林种子的散布,食种子动物影响次生林的成林;次生林群落植物种类数量一般随演替的进程而增加;随着演替的进程,次生林内阳生树种趋于衰亡,耐荫树种不断增加;次生林的树种数量能接近原生林水平的时间过程更随着林分种类、过去土地的利用强度和利用种类,以及环境条件的不同而异;在一定环境中,人工林树种通过人工林树种改变光、温度和土壤表层的湿度,能够促进发芽和种子生长,改善林地和林下植被的状况,从而加速次生林演替。大多数食草动物喜欢在次生林中取食,因为次生林中先锋树种很少或没有机械和化学保护,且林内许多树种产生大量可食用的果实;环境和火对次生林演替有一定影响;在早期的演替过程中,更多的生物量分配到资源需求旺盛的组织(如叶和细根),在演替晚期阶段,更多的生物量则分配到结构组织中(如木质部和根端)。次生林在15至20年内能迅速积累生物量,然后积累逐渐减慢;次生林被砍伐或火烧后,森林土壤的结构被破坏,导致土壤有机质和氮减少。  相似文献   

7.
Natural disturbances including wildfire, insects and disease are a growing threat to the remaining late successional forests in the Pacific Northwest, USA. These forests are a cornerstone of the region's ecological diversity and provide essential habitat to a number of rare terrestrial and aquatic species including the endangered northern spotted owl (Strix occidentalis caurina). Wildfires in particular have reduced the amount of late successional forests over the past decade, prompting land managers to expand investments in forest management in an attempt to slow losses and mitigate wildfire risk. Much of the emphasis is focused specifically on late successional reserves established under the Northwest Forest Plan to provide habitat for spotted owls. In this paper, we demonstrate a probabilistic risk analysis system for quantifying wildfire threats to spotted owl habitat and comparing the efficacy of fuel treatment scenarios. We used wildfire simulation methods to calculate spatially explicit probabilities of habitat loss for fuel treatment scenarios on a 70,245 ha study area in Central Oregon, USA. We simulated 1000 wildfires with randomly located ignitions and weather conditions that replicated a recent large fire within the study area. A flame length threshold for each spotted owl habitat stand was determined using the forest vegetation simulator and used to predict the proportion of fires that resulted in habitat loss. Wildfire modeling revealed a strong spatial pattern in burn probability created by natural fuel breaks (lakes and lava flows). We observed a non-linear decrease in the probability of habitat loss with increasing treatment area. Fuels treatments on a relatively minor percentage of the forested landscape (20%) resulted in a 44% decrease in the probability of spotted owl habitat loss averaged over all habitat stands. The modeling system advances the application of quantitative and probabilistic risk assessment for habitat and species conservation planning.  相似文献   

8.
北方森林林火发生驱动因子及其变化趋势研究进展   总被引:1,自引:1,他引:0  
北方森林作为气候变化最敏感的陆地生态系统之一,近些年来随着林区气候变暖,林火发生的数量和过火面积都呈显著的增加趋势,因此研究北方森林林火发生驱动因子及其变化趋势对维护其生态系统的稳定具有重要意义。文中主要从北方森林林火发生的主要控制因子和未来气候变暖条件下林火发生的预测方法及变化趋势进行综述。研究结果表明,林火的驱动因子既包括在大尺度上气候的作用,也包含植被、地形、可燃物和人类活动等局部尺度的影响。近几年来对气候变暖下林火状况趋势预测更倾向综合考虑气候和局部控制因子的作用。对我国而言,需要在更大的区域尺度上开展林火发生预测的研究。研究认为,北方森林林火变化趋势及预测研究的关键问题在于如何在不同空间尺度上确立林火发生的关键控制因子以及完善现有的林火预测方法。  相似文献   

9.
Law BE  Cescatti A  Baldocchi DD 《Tree physiology》2001,21(12-13):777-787
Leaf area and its spatial distribution are key canopy parameters needed to model the radiation regime within a forest and to compute the mass and energy exchange between a forest and the atmosphere. A much larger proportion of available net radiation is received at the forest floor in open-canopy forests than in closed-canopy forests. The proportion of ecosystem water vapor exchange (lambda E) and sensible heat exchange from the forest floor is therefore expected to be larger in open-canopy forests than in closed-canopy forests. We used a combination of optical and canopy geometry measurements, and robust one- and three-dimensional models to evaluate the influence of canopy architecture and radiative transfer on estimates of carbon, water and energy exchange of a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest. Three-dimensional model simulations showed that the average probability of diffuse and direct radiation transmittance to the forest floor was greater than if a random distribution of foliage had been assumed. Direct and diffuse radiation transmittance to the forest floor was 28 and 39%, respectively, in the three-dimensional model simulations versus 23 and 31%, respectively, in the one-dimensional model simulations. The assumption of randomly distributed foliage versus inclusion of clumping factors in a one-dimensional, multi-layer biosphere-atmosphere gas exchange model (CANVEG) had the greatest effect on simulated annual net ecosystem exchange (NEE) and soil evaporation. Assuming random distribution, NEE was 41% lower, net photosynthesis 3% lower, total lambda E 10% lower, and soil evaporation 40% lower. The same comparisons at LAI 5 showed a similar effect on annual NEE estimates (37%) and lambda E (12%), but a much larger effect on net photosynthesis (20%), suggesting that, at low LAI, canopies are mostly sunlit, so that redistribution of light has little effect on net photosynthesis, whereas the effect on net photosynthesis is much greater at high LAIs.  相似文献   

10.
Open pine and oak forest ecosystems and floodplain forests have declined because of fire and flooding suppression. I determined tree species that have contracted in area occupied (where area occupied was ≥0.5 % of total species composition) or decreased in percent composition (i.e., percentage of all stems) during recent surveys (2000–2013) to ≤85 % of area occupied or composition during older surveys (1968–1999). I then identified whether species were associated with frequent fire, flooding, wetlands, postfire conditions, or other disturbances. Of 35 species that decreased in area occupied or composition, 16 species were associated with fire or postfire disturbance and fire-dependent species decreased in composition from 20 to 14 % during tree surveys. Even though species of floodplain forests and wetlands comprise a small percent of overall tree composition, 12 decreasing species were associated with floodplain forests or wetlands. Fire maintains open oak and pine ecosystems and flooding maintains floodplain forests, generally suspending succession. Suppression of fire in upland forests and flooding in floodplain forests has allowed disturbance-sensitive species to remain established and advance successional forests throughout the USA.  相似文献   

11.
Stands of quaking aspen (Populus tremuloides) rank among the most biologically diverse plant communities across the intermountain region of western North America. Marked declines of aspen have occurred in recent decades, likely due to a combination of effects from changes in fire regimes, herbivory, climate (e.g. drought), and interspecific competition with conifer species. However, it is poorly understood how the effects of these factors are manifested at a landscape scale over decadal time periods. Analysis of field data combined with topographic information collected across the 500,000 ha Owyhee Plateau in southwestern Idaho revealed that aspen in the area occur in three different biophysical settings; First, aspen stands exist at high altitudes on south-facing slopes where local conifer species are not likely to occur because of limiting temperature or precipitation levels under current climate conditions. In these areas aspen is the potential vegetation type rather than conifers. Second, aspen grow on anomalously wet microsites (e.g. near springs), and third, aspen grow within upland mixed aspen/conifer stands, which are experiencing rapid rates of conifer establishment. Based on a paired t-test (α = 0.05) we conclude that stands growing on wet microsites show significantly slower successional rates of conifer establishment relative to upland aspen stands. We developed a conceptual state-and-transition model for upland aspen/conifer stands occurring across a range of topographic positions. We then parameterized the model using extensive field data in the vegetation dynamics computer simulation model Vegetation Dynamics Development Tool (VDDT), and examined the current and future aspen distribution under varying fire regimes. Model results indicate that average fire return intervals of 50–70 years are desirable for maintenance of aspen in upland areas where conifers are present. Under the current fire regime in the area many upland aspen/conifer stands will likely be lost within 80–200 years. Thresholds for the effect of conifer encroachment and browsing on aspen regeneration identified through this research are similar to those described by others across the West. We therefore suggest that the results presented for the Owyhee Plateau are likely applicable to semi-arid aspen woodlands across the American West where succession to conifers is a cause of aspen decline.  相似文献   

12.
Comparisons of model behaviors are an efficient way of understanding the differences amongst various models and thus providing guidance to model users for selecting suitable models for their own purposes. This study focuses on a comparison of the most commonly used fire spread algorithms used in scenario fire regime models. This paper provides an overview of fire regime modeling and describes a simulation model, Ecological Disturbance Model, as a simulation shell for such a comparison using the Fort A La Corne forest area in central Saskatchewan, Canada, as the study area. Simulation results suggested that for a fire scenario modeling approach, various fire spread algorithms such as DISPATCH, percolation, and cellular automata (CA) may not result in significant differences between user-defined and simulated fire frequencies; however, significant differences in simulated forest dynamics could result when using different fire spread algorithms. The simulation results from DISPATCH and CA are more similar than those from the percolation algorithm; however, the latter appeared to be a better representative of observed fire spread processes due to its underlying assumption of fire spread mechanisms. Simulation results also suggested that the fire spread algorithms that replicate four or eight direction fire spread in percolation and CA will not make a significant difference in simulated fire regimes or forest dynamics. It is thus recommend that using simulation shells as a tool to take alternative assumptions or models into account to narrow down the uncertainty parameters and avoid the paradoxes in the modeling of natural resource management.  相似文献   

13.
The development of mixed broadleaved-Korean pine (Pinus koraiensis Sieb. et Zucc.) forests in the Changbaishan Biosphere Reserve, located on the border with North Korea, was simulated using the gap model KOPIDE. Forest succession was simulated under three initial conditions from: (1) bare ground after clearcutting; (2) secondary forest; (3) old-growth forest. The simulations from the different initial conditions converged and support earlier successional theory that Korean pine is the climax species on the highlands of northeast China even under disturbed conditions. In addition to clear-cutting, the resilience of the forest to different levels of other human impacts, pine seed harvesting and selective cutting, was examined. These results further demonstrate that these forests possess a relatively stable structure characterized by the dominance of Korean pine. However, the model showed successional processes of the forest to be susceptible to high levels of pine seed harvesting. To predict forest dynamics at landscape scales, KOPIDE was linked with a Geographic Information System containing site and stand data sets. Running this model to simulate a forested area initially comprising several successional stages suggests that, in the absence of disturbance, Korean pine is likely to become increasingly dominant on the area over the next century.  相似文献   

14.
Mediterranean ecosystems are global hotspots of biodiversity threaten by human disturbances. Growing evidence indicates that regeneration of Mediterranean forests can be halted under certain circumstances and that successional stages can become notoriously persistent. The Mediterranean sclerophyllous forest in central Chile is been largely transformed into savannas dominated by the invasive legume tree Acacia caven as result of interacting management and ecological factors. We used multi-temporal satellite imagery to study the transition dynamics of these major vegetation types over the last four decades (1975-2008). Vegetation changes were related to indicators of resource availability (topography, water availability, solar radiance), potential propagule availability (distance to forest remnant patches) and disturbance regimes (grazing, fire occurrence and distance to roads and cities). During this study period, forests were mostly converted into Acacia savannas (46.1%). Acacia savanna was the most persistent natural vegetation type. The probability of sclerophyllous forest degradation into Acacia savanna increased on drier northern-exposed slopes, close to roads and further away from forest remnants. In contrast, forest regeneration from Acacia savanna was higher on moister southern-exposed slopes and closer to forest remnants. Acacia savannas are increasingly being converted into cultivated land on the moister locations or switching into a bare soil state in locations close to cities and further away from forest remnants. These results highlight the vulnerability of diverse sclerophyllous forests and its increasing conversion into persistent Acacia savannas in the Mediterranean region of central Chile and identify the ecological conditions for successful conservation and restoration of the native sclerophyllous forest vegetation that can be used for sensible land use planning.  相似文献   

15.
Understanding the interrelationship that exists between landscape patterns and fire history requires a great range of case studies to reduce the effects of substrate and climate. The lack of such data has led to an increasing need for spatially explicit models dealing with vegetation dynamics. The challenge is to find a compromise between process complexity, realism and landscape applications. In this paper, we describe a simulation approach (SIERRA) focussed on the particular case of Mediterranean-type communities subjected to large recurrent fires. Firstly, disturbance response strategies used in “vital attributes models” are used to simulate the influence of fire on vegetation dynamics, focussing in particular on the integration of specific regeneration abilities of Mediterranean species. Next, the model takes a functional approach towards carbon and water budgets to drive competition and simulate the seasonal vegetation water status to estimate fire risk. Spatial processes of seed dispersal, surface water fluxes depending on topographic convergence, and fire spread are used to accurately simulate landscape heterogeneity. The model offers a spatial representation of the annual course of vertical structure of biomass and carbon fluxes coupled with the weekly soil water budget and evapotranspiration rates. Some simulation and validation exercises are presented to illustrate both the functional properties on a Quercus ilex stand, and the fire-prone community dynamics of a maquis shrubland. These initial results will form a strong basis for using the model to test hypotheses about fire-prone landscape patterns.  相似文献   

16.
Fires occur frequently in dry forests of the Inland West. Fire effects vary across the landscape, reflecting topography, elevation, aspect, slope, soils, and vegetation attributes. Patches minimally affected by successive fires may be thought of as ‘refugia’, islands of older forest in a younger forest matrix. Refugia support species absent within the landscape matrix. Our goal was to predict the occurrence of pre-settlement refugia using physiographic and topographic variables.We evaluated 487 plots across a 47000 ha landscape using three criteria to identify historical fire refugia: different structure from surrounding matrix; different fire regime from surrounding matrix; presence of old individuals of fire-intolerant tree species. Several combinations of aspect, elevation, and topography best predicted refugial presence.Less than 20% of the pre-settlement landscape was identified as historical fire refugia. Refugia were not connected except by younger stands within the matrix. Current management goals of increasing amounts and connectivity of old, refugia-like forests for the benefit of species associated with late-successional habitat increase the risk of insect and pathogen outbreaks and catastrophic wildfires.  相似文献   

17.
Worldwide, the land area devoted to timber plantations is expanding rapidly, especially in the tropics, where reptile diversity is high. The impacts of plantation forestry and its management on native species are poorly known, but are important, because plantation management goals often include protecting biodiversity. We examined the impact of pine (Pinus caribaea) plantations, and their management by fire, on the abundance and richness of reptiles, a significant proportion of the native biodiversity in tropical northern Australia, by (i) comparing abundance and diversity of reptiles among pine plantations (on land cleared specifically for plantation establishment), and two adjacent native forest types, eucalypt and Melaleuca woodlands, and (ii) comparing reptile abundance and richness in pine forest burnt one year prior to the study to remove understorey vegetation with pine forest burnt two years prior to the study. We also examined the influence of fire on reptile assemblages in native vegetation, by comparing eucalypt woodland burnt two years prior to the study and unburnt for eight years. To quantify mechanisms driving differences in reptile richness and abundance among forest types and management regimes, we measured forest structure, the temperatures used by reptiles (operative temperature) and solar radiation, at replicate sites in all forest types and management regimes. Compared to native forests, pine forests had taller trees, lower shrub cover in the understorey, more and deeper exotic litter (other than pine), and were cooler and shadier. Reptile assemblages in pine forests were as rich as those in native forests, but pine assemblages were composed mainly of species that typically use closed-canopy rainforest and prefer cooler, shadier habitats. Burning did not appear to influence the assemblage structure of reptiles in native forest, but burning under pine was associated with increased skink abundance and species richness. Burned pine was not warmer or sunnier than unburned pine, a common driver of reptile abundance, so the shift in lizard use after burning may have been driven by structural differences in understorey vegetation, especially amounts of non-native litter, which were reduced by burning. Thus, burning for management under pine increased the abundance and richness of lizard assemblages using pine. Pine plantations do not support the snake diversity common to sclerophyllous native forests, but pine may have the potential to complement rainforest lizard diversity if appropriately managed.  相似文献   

18.
Forest ecosystem management, based partly on a greater understanding of natural disturbance regimes, has many variations but is generally considered the most promising approach to accommodating biodiversity concerns in managed forested regions. Using the Lake Duparquet Forest in the southeastern Canadian boreal forest as an example, we demonstrate an approach that attempts to integrate forest and stand-level scales in biodiversity maintenance. The concept of cohorts is used to integrate stand age, composition and structure into broad successional or stand development phases. Mean forest age (MFA), because it partly incorporates historic variability of the regional fire cycle, is used as a target fire cycle. At the landscape level, forest composition and cohort objectives are derived from regional natural disturbance history, ecosystem classification, stand dynamics and a negative exponential age distribution based on a 140 year fire cycle. The resulting multi-cohort structure provides a framework for maintaining the landscape in a semi-natural age structure and composition. At the stand level, the approach relies on diversifying interventions, using both even-aged and uneven-aged silviculture to reflect natural stand dynamics, control the passage (“fluxes”) between forest types of different cohorts and maintain forest-level objectives. Partial and selective harvesting is intended to create the structural and compositional characteristics of mid- to late-successional forest types and, as such, offers an alternative to increasing rotation lengths to maintain ecosystem diversity associated with over-mature and old-growth forests. The approach does not however supplant the necessity for complementary strategies for maintaining biodiversity such as the creation of reserves to protect rare, old or simply natural ecosystems. The emphasis on maintaining the cohort structure and forest type diversity contrasts significantly with current even-aged management in the Canadian boreal forest and has implications for stand-level interventions, notably in necessitating a greater diversification of silvicultural practices including more uneven-aged harvesting regimes. The approach also presents a number of operational challenges and potentially higher risks associated with multiply stand entries, partial cutting and longer intervals between final harvests. There is a need for translating the conceptual model into a more quantitative silvicultural framework. Silvicultural trials have been established to evaluate stand-level responses to treatments and operational aspects of the approach.  相似文献   

19.
A simple stand model is developed to assess the influence of management activities in old growth Douglas-fir forests on atmospheric CO, levels. Two natural disturbance regimes (450- and 240-year stand replacement fire cycles) are compared with four management regimes (45, 6 5 , 90-year plantation rotations, and conversion to non-forest use). Conversion of old growth Douglas-fir stands to plantations may actually decrease atmospheric C 4 for the fist few decades, but then increase it. The short term and long term changes are negligible compared to the atmospheric C02 produced by burning fossil fuels. Using wood as a substitute product for other materials (brick, aluminum, and plastic) dramatically reduces CO, released to the atmosphere; however, where wood is used as a luxury product, large quantities of C02 are released to the atmosphere under harvest regimes.  相似文献   

20.
Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号